‘壹’ 浅议三峡库区地质灾害预警工程常用监测方法及应用
王爱军1,2薛星桥1,2
(1中国地质大学(武汉),湖北武汉,430074;
2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】长江三峡库区地质灾害预警监测是服务于地质灾害防治、保障三峡工程建设安全的主要基础工作。开县、万州区、巫山县的38个滑坡灾害专业监测点,采用大地形变监测、深部位移钻孔倾斜仪监测、地下水动态监测、滑坡推力监测、地表裂缝相对位移监测、GPS全球卫星定位系统监测、TDR时间域反射监测和宏观监测等综合系列监测方法。每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表内部变形或受力变化;重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。对滑坡监测及监测成果统计分析,多种监测数据成果具有明显的一致性和相关性,反映了滑坡体的变形情况和特征,证实监测方法合理有效,监测成果将为地质灾害预警工程和地质灾害防治工程提供可靠依据。
【关键词】三峡库区地质灾害预警工程监测方法应用
1前言
长江三峡库区自然地质条件复杂,是地质灾害的多发区和重灾区。三峡工程的兴建和百万移民工程,在一定程度上改变了原有地质环境的平衡状态,加剧了地质灾害的发生。随着三峡工程建设的不断推进,库区地质灾害对三峡工程和库区人民生命财产安全的影响日益增加,及时有效地防治库区地质灾害已成为三峡工程建设的重要任务之一。地质灾害预警监测工作是实现地质灾害防治的主要基础工作。
三峡库区共有38个滑坡灾害专业监测点在进行专业监测工作,其中重庆市开县14个、万州区14个、巫山县10个。
2监测方法
2.1大地形变监测
采用全站仪监测。在滑坡体外选取地质条件较好、基础相对稳定的点位作为监测基准点,在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩。
2.2深部位移监测
采用钻孔倾斜仪进行监测。在滑坡体上选择有代表性的点位布置测斜钻孔,分别在其主滑方向和垂直主滑方向上进行正反两回次自下而上的测读,监测点间距0.5m,使用移动式“CX-01型重力加速度计式钻孔测斜仪”,监测数据稳定后自动记录,每期监测共记录4组数据。
2.3滑坡推力监测
在滑坡体上选择有代表性的点位布置钻孔,在钻孔中选择适当的深度部位,预置一系列滑坡推力传感器,用传导光纤连接至地面,每次监测采用“BHT-Ⅱ型崩塌滑坡推力监测系统”测量记录各点数据。
2.4地表裂缝相对位移监测
在裂缝的两侧适当部位安置数套裂缝计,进行原位裂缝相对位移监测。机械式监测具有干扰少、可信度高、性能稳定特点,监测记录数据可直接做出时间—位移曲线,测量结果直观性强。仪器一般量程范围在25~100mm间,读数器的分辨率为0.01mm,操作温度在-40℃~+105℃之间。
2.5地下水动态监测
在滑坡体上选择有代表性的点位布置钻孔,对地下水水位,孔隙水压力、土体含水率、温度等参数监测,采用自动水位记录仪、孔隙水压力监测仪等仪器监测。其中孔隙水压力监测仪的孔隙水压力量程为-80kPa~200kPa,分辨率0.1kPa,精度0.5%F·S;土体含水率量程为0至饱和含水率,分辨率1%;温度量程为0~70℃,分辨率0.1℃,精度1%F·S。
2.6GPS全球卫星定位系统监测
在滑坡体外选取地质条件较好,基础相对稳定的点位,作为监测基准点;在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩,观测时采取多点联测。GPS监测方法,可进行全天候监测,不受通视条件限制,同时监测 X、Y、Z三维方向位移量,方便灵活,并可监测灾害体所处地带的区域地壳变形情况。采用的美国 Ashtech公司生产的UZ CGRS型GPS,最小采样间隔1s,最少跟踪和接收12颗卫星,使用Ashtech Solution 2.6软件解算,精度可达水平3mm+1ppm,垂直6mm+2ppm。
2.7时间域反射测试技术(TDR)监测
即采用电缆中的“雷达”测试技术,在电缆中发射脉冲信号,同时进行反射信号监测。在滑坡体上选择有代表性的点位布置监测钻孔,将同轴电缆埋入监测孔,地表与 TDR监测仪相连接,把测试信号与反射信号相比较,根据其异常情况判断同轴电缆的断路、短路、变形状态,推断出电缆的变形部位,进而推算滑坡体地层的变形部位和位移量。TDR监测采用了固定式预置同轴电缆,成本低,可进行自上而下的全断面连续监测,量程范围大。
