导航:首页 > 研究方法 > 泛素化蛋白的研究方法

泛素化蛋白的研究方法

发布时间:2023-02-09 05:09:04

1. 泛素-蛋白酶体介导的蛋白质降解途径

主要有四步:

1、泛素的活化:泛素甘氨酸端的羧基连接到泛素活化酶E1的巯基,这个需要以ATP作为能量,最终形成一个泛素和泛素活化酶E1之间的硫酯键。

2、E1将活化后的泛素通过交酯化过程交给泛素结合酶E2。

3、泛素连接酶E3将结合E2的泛素连接到目标蛋白质上并释放E2,形成特定的泛素化的蛋白质。

4、泛素化的蛋白质被特定的蛋白酶体识别并结合,最终在蛋白酶的催化下蛋白质分解为短肽或氨基酸。

(1)泛素化蛋白的研究方法扩展阅读:

泛素样蛋白的来源:

泛素蛋白由76个氨基酸残基组成的多肽,它可以被一系列的酶促反应活化,进而与底物靶蛋白相连接(如图中箭头所示)。UBL修饰系统采用的也是类似途径。

有三种酶——E1、E2和E3——参与了泛素修饰反应,这包括多泛素蛋白合成反应,即在一个泛素蛋白的基础之上再添加好几个泛素蛋白。

E1酶负责活化泛素蛋白、E2酶通过转硫醇作用从E1酶处获得泛素蛋白,并将其与底物蛋白相结合,然后E3酶将泛素蛋白与底物连接(在某些情况下会先形成一种硫酯中间产物,然后再与底物结合)。

所有真核生物编码的E2和E3同工酶种类非常多,其中E2同工酶有几十种,而E3同工酶则多达数百种。这样,细胞就能对多种蛋白进行各种方式、特异性的修饰和调节,而且这些修饰调控作用也都会受到严密的时空调控。

泛素蛋白的C末端通常都经由酰胺键(amide linkage)与靶蛋白的氨基团连接在一起。最常见的连接是与靶蛋白赖氨酸的ε氨基团相连,不过也可以与靶蛋白的N末端相连。此外,最近还发现泛素蛋白可以与靶蛋白上的半胱氨酸、丝氨酸和苏氨酸相连。

在多泛素链中,一个泛素蛋白分子的赖氨酸侧链与另一个泛素蛋白的C末端相连,如此反复形成多泛素链。泛素蛋白含有7个赖氨酸残基,所有这些赖氨酸残基都可以参与上述多泛素链的合成过程。

2. 泛素化的过程

具体过程:泛素化修饰涉及泛素激活酶E1、泛素结合酶E2和泛素连接酶E3的一系列反应:首先在ATP(红色所示)供能的情况下酶E1(蛋白质编号1r4n)粘附在泛素分子尾部(淡黄色所示)的Cys残基上(绿色所示,注意在这个结构中,Cys突变为Ala)激活泛素,接着,E1将激活的泛素分子转移到E2酶上(蛋白质编号1fxt),随后,E2酶和一些种类不同的E3酶共同识别靶蛋白,对其进行泛素化修饰。根据E3与靶蛋白的相对比例可以将靶蛋白单泛素化修饰和多聚泛素化修饰。E3酶(蛋白质编号1ldk和1fqv)的外形就像一个夹子,靶蛋白连接在中间的空隙内(星号所示)。酶的左侧结构域决定靶蛋白的特异性识别,右侧结构域定位E2酶以转移泛素分子。蛋白质泛素化的结果是使得被标记的蛋白质被蛋白酶分解为较小的多肽、氨基酸以及可以重复使用的泛素。 泛素-蛋白酶体途径是先发现的,也是较普遍的一种内源蛋白降解方式。需要降解的蛋白先被泛素化修饰,然后被蛋白酶体降解。
不过后来又发现,并非所有泛素化修饰都会导致降解。有些泛素化会改变蛋白的活性,导致其他的生物效应,如DNA损伤修复,机体免疫应答等。 蛋白质泛素化作用是后翻译修饰的一种常见形式,该过程能够调节不同细胞途径中各式各样的蛋白质底物。通过一个三酶级联(E1-E2-E3),蛋白质的泛素连接由E3泛素连接酶催化,这种酶是cullin-RING复合体超级家族的最佳代表。
在从酵母到人类的各级生物中都保守的DDB1-CUL4-ROC1复合体是最近确定出的cullin-RING泛素连接酶,这种酶调节DNA的修复、DNA复制和转录,它能被病毒所破坏。
由于缺少一个规则的SKP1类cullin连接器和一种确定的底物召集结构域,目前人们还不清楚DDB1-CUL4-ROC1 E3复合体如何被装配起来以对各种蛋白质底物进行泛素化。
在这项新的研究中,DDB1-CUL4A-ROC1复合体被病毒劫持的形式进行了晶体结构分析。分析结果表明DDB1利用一个β-propeller结构域作为cullin骨架结合物,利用一种多变的、附着的独立双β-propeller折叠来进行底物的呈递。
通过对人类的DDB1和CUL4A复合体进行联系提纯,然后进行质谱分析,研究人员确定出了一种新颖的WD40-repeat蛋白家族,这类蛋白直接与DDB1的双propeller折叠结合并充当E3酶的底物募集模块。这些结构和蛋白质组学研究结果揭示出了cullin-RING E3复合体的一个新家族的装配和多功能型背后的结构机制和分子逻辑关系。 E1,E2,E3对底物的泛素化可形成几种不同的泛素化底物。有的底物蛋白只能被单泛素化,如H2B;有的底物蛋白有多个赖氨酸残基,在合适条件下会被多位点单泛素化;还有一些蛋白在单个赖氨酸位点会形成多聚泛素链,这种多聚泛素链可以根据连接泛素链的赖氨酸位点的不同可以分为单一、混合以及树枝状的结构。

