❶ 数据分析的方法有哪些
数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。
1.对比分析法:对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
数据分析方法是数据统计学当中应用非常广泛的方法,具体方法有很多种,具体采用的时候因人而异。
❷ 数据分析方法
数据分析常用的方法有列表法和作图法。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的意义:
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。
数据分析一定程度上对网络营销也有很大的好处,通过数据分析,知道目标客户群上什么网站、做什么事、在什么时间地点能够找到他。实际上,论覆盖面,网络营销还远远赶不上传统媒体。
2009年底中国的互联网普及率为28.9%,而同期中国电视的普及率却已经超过80%。但是,仍旧有很多有远见的企业选择网络营销。其中的一个重要原因是,网络营销的全过程都可以被追踪到,通过数据分析可以随时调整投放方式。
❸ 数据分析的三大方法
数据分析的三大方法:分析搜索数据、分析统计数据、分析行为数据。
数据分析,是对用户行为的量化分析,它能够从痕迹倒推出行为,然后把一切用户的秘密都告诉你。数据分析的能力是当代互联网时代,每一个人都必须具备的能力。
第一个方法是分析搜索数据。用户有需求,他们第一时间,会上哪找答案呢?他们会上搜索引擎。用户的需求,会通过“搜索关键字”,清晰无比地摊在你面前。
第三个方法是分析行为数据。有限的研发经费,是投资买域名,开发PC网站,还是做基于H5页面的手机应用呢?这时,你就要分析用户的行为数据了。很多人都知道,2017年天猫双11的交易额达到了1682亿,但是很多人没有注意在屏幕上这个惊人的数字右下角。
有个小小的,同样惊人的数字,叫无线成交占比。这个数字在2014是45%,2015年68%,2016年82%,2017年达到了90%。也就是说,90%用户的行为,已经移到了手机上。根据对这个行为数据的分析,你的决定应该很明显了吧。
❹ 三种数据分析方法
首先,常见的数据分析方法有9种: 对比分析,多维度拆解分析,漏斗观察 ,分布分析,用户留存分析,用户画像,归因查找,路径挖掘,行为序列分析。
这里将重点展开分享前三种数据分析方法: 对比分析,多维度拆解分析,漏斗观察。
1、对比分析
对比分析是 最基础最常见 的数据分析方法,能 直观的看出事物某阶段的变化,并且可以准确、量化地表达出这种变化/差距是多少 ,重点从“比什么”“怎么比”“跟谁比”三个维度进行分析。
(1)比什么
比什么,分为绝对值(#)和比例值(%)的比较。
绝对值本身已是具备“价值”的数据,比如销售金额2000元,阅读数10000万,单看数字不易得知问题的严重程度;
比例值只有在具体环境中看比例才具备对比价值 ,比如活跃占比,注册转化率, 单看比例值容易受到极端值的影响。
(2)怎么比
怎么比,分为环比和同比。
常见的环比有日环比,月环比 ,是指 与当前时间范围相邻的上一个时间范围对比 ,主要用于对短期内具备连续性的数据进行分析,如指标设定;
常见的同比有周同比,年同比 ,是指 与当前时间范围上层时间范围的前一范围中同样位置进行数据对比分析 ,主要用于观察更长期的数据集,消除短期数据的干扰。
(3)和谁比
和谁比,分为和自己比、和行业比。
和自己比 ,可以从不同的时间维度,不同的业务线,过往经验估计,跟自己比较;
和行业比 ,可以观察分析得出是自身因素,还是行业趋势,比如都跌的时候,能否比同行跌的少?都涨的时候,能都比同行涨的快?