2.8宏观监测
以定期巡查方法为主,对变形较大的滑坡体,据其变形特征布置一定数量的简易观测点进行定期观测,及时掌握其变形动态。
对于每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表变形和滑坡体内部变形或受力变化,重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。监测点的布置应重点突出,控制滑坡的重点部位;照顾全面,力求能反映滑坡体整体变形情况。钻孔孔口周围用混凝土浇筑,布置精确监测点位。
3监测效果分析
根据2003年7月至12月滑坡灾害专业监测数据资料,初步分析三峡库区地质灾害预警工程监测方法及应用效果。
3.1大地形变监测
大地形变监测,开展了开县大丘九社和巨坪九社滑坡、巫山县狗子包滑坡和板壁塘滑坡,共4个滑坡的监测。以下以开县大丘九社滑坡为例简述监测效果。
大丘九社滑坡位于开县镇东镇大丘九社斜坡上,滑坡平面形态近似矩形,剖面上呈凹型;分布高程205~300m,滑体长约250m、宽约300m,面积710万m2,估计厚度20m,体积约140万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及砂岩互层组成的平缓层状斜坡中,滑坡体的物质组成主要为砂岩及砂岩碎块石土,表层为松散土壤,局部出露砂岩碎块石,为崩滑堆积体滑坡。
图1开县大丘九社滑坡累计位移量曲线图
(a)X方向(b)Y方向(c)H方向 D1——监测点编号
大丘九社滑坡体上布置了3排监测点,每排3个共计9个监测点,滑坡体对面斜坡上布置了2个基准点,分别在2个基准点进行监测。监测网布置既控制了整体滑坡体又突出重点,采用前方交汇法施测。
8月5日进行了首次测量,9月21日进行D1第二次测量成果与之对比,表明变形趋势明显,滑体向 NEE向滑移。10月24日监测成果表明各监测点的变形趋于缓和。11月和12月监测成果表明各监测点无明显变化(见图1)。监测数据与宏观调查定性分析相一致。
利用全站仪进行大地形变监测,其特点为监测方便,可随时对一些危险滑坡监测,既可以在滑坡体上设置永久性监测桩,又可以设置临时性监测桩;监测精度高,测点中误差可达到3.5mm;不仅能测定相对位移,而且能监测绝对位移;在满足测量条件下可进行连续监测,监测滑坡滑移的全过程,不存在量程限制。但该仪器监测受天气因素和光线条件制约,难以在雨雾条件和夜间实施监测,且受地形和通视条件制约,施测以人工操作为主,不易实现自动化监测。
3.2深部位移钻孔倾斜仪监测
深部位移钻孔倾斜仪监测点为开县6个滑坡、16个钻孔,巫山县5个滑坡、19个钻孔,万州区8个滑坡、24个钻孔,共计19个滑坡、59个钻孔。以下以开县虎城村滑坡为例简述监测效果。
虎城村滑坡为堆积层滑坡,位于开县长沙镇虎城村斜坡。该滑坡在平面近似矩形,剖面为凹形,分布高程330~400m,纵长约300m,横宽约500m,滑体估计平均厚度12m,面积15万m2,体积180万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及泥质粉砂岩组成的水平层状岩层斜坡上,滑体上部为崩坡积紫红色碎石土层。滑坡威胁居民400余人及其财产安全。该滑坡布置了3个深部位移钻孔倾斜仪监测钻孔。
Kx-162钻孔位于滑体的中部。2004年10月,在9.5~10.5m测试深度处发生明显的位移变形,本月变形量5.56mm,变形方向247°。11月,没有增大趋势,累积形变4.58mm,略小于10月份累积变形量,变形方向253°(见图2)。
Kx-165钻孔位于滑体的下部。2004年10月,在15.0~16.5m测试深度处发生明显的位移变形(见图3),本月变形量5.45mm,变形方向241°。11月,没有明显的增大趋势,累积变形5.39mm,同10月份累积变形量相近,变形方向240°。
地质灾害调查与监测技术方法论文集
图2开县虎城村滑坡 Kx-162钻孔位移随深度变化曲线
(a)EW方向(b)SN方向
图3开县虎城村滑坡Kx-165钻孔位移随深度变化曲线
(a)EW方向(b)SN方向
深部位移钻孔倾斜仪监测方法,可在滑坡体上一定部位布置的钻孔中,监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑移方向和相对滑动位移量;但在滑坡发生较大或急剧加速的位移变形时,由于钻孔和孔内测斜管变形、破坏,测斜仪探头不能送入钻孔之内,可能使钻孔失去监测价值。