3. 泛素化修饰是细胞生物学研究吗

泛素化修饰是细胞生物学研究的范畴,是蛋白质修饰的一种类型,蛋白质的修饰有多种类型,除了常见的无机和有机小分子修饰,如磷酸化、糖基化、脂酰化等,还有一类用小肽进行修饰的,例如泛素化(ubiquitination),类泛素化NEDD化(neddylation)、ISGylation苏木化(SUMOylation)等。而泛素-蛋白酶体系统则负责特异性地降解大多数细胞内蛋白(约占 80% 以上),是一种高效蛋白降解途径。泛素化修饰还可以直接影响蛋白质的活性和定位,调控包括细胞周期、细胞凋亡、转录调控、DNA 损伤修复以及免疫应答等在内的多种细胞活动。

泛素-蛋白酶体系统组成

4. 蛋白质泛素化,急急急急急急急急急急急急!!!!!!!!!

急了还一分悬赏分也没有???

.蛋白质泛素化
在最新一期的《自然》杂志上,来自华盛顿大学的华裔科研人员郑宁(Ning Zheng)助理教授又发表了一篇有关泛素蛋白连接酶结构生物学的新文章。自2000年以来,郑博士先后在Cell、Nature和Science等国际权威杂志上发表了多篇文章,并且有三篇文章成为杂志的封面故事进行推荐。
蛋白质泛素化作用是后翻译修饰的一种常见形式,该过程能够调节不同细胞途径中各式各样的蛋白质底物。通过一个三酶级联(E1-E2-E3),蛋白质的泛酸连接又E3泛素连接酶催化,这种酶是cullin-RING复合体超级家族的最佳代表。
在从酵母到人类的各级生物中都保守的DDB1-CUL4-ROC1复合体是最近确定出的cullin-RING泛素连接酶,这种酶调节DNA的修复、DNA复制和转录,它能被病毒所破坏。

由于缺少一个规则的SKP1类cullin连接器和一种确定的底物召集结构域,目前人们还不清楚DDB1-CUL4-ROC1 E3复合体如何被装配起来以对各种蛋白质底物进行泛素化。

在这项新的研究中,郑博士等人对人类DDB1-CUL4A-ROC1复合体被病毒劫持的形式进行了晶体结构分析。分析结果表明DDB1利用一个β-propeller结构域作为cullin骨架结合物,利用一种多变的、附着的独立双β-propeller折叠来进行底物的呈递。
通过对人类的DDB1和CUL4A复合体进行联系提纯,然后进行质谱分析,研究人员确定出了一种新颖的WD40-repeat蛋白家族,这类蛋白直接与DDB1的双propeller折叠结合并充当E3酶的底物募集模块。这些结构和蛋白质组学研究结果揭示出了cullin-RING E3复合体的一个新家族的装配和多功能型背后的结构机制和分子逻辑关系。

2.RNAi(RNA干扰)
过去在对生物体基因功能研究时,通常利用反义寡核苷酸、核酶[1]等抑制目的基因表达,而近年来发现了一种新的诱导基因沉默的技术,即RNA干扰(RNA interference,RNAi).与其它关闭基因工具不同,RNAi是一种由双链RNA介导的特异性抑制同源基因表达的技术.由于它具有高特异性和高效性,已经广泛应用于植物、真菌、蠕虫和低等脊椎动物以及哺乳动物的基因功能研究,并且在人类基因组功能研究和基因药物研制及基因治疗等方面,有很好的应用前景.

