1. 工业分析仪工作原理
概述:
工业分析仪主要用于测定煤等有机物中的水分、灰分和挥发分的含量,其主要特点是整个测试过程由计算机控制自动完成,分析时间短,测试精度高。并且,该仪器通过采用先进采集和传输数据控制系统,使得该仪器具有很高的可靠性。是常用的煤炭化验设备之一。
仪器结构:
仪器主要由测试仪主机、计算机系统、打印机等三大部分组成
测试仪主机原理及各部件功能
1)高温炉:采用新型陶瓷纤维材料制成的红外炉,升温速度快,最高使用温度可达1000℃。
2)电子天平:通过延伸到高温炉内的称杆来精确称量坩埚的质量。
3)升降装置:通过步进电机的旋转带动丝杆,使与转盘相连的部件产生垂直方向的往复运动。
4)热电偶:用于精确测量高温炉内的温度。
计算机系统
1)用于运行测试程序,提供人机界面
2)对采集的数据进行处理
3)计算各种含量
4)测试结果的查询、打印和保存
5)控制整个系统的正常运转
打印机:用于输出测试结果报告。
2. 元素的分析的碳含量与工业分析的固定碳含量的区别
性能指标
干涉仪
数字化连续动态调整( d.s.p ),速度达每秒 130,000 次 , 保证瞬时与长时间检测的超高稳定性,更好的光谱峰形。
光谱范围
27,000 -1 ~15cm -1 ( 选择不同的光源、分束器、检测器组合 )
分辨率
标准 0.4cm -1 ,可升级至 0.09cm -1 ;
峰 - 峰噪声值
小于 8.68 × 10 -6 au ( 1 分钟扫描, 4cm -1 分辨率)( au:absorbance units )
s/n 比 50,000:1 ( 1 分钟扫描, 4cm -1 分辨率)
线性度
线性度:对 0.0 % t 的偏离小于 0.07 % t ( astm1421 方法)
波数精度
0.01cm -1
快速扫描
65,95 张光谱 / 秒,可升级至 77,105 张光谱 / 秒( 16cm -1 分辨率)
联机功能
具有五个标准的外接光路输出口,可以联机 ft-raman 、 gc-ir 、 tga-ir , lc-ir 、红外显微镜,另外还可连接标准辅助光学台,用于完成更多的联机实验
保质期
主机保修一年,中 / 远红外光源及干涉仪保修五年
计算机操作系统
win xp pro,win2000
主机尺寸
69.2cm (w) × 65.5cm (d) × 25.4cm (h)
样品仓尺寸
21cm (w) × 26cm (d) × 20cm
主机质量
69kg
众所周知,傅立叶变换红外光谱技术对于半导体加工而言,是一种理想的检测手段。而半导体及光伏加工无论是对于原材料还是工艺过程都有着严格的控制要求,需要能够对于纯度超过99.999%的材料进行检测,并且检测尺度主要是在纳米级。而作为一种快速、无损的检测技术,necoltet6700既可用于相关企业的质检实验室,也可用于现场以监控生产过程中搀杂剂在硅片中的均一性。由于硅有非常好的红外透过性,因此傅立叶变换红外技术在此方面的应用包括:针对外延生长的晶体薄膜、微机电系统(mems)设备和绝缘硅(soi)材料的厚度测量,硅晶体中间隙氧和取代碳含量的测定以及介电薄膜表征等。 此外,该型产品采用了新一代 etc everglo 红外源,在提供稳定信号的同时,极大延长了红外源的使用寿命。为了应付以前难以处理的红外样品,还新增加了一个 turbo mode 功能。敷金的光学器件和全新设计的光路系统则极大增强了光信号通量。具体优势表现如下:
最新etc everglotm光源:ever-glotm(us patent #us5291022)长寿命空冷红外光源。最高能量分布在1,600cm-1附近,是化合物出峰最多的区域。最新的etc(electronically temperature controlled)设计提供了三种工作状态:rest mode(900℃)、stabilized mode(1140℃)、turbo mode (1250℃);通过etc监控,使红外光源能量稳定输出,确保光源整个寿命中均可保证性能一致,从而得到稳定的高质量红外图谱;更可通过“turbo”模式获得超出常规能量25%高能量输出,用以满足特殊测试要求。
专利干涉仪:vectratm干涉仪采用电磁悬浮驱动,其性能特点类似传统的气浮式空气轴承干涉仪,但屏弃了空气轴承干涉仪外部气体供给的缺点。成为最新一代高级研究应用所青睐的干涉仪,分辨率最高可达0.09cm-1。
数字化连续动态调整(d.s.p),速度达每秒130,000次, 保证瞬时与长时间检测的超高稳定性,更好的光谱峰形。一个全新概念的动态调整系统,无需任何调节螺丝,完全抛弃了陈旧复杂的光学补偿系统,不存在立体角镜等光学补偿型干涉仪光学补偿无法避免的“光谱失真”现象。是唯一能够主动补偿所有已知的干涉仪失调的方式,可同时对振动与温度作出补偿及调整。
