1.对比分析
横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?
这里我们还要参考竞争对手的成交额,数据时代,我们可以很轻易的拿到竞争对手的相关数据。
纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。
2.转化分析
这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:
店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。
平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。
用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。
3.留存分析
我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。
我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是如果没有做留存分析的话,这个结果很可能是一个错误的。
留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。
4.产品比价
大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?
这时候需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。
关于电商数据分析常用方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
2. 有哪些商业智能数据分析方法
你好,商业智能中的数据分析工作主要通过OLAP来实现。原理是根据业务需求,建立人员分析数据的维度比如年月日等等。
而分析人员需要掌握的是数据分析的思路,比如我们要利用比较常用的FineBI做一个简单的分析,先确立哪些分析指标,需要哪些表,然后取出, OLAP会自动建立表间关联,只需要搭建图表结构即可实现数据查询和分析结构的展示,这也正是商业智能的“智能”所在。
3. 电子商务数据分析包括哪些内容
构建电商数据分析的基本指标体系,主要分为8个类指标。
1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6.市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。
7.风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。
8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。
4. 电商数据分析是什么
电商数据分析包括了大行业大平台的数据状况,也可以是小到店铺、单品、sku的某个某个维度详细数据分析。
除了常规的商品型号、商品价格、促销信息、店铺名称等,还可以自定义其他维度、可以说说是做到了全方位展现渠道违规行为,满足多样化的巡检场景需求。
从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
电商分析数据方法如下:
一、依据用户画像,洞察需求
用户画像即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
二、依据渠道数据分析用户来源
对电商卖家来说,分析“访客数”最重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和关键词排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。
三、店内转化率的数据分析
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:
1、销售转化率 ——已购买的用户和全部来到店铺的用户比值。
2、平均订单价值 —— 用户下单的平均金额。
3、放弃购物车率—— 在所有产生的订单中,未完成订单的占比。
四、提高营销推广的ROI
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
五、产品数据分析
1、产品数据分分析
①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后最终下单的人数。
②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
2、销量数据分析
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况最佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
六、用户留存数据分析
聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。
七、用户推荐数据分析
对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友推荐,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。
5. 电商数据分析有哪些方法
1、市场分析
有市场需求的产品,即使产品品质很好也是没有前(钱)途的。虽然目前淘系电商推广渠道多样化了,但是到目前为止绝大多数客户仍然是通过搜索关键词找到需要的产品。所以如果你产品相关的关键词在淘宝上搜索量过少,至少说明当下是不太适合在淘宝上销售。
2、同行分析
做生意是一定要研究对手数据的,可以这么说,在当下电商运营中,同行的信息应该是最有价值的。这也是很多运营必须要做的事——其实在监控和分析同行的店铺。
3、分析自己店铺
数据是店铺问题诊断的基础,当我们的店铺出现问题,比如说流量下滑、转化率下滑,这肯定是有原因的,绝大多数原因我们能够通过逻辑分析去判断出个大概,我们所有的分析和判断都必须要通过数据去进行一个验证和分析,如果不经过这一步,你只是主观上分析的话,很容易出错。
6. 商业数据分析的内容有哪些
这种基于大数据和数据商业化模式的数据分析,将是未来全球的趋势,而商业数据分析也将应运而生。
“商业分析”是一门新兴的学科。它基于数据,通过更复杂的编程工具和算法挖掘数据背后的业务价值,解决业务问题。它也是近年来美国等发达的国家,发展最快的行业。
这种基于大数据和数据商业化模式的数据分析,将是未来全球的趋势,而商业数据分析也将应运而生。
商业数据分析有许多应用,如监控异常数据(如信用欺诈)、建模和预测(如产品分析)、关键变量分析和预测(如领先分析)以及预测分析(如客户流失预测)。
当然,商业数据分析,并不局限于基于用户的搜索关键词进行推送,而是基于用户的购买习惯、点击产品偏好等多方面的数据综合分析,推断出用户的审美、需求等多方面的偏好,进而为用户服务,提供购买的最佳答案。
阿里巴巴邀请了几十位来自国内外相关领域的教授,比如斯坦福的。网络还将谷歌Brain的创始人之一——Andrew Ng挖走了。新加坡和澳大利亚政府直接资助了开设business analytics部门的公司。
商业数据分析的好处如此之大,几乎无法计算。
7. 常用的数据分析方法有哪些
常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。
8. 商务数据分析是什么
商务数据分析是当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量支付金额等信息保存在自己的数据库里面,所以对于这些客户我们可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户的扩展营销的可能性。
电子商务相对于传统零售业来说,最大的特点就是一-切都可以通过数据化来监控和改进。通过数据可以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。基于数据分析的每一点点改变,就是一点点提升你赚钱的能力,所以,电子商务网站的数据分析显得尤为重要。
9. 商业数据分析怎么做
1.数据收集
当我们在做数据分析时,第一步要解决的问题肯定就是数据源的问题。Allen通常把数据分为二大类。第一类是直接能获取的数据,通常都是内部数据。无非就是从网站后台或者是自己家的数据库里面导。第二类就是外部数据,需要经过加工整理后得到的数据。
2. 数据清洗
清洗数据(筛选、清除、补充、纠正)的目的是从大量的、杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。清洗后、保存下来真正有价值、有条理的数据,为后面做数据分析减少分析障碍。
3. 数据对比
对比,是数据分析的切入点。因为如果没参照物,数据就没有一个定量的评估标准。
横向对比,与行业平均数据,与竞争对手的数据进行比对。举个粟子,比如你家的APP用户留存率是60%,而行业平均留存是70%或竞争对手的用户留存率是70%,那就说明你家的产品在留存率方面有待加强!
纵向对比,与自家产品的历史数据进行对比,围绕着时间轴来对比。
4. 数据细分
数据对比发现了异常,我们当然想知道是什么原因导致的。这里就要用到数据细分了,数据细分通常情况下先分纬度,再分粒度。
5.数据溯源
通常情况下,通过数据细分就能分析出大多数问题的原因并推导出结论了。但也有特殊的情况,即使具体到粒度了也得不出有说服力的结论。