3.生物芯片-下个世纪的革命性技术
通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。

4.让肿瘤细胞自行凋亡
美国伊利诺伊州立大学的科学家成功合成出一种可以让肿瘤细胞自行凋亡的分子。
在罹患肿瘤疾病期间,有缺陷细胞按程序凋亡的过程被破坏,癌变细胞能够对抗机体发出的凋亡信号,这样癌变细胞就可以毫无监控地分裂,并形成肿瘤。
根据科学家们掌握的证据,癌变细胞的这种能力与半胱天冬酶-3(caspase-3)的缺失有关,这种蛋白酶参与到细胞凋亡过程中。由于癌变细胞中半胱天冬酶-3酶原蛋白(procaspase-3)形成caspase-3的过程被破坏,所以这种蛋白酶的数量不足。
保罗·赫根罗德(Paul Hergenrother)领导的科学家团队研究了超过两万种化合物以寻找到能够促进半胱天冬酶-3酶原蛋白合成半胱天冬酶-3的物质。终于科学家们找到了这种化合物。合成分子PAC-1能够促进半胱天冬酶-3的形成。同时,它还激活了从小鼠和人类肿瘤中分离出来的癌变细胞的自然死亡的过程。
PAC-1主要是针对那些procaspase-3含量较高的细胞发挥作用。在肠、皮肤、肝脏等部位的肿瘤细胞及白血病细胞中这种蛋白的含量较高。同时,健康细胞对于PAC-1的作用并不敏感,因为健康细胞中procaspase-3的含量并不高。研究人员指出,通过对同一个肿瘤患者的正常细胞与肿瘤细胞进行化验表明,癌变细胞对PAC-1的敏感程度要高2000倍。
保罗·赫根罗德指出,“我们可以预测出像PAC-1这样的化合物的潜在能力。”他还补充说,他们将选择一些肿瘤细胞中procaspase-3的含量水平较高的患者进行治疗。
科学家计划在以后将要进行临床研究以评估PAC-1的安全性。科学家指出,在没有发现严重的副作用的情况下,原则上医生们将获得一种治疗肿瘤的新方法。

5.研究者首次绘制调节成人干细胞生长基因图谱
最近,美国肯塔基州大学(UK)的Gary Van Zant博士及其研究小组在国际权威科学杂志《自然遗传学》上发表了他们的一项重大成果。他们绘制了一个干细胞基因和它的蛋白产品Laxetin,并且在此工作基础上,进行了鉴定基因自身的调查研究。这是至今为止首次对干细胞基因进行的完全研究。
这一特殊基因由于能调节体内特别是骨髓内成人干细胞的数目而显得尤为重要。现在它已被鉴定,研究者希望该基因与它的蛋白产品Latexin能够应用于临床。比如,增加进行化疗或者骨髓移植病人的干细胞数量。化疗病人一个大难关是面临治疗后干细胞丧失。这就限制了化疗所能进行的剂量与类型。但是如果Latexin能够用于增加干细胞数量,病人就能够接受更大剂量化疗,并能更快速恢复。在骨髓移植中干细胞数量增加同样有用,在这里需要大量的干细胞来帮助病人从癌症恢复。另外一个Latexin可能的应用是帮助脐带血中干细胞数目,这同样用于血髓移植中移植健康干细胞。目前,脐带血中干细胞移植仅能用于儿童因为脐带血不含有移植给成人所需的足够干细胞数量。
目前仅在骨髓的干细胞群中检测了Latexin效果。Van Zant说,可能或者很可能在如肝,皮肤,胰腺或大脑组织中的干细胞群能受Latexin的类似影响。这为使用干细胞治疗如由肝病,糖尿病损伤或者中风造成的中枢神经损伤等其他疾病和状况开辟了新的治疗策略。
研究者同样看到了基因在如白血病和淋巴瘤中正常干细胞转化为癌变干细胞的可能作用。如果基因确实起作用,那么同样可能是新治疗方法的关键。这些发现对于干细胞调节分子机制的深入了解具有作用,这包括一些干细胞如何癌变。这些发现同样有助于科学家发展控制用于治疗的干细胞数目与功能的有效方法,同样为发生在干细胞中年龄相关变化提供了一个较好的解释。