多种检测器:品种齐全的各类检测器,适用于紫外至远红外的任何光谱范围或实验配置要求,并具有最佳的性能。所有的检测器均“即插即用” (plug and play),易于更换与使用。另有专利的无缝不锈钢设计的液氮冷却检测器,液氮保持时间长达18小时,堪称业内第一。
独有的e.s.p. (enhanced synchronization protocol) 技术,充分体现出easy(简洁)、smart(智能)、precise(精确)的设计理念,即将人工智能和高度集成的概念渗入到光谱设计、制造的每个部件。
智能光学台:光学台的所有元件均采用智能化预准直对针定位,“即插即用”设计,分束器、检测器及智能附件一旦插入系统,智能系统立刻自动识别,自动更新参数,自动优化无需调整。完全抛弃了老式螺钉螺母,出厂前激光定位的方法,克服了由螺丝弹簧控制镜面角度的不稳定性。
光学台采用整体铸模形式,加上高精度的“对针定位”固定光学元件,达到了超高精度的重复性,大大增加了仪器的稳定性。彻底解决了传统光学结构不易维护的问题,未入门用户即可自行安装、更换光学元件。
智能附件:光学台配有标准大样品仓,完全兼容所有商业附件。但使用智能应用附件,更能体现“智能系统”的强大优势。自动识别、自动性能测试、自动参数设定、永久精确定位校准等特色提高了应用实验的重复性,完全消除人为误差。
智能湿度探测及吹扫控制:在样品仓盖开启时,独特的智能吹扫系统将自动进行检测,增加光学台中吹扫气体的流量,在连续测样的过程中以最短的吹扫时间恢复到开仓前的状态,以确保尽可能迅速而高效地收集数据。
光学台采用美国宇航专利密封胶条的整体密封干燥设计,减少了光路中的密封窗片,提高了光的传输效率,且防潮效果极佳。智能湿度探测减轻了操作人员对仪器维护的工作量,将自动提醒更换干燥剂,解决红外使用过程中最大的隐患。
在线智能诊断:连续检测每一个光学元件和电子元件的参数,随时可以检测并预知光谱仪的故障,并提出解决方案,增强用户的自我维护能力。
卓越的光学系统:精密铸造的光学台底座配以最少数量的反射镜以及最短光程的设计,使得nicolet 系列ft-ir的光能量损失减少到最小。金刚石加工切削整体合金反射镜,光路传输效率更高于一般金属镀层技术的反射镜,保证最大光学效能输出。热稳定性极高的整体块状反射镜消除了传统单片反射镜螺丝固定带来的镜片容易变形、螺丝容易松动、需要人工调整光路的弊端,具有极高的重复性,甚至是仪器间的一致性。精密的机械加工确保每次扫描的高度再现,彻底消除仪器给实验结果带来偏差。
高性能电子系统:最新的24位a/d转换器,500khz的a/d转换速度,真正做到实时采集光谱数据,保证数据的真实性与可靠性。配合与现代最新的计算机技术同步的最新的usb 2.0 通讯接口,提高了数据传输速率。
3. 大学学的工业分析与检验主要是学习什么
工业分析与检验专业是研究工业材料及其产品、化工产品、食品、药品及地质矿产等物质的化学组成、各组成含量的测试方法、物质的化学结构及化学分离提取方法以及新型材料的研制等应用型学科。培养具有扎实的化学理论基储较强的应用研究和技术开发能力、适应性强的应用型人才,专业特点是重视四大化学基础理论的教学和研究,突出各种近代与现代分析测试技术的学习,不同商品的表征方法研究和对新型材料的开发与研究。
工业分析与检验专业主要课程:无机化学、有机化学、分析化学、物理化学、结构化学、新型材料、现代仪器分析、现代商品学概论、商品质量监督与管理、高分子化学及高分子物理等等。
4. 现代近红外光谱分析技术的现代近红外光谱技术的特点
近红外光谱技术之所以成为一种快速 、 高效适合过程在线分析的有利工具, 是由其技术特点决定的, 近红外光谱分析的主要技术特点如下:
(1)分析速度快。 由于光谱的测量过程一般可在 1 min内完成 (多通道仪器可在 1Sec 之内完成), 通过建立的校正模型可迅速测定出样品的组成或性质。
(2)分析效率高。 通过一次光谱的测量和已建立的相应的校正模型, 可同时对样品的多个组成或性质进行测定。 在工业分析中, 可实现由单项目操作向车间化多指标同时分析的飞跃, 这一点对多指标监控的生产过程分析非常重要, 在不增加分析人员的情况下可以保证分析频次和分析质量, 从而保证生产装置的平稳运行。
(3)分析成本低。 近红外光谱在分析过程中不消耗样品, 自身除消耗一点电外几乎无其他消耗, 与常用的标准或参考方法相比, 测试费用可大幅度降低。
(4)测试重现性好。 由于光谱测量的稳定性, 测试结果很少受人为因素的影响, 与标准或参考方法相比, 近红外光谱一般显示出更好的重现性。
(5)样品测量一般勿需预处理, 光谱测量方便。 由于近红外光较强的穿透能力和散射效应, 根据样品物态和透光能力的强弱可选用透射或漫反射测谱方式。 通过相应的测样器件可以直接测量液体、 固体、 半固体和胶状类等不同物态的样品。