3.3 滑坡推力监测
滑坡推力监测共设有2个测点、4个钻孔:巫山县淌里滑坡钻孔2个,曹家沱滑坡钻孔2个。以下以淌里滑坡为例简述监测方法与效果。
淌里滑坡位于巫山县曲尺乡长江干流左岸斜坡上,滑坡在平面形态上呈不规则的圈椅状,前缘分布高程90m,后缘高程400m,平均坡度约30°~40°,纵长约800m,横宽150~250m,滑体厚20m,面积24万m2,体积490万m3。滑坡发育于三叠系巴东组(T2b)灰岩、泥灰岩、泥岩中,滑体物质主要为泥灰岩及泥岩碎块石土,表层多为松散土层,下部碎块石土结构密实。
Ws-t-tzk1推力孔位于滑体的下部,Ws-t-tzk2推力孔位于滑体的中部。其滑坡推力监测成果数据见图4、图5。推力监测曲线图表明,各次监测数据规律性强,基本一致,传感器没有发现明显的数值变化。滑坡推力监测结果与宏观监测结果和同时进行的钻孔倾斜仪监测结果相一致,说明此阶段滑坡暂时处于相对稳定的微变形状态。
图4巫山县淌里滑坡 Ws-t-tzk1钻孔滑坡推力监测曲线图
图5巫山县淌里滑坡 Ws-t-tzk2钻孔滑坡推力监测曲线图
滑坡推力监测方法属于固定点式监测,在钻孔中预置传感器,用传感光纤连接,在地面用滑坡推力监测系统采集传感信息,可在滑坡体上一定部位布置的钻孔中,自上至下监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑坡推力变化量,可定期进行数据采集监测;在对采集和传输处理系统进行改进的基础上,可实现无值守自动化连续监测。
4结论
(1)通过多手段的综合监测,掌握了被监测滑坡体的表面、内部自上至下滑移带的变形及受力情况,数据综合分析表明其反映了滑坡位移变化及动态特征,取得了进行灾害预警的重要基础数据资料,说明采用的监测方法合理有效。
(2)钻孔倾斜仪深部位移监测方法,当滑坡体发生一定量缓变位移后,部分钻孔不能再进行全孔施测,造成勘察监测资金浪费和滑坡体监测点及监测部位减少。
(3)目前一月一次的监测周期,难以保证在滑坡发生滑移险情时能进行有效监测。为此应在进行专业监测的同时,进行群测群防监测。特殊情况下,对危险滑坡灾害点,调整监测方案,进行加密监测或连续监测,使监测满足预警预报要求。
(4)从长远发展考虑,监测应以免值守、易维护、低成本、固定式、自动化快速连续采集传输和半自动化监测及人工监测相结合为方向,以建立起高效的地质灾害监测网络与地质灾害预警系统。
参考文献
[1]王洪德,高幼龙,薛星桥,朱汝烈.链子崖危岩体防治工程监测预报系统及效果.中国地质灾害与防治学报,2001,12(2):59~63
[2]王洪德,姚秀菊,高幼龙,薛星桥.防治工程施工对链子崖危岩体的扰动.地球学报,2003,24(4):375~378
[3]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报,2001,12(2):64~66
[4]董颖,朱晓冬,李媛,高速,周平根.我国地质灾害监测技术方法.中国地质灾害与防治学报,2001,13(1):105~107
[5]段永侯,等.中国地质灾害.北京:中国建筑工业出版社,1993
‘贰’ 建筑工程检测一般都有哪些检测项目
1、水泥物理力学性能检验、
2、砂、石常规检验、
3、混凝土强度、抗渗、配合比、
4、砂浆强度、配合比检验,干粉砂浆、聚合物水泥防水砂浆、水泥基结晶防水涂料检验、
5、混凝土外加剂、粉煤灰、矿渣粉、硅粉检验、
6、墙体材料检验,包括烧结普通砖、烧结多孔砖、烧结空心砖和空心砌块、混凝土多孔砖、普通混凝土小型空心砌块、
7、防水材料检测 (沥青防水材料、高分子防水材料、防水涂料、建筑密封材料)、
8、保温板(EPS板、XPS板、聚氨酯泡沫塑料、泡沫玻璃制品、建筑用岩棉矿渣棉绝热制品、建筑绝热用玻璃棉制品等)检验、
9、胶粉聚苯颗粒保温浆料、加气混凝土砌块的检验、
10、 保温用粘粘剂、抹面胶浆、抗裂砂浆、面砖粘结砂浆等的检验、
11、增强抗裂腻子、柔性耐水腻子等的检验、
12、耐碱网格布的检验、
13、电线电缆截面积和单位长度电阻值检验、
14、节能锚栓抗拉拔强度检验。
(2)工程监测方法研究扩展阅读:
为保障已建、在建、将建的建筑工程安全,在建设全过程中对与建筑物有关的地基、建筑材料、施工工艺、建筑结构进行测试的一项重要工作。