5. 如何进行蛋白质的泛素化和去泛素化鉴别

主要有四步: 1.泛素的活化:泛素甘氨酸端的羧基连接到泛素活化酶E1的巯基,这个步骤需要以ATP作为能量,最终形成一个泛素和泛素活化酶E1之间的硫酯键。 2.E1将活化后的泛素通过交酯化过程交给泛素结合酶E2。 3.泛素连接酶E3将结合E2的泛素连接到目标蛋白质上并释放E2,形成特定的泛素化的蛋白质。4.泛素化的蛋白质被特定的蛋白酶体识别并结合,最终在蛋白酶的催化下蛋白质分解为短肽或氨基酸。

6. 蛋白质经泛素-蛋白酶体降解研究基本思路(图文详解)

泛素 为含76个氨基酸、大小约为8.6 kDa的小蛋白质,在真核生物中普遍存在且高度保守。人类基因组中的四个基因编码泛素: UBB UBC UBA52 RPS27A

泛素具有7个赖氨酸残基(K6,K11,K27,K29,K33,K48,K63)和一个甲硫氨酸残基(M1)。泛素之间主要通过赖氨酸残基和甲硫氨酸残基进行各种连接。由此产生的泛素链产生一定的拓扑结构,可通过对蛋白底物进行修饰并决定底物的功能。

将泛素添加到底物蛋白质中称为蛋白质的 泛素化 。蛋白质泛素化是一种动态的多方面翻译后修饰,涉及真核生物学的几乎所有方面。泛素化涉及三个主要步骤:活化,结合和连接,分别由泛素激活酶(E1),泛素结合酶(E2s)和泛素连接酶(E3s)执行。其中人源E1有2种: UBA1 UBA6 ;人源E2有35种;人源E3有数百种。

E3酶具有两个结构域之一:HECT结构域以及RING结构域。HECT结构域的E3连接酶先自身结合泛素然后将泛素转移至底物,而RING结构域的E3连接酶使E2酶直接将泛素转移至底物。

HECT结构域E3通过2种机制连接遍在蛋白质靶底物:首先,遍在蛋白从E2的活性位点转移到E3的活性位点中的Cys,然后遍在蛋白化目标底物中的Lys残基。相反,RING-和RING相关的结构域E3连接酶在一步中用作泛素化靶基质的支架:E2将遍在蛋白直接转移至靶底物中的Lys残基。

目前,人体内还存在E4酶。E4酶为泛素链延伸因子,能够对单泛素化的底物进行泛素链的延伸形成多聚泛素化。

单泛素化 是在一个底物蛋白残基上添加一个泛素分子。 多单泛素化 是将一个泛素分子添加到多个底物残基中。 多泛素化 是在底物蛋白上的单个残基上形成遍在蛋白链。目前,泛素可结合的底物残基有赖氨酸、丝氨酸、半胱氨酸、酪氨酸

根据泛素与底物的连接位点,目前有9种方式的泛素化,包括M1, K6,K11,K27,K29,K33,K48,K63, G76。不同方式的泛素化调控不同的功能。其中,与蛋白酶体降解相关的泛素化为K48。

全面的蛋白质组学研究确定了成千上万种蛋白质上成千上万的泛素化位点。大多数蛋白质在其细胞寿命的某些时刻将经历泛素化。

研究蛋白质泛素-蛋白酶体降解大部分是研究两个蛋白质之间的关系,即一个E3连接酶和一个底物蛋白。

环己酰亚胺(Cycloheximide, CHX)为细胞内蛋白合成抑制剂。MG132为蛋白酶体抑制剂。
图3中,相对于MG132未处理组中SUBSTRATE蛋白在各时间点无明显变化,MG132处理组中的SUBSTRATE蛋白在2h、4h、8h的水平明显减小。说明SUBSTRATE的降解与蛋白酶体相关。

图4中,随着E3泛素连接酶表达量的增加,底物蛋白的表达水平相应降低。图5中,随着E3泛素连接酶酶活性失活突变表达量的增加,底物蛋白的表达水平无明显变化。图6中,用E3泛素连接酶的siRNA敲低细胞内E3泛素连接酶的表达水平,底物蛋白的表达水平相应增加。图7中,过表达E3泛素连接酶酶,底物蛋白的半衰期减少。图8中,敲低E3泛素连接酶酶,底物蛋白的半衰期增加。说明E3泛素连接酶能降低底物蛋白的表达水平。

使用免疫共沉淀的方法检测两个蛋白质之间的相互作用。大致分为以下三种:

通过文献或者生物信息学分析E3泛素连接酶和底物蛋白不同的结构域。图15上为E3泛素连接酶的不同结构域示意图:Domain1, Domain2, Domain3, Domain4;图15下为底物蛋白的不同结构域示意图:DomainA, DomainB, DomainC, DomainD。使用免疫共沉淀的方法检测两个蛋白质之间不同结构域的相互作用,见图16和图17。找到相应结构域后,检测这两个结构域之间的相互作用,见图18和图19。