现在回到上面这条“飞猪公关数据”“放假消息公布以后,10点到12点,国内机票的预定量,比上周同时段增长超过50%;国际机票的增长更加惊人,超过了150%。”
很显然,
“50%,150%”都是比例值;
“比上周同时段增长...”由于是#五一放假4天#消息导致的数据短期内连续上涨,所以选择的是周同比;
“国内机票的预定…国际机票...”飞猪是在跟自己比,若有行业数据公布作为依据,可以判断飞猪是比同行涨的快/慢。
2、多维度拆解
多维度拆解,是最重要的一种思维方式, 一个单一指标是不具备分析价值的,我们需要从多个维度进行拆解分析才有意义,最终以获得更加全面的数据洞察。
数据分析的本质是用不同的视角去拆分,观察同一数据指标。多维度拆解的本质多维度拆分指标/业务流程,来观察数据变动。
多维度拆解的适用场景:
(1) 分析单一指标的构成、比例时 ,比如分栏目的播放量、新老用户比例;
(2) 针对流程进行拆解 ,比如不同渠道的浏览、购买转化率,不同省份的活动参与漏斗;
(3) 还原行为发生时的场景 ,比如打赏主播的用户的等级、性别、关注频道,是否在WiFi或4G环境下。
现在回到第一个场景:“比如,某段时间公司做了一波网红大V推广,老板想看看推广效果,你需要来个复盘分析…”
这时就需要用到多维度拆解分析方法,大致的分析思路这样这样:
(1)从APP启动事件来分析
按照 设备类型 查看,比如Android、iPhone…不同机型的启动情况;
按照 启动来源 来看,比如是从桌面、短信、PUSH…不同来源的启动情况;
按照 城市等级 观察,比如一线、二线、三线及以下…不同城市的启动情况;
按照 新老用户 细分,比如总体、新用户、老用户...不同用户群体的启动情况。
(2)从业务流程拆解
比如对于简单的“注册——>下单——>支付”流程而言:
支付漏斗按照 渠道 查看,渠道可能分为网络、头条、微信公众号…
支付漏斗按照 城市 来看,城市可能分为一线、二线、三线及以下…
支付漏斗按照 设备 来看,设备可能分为Android、iPhone…
3、漏斗观察
漏斗观察的分析方法我们常见且熟悉,它的运作原理是 通过一连串向后影响的用户行为来观察目标。
适用于有明确的业务流程和业务目标的业务,不适用于没有明确的业务流程、跳转关系纷繁复杂的业务。
通过漏斗观察核心业务流程的健康程度。
盘点一下在建立漏斗时容易掉的坑:
(1)首先漏斗观察需要有一定的时间窗口 ,具体需要根据业务实际情况,选择对应的时间窗口。
按天观察 ,适用于对用户心智的影响只在短期内有效的情况,比如一些短期活动(当前有效,倒计时设置等);
按周观察 ,适用于业务本身复杂,用户决策成本高,需要跨日才能完成的情况,比如投资理财,开户注资;
按月观察 ,适用于用户决策周期更长的情况,比如装修买房。
(2)其次漏斗观察是有严格顺序的 ,不可以用ABCDE(仅搜索途径的数据)的漏斗,看ACE(包含分类、搜索、推荐位三条途径的数据)的数据 。
(3)漏斗的计算单位可以基于用户,也可以基于时间。
观察用户,是关心整个业务流程的推动;
观察事件,是关心某一步具体的转化率,但无法获知事件流转的真实情况。
(4)结果指标的数据不符合预期时,需要自查是否只有一个漏斗能够触达最终目标 ,也就是检查下,是否出现第二个坑的情况。
四、案例分享——某款社交APP在国庆期间数据猛涨原因分析
场景是这样,现在有一款匿名社交APP,类似于探探,数据范围在 2018 年 9 月 1 日 - 10 月 14 日之间,其中在国庆期间数据猛涨,试分析其原因。
(1)首先定义“数据猛涨”
作为一款匿名社交产品,可以选择观察“注册成功”事件。
由于产生行为数据的时间较短,所以最后选择关注“注册用户数的日环比是否有比较大的增涨”,并按照“注册成功”事件的“触发用户数”进行查看:
(2)发现异常定位问题
从上面这张注册成功的触发用户数折线图可以看出,国庆期间的注册用户日环比存在较高的数据增长差,就是折线右侧出现的一段高峰。
由此判断,国庆期间由于某种原因造成了注册用户数的大幅增长,具体原因,待进一步拆解分析。
(3)多维度拆解分析
按照操作系统区分观察,可以发现Android的涨幅明显高于iOS,iOS稍有涨幅,但涨幅不明显。
这一步仍无法直接定位问题,需进一步拆解分析。
上图 按照注册方式观察 ,微信、微博、手机号这三种注册方式,在国庆期间均有涨幅且涨幅相似,可初步判断注册方式与此次数据异常无关。
上图 按照性别观察 ,男生和女生在国庆期间均有涨幅,男生略高于女生,但仍无法直接定位问题,需进一步拆解分析;
上图 按照年龄观察 ,不同年龄层的用户在国庆期间均有涨幅且涨幅相似,可初步判断年龄与此次数据异常无关。
问题来了!按照省份观察 ,上图明显看到有一根折现异常升高!