(6)便于实现在线分析 。 由于近红外光在光纤中良好的传输特性, 通过光纤可以使仪器远离采样现场, 将测量的光谱信号实时地传输给仪器, 调用建立的校正模型计算后可直接显示出生产装置中样品的组成或性质结果。 另外通过光纤也可测量恶劣环境中的样品。
(7)典型的无损分析技术。 光谱测量过程中不消耗样品, 从外观到内在都不会对样品产生影响。 鉴于这一特点,该技术在活体分析和医药临床领域正得到越来越多的应用。
(8)现代近红外光谱分析也有其固有的弱点。 一是测试灵敏度相对较低, 这主要是因为近红外光谱作为分子振动的非谐振吸收跃迁几率较低, 一般近红外倍频和合频的谱带强度是其基频吸收的 10 到 10000 分之一, 就对组分的分析而言, 其含量一般应大于 0.1%;二是一种间接分析技术, 方法所依赖的模型必须事先用标准方法或参考方法对一定范围内的样品测定出组成或性质数据, 因此模型的建立需要一定的化学计量学知识、 费用和时间, 另外分析结果的准确性与模型建立的质量和模型的合理使用有很大的关系。
5. 关于煤质分析的一篇大学毕业论文。煤的工业分析!!
巨野煤田煤质分析及科学利用评价
摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田
是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。
[关键词]煤质分析;煤质特点;科学利用;评价
1巨野煤田煤质分析
1.1煤的工业分析
工业分析是确定煤组成最基本的方法。在指标
中,灰分可近似代表煤中的矿物质,挥发分和固定碳
可近似代表煤中的有机质。
衡量煤灰分性能指标主要有灰分含量、灰分组
成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是
动力用煤和气化用煤的重要性能指标。一般以煤灰软
化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。
1.1.1龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆
时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖
触及底板变成球形时的温度;半球温度(HT)为灰锥形
变至近似半球形,即高约等于底长的一半时的温度;
流动温度(FT)为煤灰锥体完全熔化展开成高度<1.5 mm
薄层时的温度。
1.1.2彭庄矿钻孔煤样工业分析结果(表2)
2煤质特点及科学利用评价
2.1巨野煤田煤质特点
由煤炭科学研究总院《巨野矿区煤质特征及菜加
工利用途径评价》2003.5可以看出巨野煤田煤质有
如下特点:①灰分含量低,属于中、低灰煤层。②挥发
分含量高,各煤层原煤的挥发分含量在33%以上,且
差异不大,均属于高挥发分煤种。③磷含量特低;硫分
含量上低下高。④干燥基低位热值高。各层煤的都比
较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质
层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量
在86.02%~86.51%之间,氢含量在5.41%~5.44%之
间,C/H比值<16。⑦灰熔点上高下低。
2.2成浆性实验评价
2008年1月,华东理工大学对巨野煤田龙固矿
(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验
及评价。
2.2.1成浆浓度实验
成浆浓度是指剪切速率100 s-1,粘度为
1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制
浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作
为添加剂,用量为煤粉质量的1%。制成一系列浓度的
水煤浆,测量其流动性,观察水煤浆的表观粘度随成
浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度
也明显升高。本实验3种煤样成浆浓度分别为龙固矿
66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。
2.2.2流变性实验
水煤浆流变特性是指受外力作用发生流动与变
形的特性。良好的流变性和流动性是气化水煤浆的重
要指标之一。
将实验用煤制成适宜浓度的水煤浆,然后用
NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表
观粘度随剪切变化的规律绘制成曲线,观察水煤浆的
流变特性,见表11。
从表11可以看出,3种煤制成的水煤浆中,随着
剪切速率增大,表观粘度都随之降低,均表现出一定
的屈服假塑性。屈服假塑性有利于气化水煤浆的储
存、泵送和雾化。