一般使用外源表达的泛素分子检测蛋白质的泛素化,也可使用内源的泛素抗体。因为泛素化为泛素分子与底物蛋白质的共价结合,SDS无法破坏此种相互作用力,所以图20中能够看到多聚泛素化链的存在。一个泛素分子大约为8.5KD,因此IB结果可能会出现基于底物蛋白质清晰的ladder带或smear带。

蛋白质泛素化为一种蛋白质翻译后修饰,能够调控蛋白质的功能。目前的泛素化种类有K6,K11,K27,K29,K33,K48,K63,即泛素分子的K6,K11,K27,K29,K33,K48,K63与底物蛋白质共价结合。一般认为,K48的泛素化可被蛋白酶体识别。因此,需要确认底物蛋白质的泛素链为K48链。将泛素分子赖氨酸单位点突变(见图21)或泛素分子单赖氨酸保留突变(见图23),通过免疫沉淀和免疫印迹的方法检测底物蛋白质泛素化的种类,见图22和图24。

通过过表达(图25)或敲低(图26)E3泛素连接酶的方式检测底物蛋白质泛素化水平的改变。

体外泛素化能够排除体内复杂的环境,让E3泛素连接酶直接与底物蛋白质作用,使E3泛素连接酶泛素化底物蛋白质更有说服力。体外UB, E1, E2, ATP以及buffer均有商业化试剂盒。只需纯化E3泛素连接酶和底物蛋白质进行体外泛素反应,检测底物蛋白质的泛素化。

7. 简述泛素化途径(Ubiquitination pathway)的主要步骤及其主要功能

主要有两步:第一步,泛肽激活酶、泛肽载体蛋白、泛肽-蛋白连接酶共同作用下,将泛肽C端的羧基与底物蛋白的赖氨酸残基的ε氨基形成异肽键,后续泛肽以类似的方式连接成串,完成对底物蛋白的多泛肽化标记。
第二步,多泛肽化标记的底物蛋白被26S蛋白酶体迅速降解称成为小肽片段,再由其它肽酶水解为游离的氨基酸。
主要功能:由于基因突变、自由基破坏、环境胁迫、疾病等导致反常蛋白的产生,需要被及时降解清除,以免干扰正常的生命活动;维持体内的氨基酸代谢库;防御机制的组成部分;蛋白质前体的裂解加工等。

8. 什么是泛素化

是指泛素(一类低分子量的蛋白质)分子在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰的过程。

泛素-蛋白酶体途径是先发现的,也是较普遍的一种内源蛋白降解方式。需要降解的蛋白先被泛素化修饰,然后被蛋白酶体降解。

不过后来又发现,并非所有泛素化修饰都会导致降解。有些泛素化会改变蛋白的活性,导致其他的生物效应,如DNA损伤修复,机体免疫应答等。

蛋白质泛素化作用是后翻译修饰的一种常见形式,该过程能够调节不同细胞途径中各式各样的蛋白质底物。通过一个三酶级联(E1-E2-E3),蛋白质的泛素连接由E3泛素连接酶催化,这种酶是cullin-RING复合体超级家族的最佳代表。

在从酵母到人类的各级生物中都保守的DDB1-CUL4-ROC1复合体是最近确定出的cullin-RING泛素连接酶,这种酶调节DNA的修复、DNA复制和转录,它能被病毒所破坏。

阅读全文

与泛素化蛋白的研究方法相关的资料

热点内容
如何用简单的方法去除小黑虫 浏览:197
最简单的套筒方法 浏览:406
抹灰的重量计算方法 浏览:315
乒乓球桌底座安装方法 浏览:969
淀粉白度检测方法食品伙伴网 浏览:745
手鼓的使用方法视频 浏览:952
电脑屏保动态视频怎么设置在哪里设置方法 浏览:188
素描拿笔的方法有哪些 浏览:307
移门柜安装方法 浏览:399
慢性咳嗽的治疗方法 浏览:990
科学研究论文方法 浏览:679
隔空给手机充电的方法 浏览:700
数学因式分解方程的方法怎么用 浏览:644
双层弹簧臂力器正确锻炼方法 浏览:507
硬装吊顶安装方法 浏览:900
面料四级拼白检测方法 浏览:679
学术史的研究方法 浏览:744
pe竿梢结连接方法 浏览:43
葡萄膜炎后期有没有治疗方法 浏览:211
盈量计算方法 浏览:198