其实是海南省的日环比涨幅增高,除此之外,云南省的环比涨幅相较其他省份也明显升高。
综上观察分析基本可以判断,国庆期间数据猛涨,跟海南省、云南省的注册用户数大幅增长有关,具体原因待进一步拆解分析。
继续 按照城市观察 ,筛选条件设置为省份等于海南省,云南省,直观看到丽江市、大理市、三亚市、海口市国庆期间数据猛涨。
综合以上多维度分析发现,国庆期间数据猛涨,主要是由于 丽江市、大理市、三亚市、海口市 四个城市有明显涨幅。
而这四个城市都属于旅游城市,且数据增长时期伴随国庆假期。
于是猜测可能是,该款匿名社交产品在国庆期间,面向这四个热门旅游目的地,做了推广活动,关于数据猛涨真实的具体原因,还需要与市场、运营、或负责增长相关的同事沟通确认。
❺ 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
❻ 数据分析的三个常用方法是什么
一个产品,如果你不能衡量它,你就不能了解它,自然而然,你就无法改进它。数据说到底,就是这样一个工具——通过数据,我们可以衡量产品,可以了解产品,可以在数据驱动下改进产品。数据分析和数据处理本身是一个非常大的领域,这里主要总结一些我个人觉得比较基础且实用的部分,在日常产品工作中可以发挥比较大作用。
本文主要讨论一些数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
4. 小结
趋势,对比,细分,基本包含了数据分析最基础的部分。无论是数据核实,还是数据分析,都需要不断地找趋势,做对比,做细分,才能得到最终有效的结论。
在此我向大家推荐一个大数据开发交流圈:
658558542 ( ☛点击即可加入群聊 )
里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,大数据离线处理、数据实时处理、Hadoop 、Spark、Flink、推荐系统算法以及源码解析等,送给每一位大数据小伙伴,让自学更轻松。这里不止是小白聚集地,还有大牛在线解答!欢迎初学和进阶中的小伙伴一起进群学习交流,共同进步!
最后祝福所有遇到瓶颈的大数据程序员们突破自己,祝福大家在往后的工作与面试中一切顺利
❼ 常用的数据分析方法有哪些
①对比分析法通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。常见的对比有横向对比和纵向对比。
②分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
③预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
④漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
⑤AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
❽ 论文数据分析方法有哪些
论文数据方法有多选题研究、聚类分析和权重研究三种。
1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。
拓展资料:
一、回归分析
在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。
最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显着性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。
二、方差分析
在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显着影响,从而找出较优的实验条件或生产条件的一种数理统计方法。
人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。
在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。
例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显着差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。
三、判别分析
判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。
这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。
四、聚类分析
聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。
比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。
五、主成分分析
主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。
在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
六、因子分析
因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。
因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。
例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。
例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。
接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。
七、典型相关分析
典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。
❾ 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。