2.2.3实验结论
煤粉粗粒度(40~200目)和细颗粒(<200目)质
量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质
量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆
浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加
压气流床水煤浆气化技术对水煤浆浓度的要求。
2.3原料煤的应用
2.3.1适合于制备水煤浆
水煤浆不但是煤替代重油的首选燃料,而且是加
压气流床水煤浆气化制备合成气的重要原料。同时它
又是一种很有前途的清洁工业燃料。实践上,华东理
工大学“巨野煤田原煤成浆性实验评价报告”表明:巨
野煤田各矿井原料煤均适合于制备高浓度稳定水煤
浆。
2.3.2用于煤气化合成氨、合成甲醇及后续产品
巨野煤田原煤属于高发热量的煤种(弹筒热平均
值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高
(>1 300℃),有利于固态排渣。根据鞍钢和武钢分
别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,
巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一
样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,
作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。
煤气化得到的合成气既可通过变换用于合成
氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲
醇为基础可进一步合成其他约120余种化工产品。另
外,还可利用甲醇制备醇醚燃料及合成液体烃燃料
等。
2.3.3用作焦化原料
焦化用于生产冶金焦、化工焦,其副产焦炉煤气
可用于合成甲醇或合成氨,副产煤焦油进行分离和深
加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可
以供将来的400万t/a焦化厂或者上海宝钢等大型
钢铁企业生产I级焦炭时作配煤炼焦使用;灰分
≤9.0%的8级精煤(2#),也可供华东地区的中小型焦
化企业生产2级和3级冶金焦的配煤炼焦使用。此
外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏
高,最好进行配煤炼焦。2.3.4远景目标———煤制油
煤直接液化可得到汽油、煤油等多种产品。巨野
煤田的大部分煤层均为富油煤,尤其是15煤层平均
焦油产率>12%,属高油煤;根据元素分析计算的碳氢
比各煤层均<16%;大部分煤层挥发分>35%的气煤和
气肥煤通过洗选后的精煤挥发分>37%,而其灰分
<10%。因此,巨野煤田的煤炭都是较好的液化用原料
煤。
煤间接液化可制取液体烃类。煤经气化后,合成
气通过F-T合成,可以制取液体烃类,如汽油、柴油、
石腊等化工产品及化工原料。
3结语
综上所述,巨野煤田第三煤层大槽煤属于低灰、
低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资
源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是
国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用
煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的
重要原料。因此,菏泽大力发展煤气化合成氨和甲醇
并拉长产业链搞深度加工是必然的正确选择。
6. 煤的工业分析技术论文
对于煤的工业分析而言,它可以确定出煤的整体组成部分,下面是由我整理的煤的工业分析技术论文,谢谢你的阅读。
浅谈煤的工业分析
摘要 :文章浅谈了煤的工业分析方法的要点、原理及测定过程中的注意事项,并对测试结果在实际工作中的应用作了简单的介绍。
关键字 :水分 灰分 挥发分 固定碳
Abstract: the article briefly discusses the coal instrial analysis method, principle and the main points of the matters needing attention in the process of measurement, and its application in the practical work of the result of the test made a simple introction.
The keyword volatile moisture ash fixed carbon
中图分类号:TQ52文献标识码:A
正文:
煤的工业分析也称煤的技术分析或实用分析,在国家标准中,煤的工业分析是指包括煤的水分(M )、灰分(A )、挥发分(V )和固定碳(Fc )四个分析项目指标的测定的总称。煤的工业分析是了解煤质特性的主要指标,也是评价煤质的基本依据。通常煤的水分、灰分、挥发分是直接测出的,而固定碳是用差减法计算出来的。广义上讲,煤的工业分析还包括煤的全硫分和发热量的测定, 又叫煤的全工业分析。工业分析是一种规范性很强的定量分析方法,是在特定条件下所测得的各项数值。
1、煤的水分
煤的水分,是煤炭计价中的一个最基本指标。煤是多孔性固体,含有一定的水分。水分是煤中的无机组分,其含量和存在状态与煤的内部结构及外界有关。一般而言,水分的存在不利于煤的加工利用。
煤的水分按照它的存在状态及物理化学性质,可分为外在水分、内外水分及化合水三种类型。
煤的水分直接影响煤的使用、运输和储存。煤的水分增加,煤中有用成分相减少,且水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。煤的水分增加,还增加了无效运输,并给卸车带来了困难。特点是冬季寒冷地区,经常发生冻车,影响卸车,影响生产,影响车周转,加剧了运输的紧张。煤的水分也容易引起煤炭粘仓而减小煤仓容量,甚至发生堵仓事故。
煤中水分按存在形态的不同分为两类,既游离水和化合水。煤的工业分析中只测试游离水,不测结晶水。
煤的游离水分又分为外在水分和内在水分。煤的全水分,是指煤质全部的游离水分,既煤中外在水分和内在水分之和,简记符号Mt。
煤的全水分测定可采用四种方法,即通氮干燥法、空气干燥法、微波干燥法及空气干燥的一步法和两步法。在我们实际的工作中用的是空气干燥法,即称取一定量粒度小于6mm的煤样,在空气流中,于105-110℃干燥至质量恒定,然后根据煤样的质量损失计算全水分的含量。
2、煤的灰分
煤的灰分不是煤中固有的成分,而是煤在规定条件下完全燃烧后的残留物,灰分简记符号为A,也表示灰分的质量分数。即煤中矿物质在一定条件下经一系列分解、化合等复杂反应而形成的的,是煤质矿物质的衍生物。灰分全部来自矿物质,组成和质量又不同于矿物质,煤的灰分和煤中的矿物质关系密切,对煤炭利用都有直接影响,工业上常用灰分产率估算煤中矿物质的含量。
煤的灰分可用来表示煤中矿物质的含量,通过测定煤中灰分产率,可以研究煤的其他性质,如含碳量、发热量、结渣性等,用以确定煤的质量和使用价值。
中国标准GB/T212-2001规定,灰分测定方法包括缓慢灰化法和快速灰化法两种。其中缓慢灰化法为仲裁法。
缓慢灰化法测定时,称取粒度小于0.2mm的空气干燥煤样(1±0.1)g(称准至0.0002g),均匀地摊平于灰皿中,放入马弗炉中,以每分钟不大于2cm的速度把灰皿推入炉内的炽热部位,即恒温区(若煤样着火发生爆燃,则实验作废),关上炉门,在(815±10)℃温度下灼烧40min。从炉中取出灰皿,冷却5min左右,移入干燥器中冷却至室温后称量并进行检查性灼烧。如遇检查性灼烧时结果不稳定,应改用缓慢灰化法重新测定。灰分低于15.00%时,不必进行检查性灼烧。
3、煤的挥发分和固定碳
(1)煤的挥发分
挥发分的概念 煤样在规定的条件下,隔绝空气加热,并进行水分校正后的挥发物质产率称为挥发分,简记符号为V。煤的挥发分主要是由水分、碳、氢的氧化物和碳水化合物(以CH4为主)组成,但不包括物理吸附水和矿物质中的二氧化碳。可以看出,挥发分不是煤中固有的挥发性物质,而是煤在特定条件下的热分解产物,所以煤的挥发分称为挥发分产率更确切。挥发分测定结果随加热温度、加热时间、加热速度以及实验设备的形式、试样容器的材质、大小不同而有所差异。因此说挥发分的测定是一个规范性很强的实验项目,只有采用合乎一定规范的条件进行分析测定,所得挥发分的数据才有可比性。
挥发分的测定 按国家标准GB/T212-2001的规定,挥发分的测定方法要点为:称取一定量的空气干燥煤样,放在带盖的瓷坩埚中,在(900±10)℃下,隔绝空气加热7min,以减少的质量占煤样质量百分数减去该煤样的水分的质量分数(Mad)作为煤样的挥发分
(2)煤的固定碳
煤的固定碳的概念 从测定煤样挥发分后的焦渣中减去灰分后的残留物称为固定碳,简记符号为FC。固定碳和挥发分一样不是煤中固有的成分,而是热分解产物。在组成上,固定碳除含有碳元素外,还包含氢、氧、氮和硫等元素。因此,固定碳与煤中有机质的碳元素含量是两个不同的概念,绝不可混淆。一般而言,煤中固定碳含量小于碳元素含量,只有在高煤化程度的煤中两者才比较接近。
固定碳的计算 煤的工业分析中,固定碳一般不直接测定,而是通过计算获得。在空气干燥煤样测定水分、灰分和挥发分后,由下式计算没的固定碳的质量分数
Wad(FC)=100-(Mad+Aad+Vad)
式中 Wad(FC) ——空气干燥煤样的固定碳的质量分数,%
Mad ——空气干燥煤样的水分的质量分数,%
Aad ——空气干燥煤样的灰分的质量分数,%
Vad ——空气干燥煤样的挥发分的质量分数,%
结论: 随着煤的煤化程度的增加,煤中水分开始下降很快,以后变化则不大;固定碳含量逐渐增加;挥发分产率则先增加后降低。若以干燥无灰基计算,挥发分产率随煤化程度增加呈线性关系下降。
参考文献
【1】 朱银惠《 煤化学 》 化学工业出版社 2004年8月
点击下页还有更多>>>煤的工业分析技术论文
7. 相比常规化学发光法,电致化学发光法有什么特点,为什么
相比常规化学发光法,电致化学发光法的特点如下:
化学发光法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。
电化学发光分析法具有灵敏度高、仪器设备简单、操作方便、易于实现自动化等特点,广泛地应用于生物、医学、药学、临床、环境、食品、免疫和核酸杂交分析和工业分析等领域。
在21世纪中必将继续为解决人类面临的各种重大问题发挥更加显着的作用。
化学发光与其它发光分析的本质区别是体系产生发光 (光辐射) 所吸收的能量来源不同。
体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。
8. 工业分析使用和贮存标准物质需要注意哪些问题
工业分析使用和贮存标准物质需要注意哪些问题
标准物质的特点与性质
(1)标准物质可用于校准仪器。分析仪器的校准是获得准确的测定结果的关键步骤。仪器分析几乎全是相对分析,绝对准确度无法确定,而标准物质可以校准实验仪器。
(2)标准物质用于评价分析方法的准确度。选择浓度水平、准确度水平。
(3)标准物质当作工作标准使用,制作标准曲线。仪器分析大多是通过工作曲线来建立物理量与被测组分浓度之间的线性关系。分析人员习惯于用自己配制的标准溶液做工作曲线。若采用标准物质做工作曲线,不但能使分析结果成立在同一基础上,还能提高工作效率。
(4)标准物质作为质控标样。若标准物质的分析结果与标准值一致,表明分析测定过程处于质量控制之中,从而说明未知样品的测定结果是可靠的。
(5)标准物质还可用于分析化学质量保证工作。分析质量保证责任人可以用标准物质考核、评价化验人员和整个分析实验室的工作质量。具体作法是:用标准物质做质量控制图,长期监视测量过程是否处于控制之中。
使用标准物质应注意:
(1)选用标准物质时,标准物质的基体组成与被测试样接近。这样可以消除基体效应引起的系统误差。但如果没有与被测试样的基体组成相近的标准物质,也可以选用与被测组分含量相当的其它基体的标准物质
(2)要注意标准物质有效期。许多标准物质都规定了有效期,使用时应检查生产日期和有效期,当然由于保存不当,而使标准物质变质,就不能再使用了。
(3)标准物质的化学成分应尽可能地与被测样品相同
(4)标准物质一般应存放在干燥、阴凉的环境中,用密封性好的容器贮存。具体贮存方法应严格按照标准物质证书上规定的执行。否则,可能由于物理、化学和生物等作用的影响,使得标准物质发生变化,引起标准物质失效。