地基结构检测:
地基结构检测研究院包括基坑监测,桩基检测等等地基基础工程。 具体桩基检测(高应变、低应变、钻芯检测以及静载试验),基坑监测,基坑支护等等。
‘叁’ 分布式光纤传感技术及其在工程监测中的应用
本项研究受国家杰出青年科学基金项目(40225006)和国家教育部重点项目(01086)资助。
施斌丁勇索文斌高俊启
(南京大学光电传感工程监测中心,江苏南京,210093)
【摘要】分布式光纤传感技术,如布里渊散射光时域反射测量技术(简称BOTDR),是国际上近几年才发展成熟的一项尖端技术,应用非常广泛。本文着重介绍 BOTDR分布式光纤传感技术在隧道、基坑和路面等3个方面的应用。在工程监测过程中积累起来的大量监测数据表明,BOTDR分布式光纤传感技术,是一种全新而可靠的监测方法,它在工程实践中的应用为工程监测提供了一种新的思路,因而必将拥有一个广阔的发展前景。
【关键词】BOTDR光纤传感工程监测应变
1引言
随着人们对工程安全要求的日益提高,近年来,一批新式的传感监测技术得到发展,它们不是对传统传感监测技术简单地加以改良,而是从根本上改变了传感原理,从而提供了全新的监测方法和思路。其中,尤以 BOTDR分布式光纤传感技术为世人所瞩目,它利用普通的通讯光纤,以类似于神经系统的方式,植入建筑物体内,获得全面的应变和温度信息。该技术已成为日本、加拿大、瑞士、法国及美国等发达国家竞相研发的课题。这一技术在我国尚处于发展阶段,目前已在一些隧道工程监测中得到成功应用,并逐步向其他工程领域扩展。
南京大学光电传感工程监测中心在南京大学985工程项目和国家教育部重点项目的支持下,建成了我国第一个针对大型基础工程的BOTDR分布式光纤应变监测实验室,开展了一系列的实验研究,并成功地将这一技术应用到了地下隧道等工程的实际监测中,取得了一批重要成果,为将这一技术全面应用于我国各类大型基础工程和地质工程的质量监测和健康诊断提供了坚实基础。
2BOTDR分布式光纤传感技术的原理
布里渊散射同时受应变和温度的影响,当光纤沿线的温度发生变化或者存在轴向应变时,光纤中的背向布里渊散射光的频率将发生漂移,频率的漂移量与光纤应变和温度的变化呈良好的线性关系,因此通过测量光纤中的背向自然布里渊散射光的频率漂移量(vB)就可以得到光纤沿线温度和应变的分布信息。BOTDR的应变测量原理如图1所示。
为了得到光纤沿线的应变分布,BOTDR需要得到光纤沿线的布里渊散射光谱,也就是要得到光纤沿线的vB分布。BOTDR的测量原理与OTDR(Optical Time-Domain Reflectometer)技术很相似,脉冲光以一定的频率自光纤的一端入射,入射的脉冲光与光纤中的声学声子发生相互作用后产生布里渊散射,其中的背向布里渊散射光沿光纤原路返回到脉冲光的入射端,进入 BOT-DR的受光部和信号处理单元,经过一系列复杂的信号处理可以得到光纤沿线的布里渊背散光的功率分布,如图1中(b)所示。发生散射的位置至脉冲光的入射端,即至 BOTDR的距离 Z可以通过式(1)计算得到。之后按照上述的方法按一定间隔改变入射光的频率反复测量,就可以获得光纤上每个采样点的布里渊散射光的频谱图。
图1BOTDR的应变测量原理图
如图1中(c)所示,理论上布里渊背散光谱为洛仑滋形,其峰值功率所对应的频率即是布里渊频移 vB。如果光纤受到轴向拉伸,拉伸段光纤的布里渊频移就要发生改变,通过频移的变化量与光纤的应变之间的线性关系就可以得到应变量。式中:c—真空中的光速;
地质灾害调查与监测技术方法论文集
n——光纤的折射率;
T—发出的脉冲光与接收到的散射光的时间间隔。
目前国际上最先进的BOTDR监测设备以日本 NTT公司最新研制开发的最新一代 AQ8603型BOTDR光纤应变分析仪为代表。表1为AQ8603的主要技术性能指标。
表1AQ8603光纤应变分析仪的主要技术性能指标
3隧道安全监测
BOTDR分布式光纤传感技术在隧道方面的应用,目前已经在国内日渐成熟。我们在几条隧道变形监测系统的建设过程中,已形成了一整套的成功经验,为该技术在岩土和地质工程安全监测中的推广提供了坚实的技术基础。
3.1光纤铺设
为了使光纤精确地反映被测构筑物的应变状态,必须将之与构筑物紧密相连,铺设在结构物上。铺设的好坏,直接关系到监测的实际效果,因而在工程应用中,有着十分重要的意义。
根据光纤监测系统的设计原则,结合工程实际情况以及AQ8603应力分布式光纤传感器的特点,基本有以下两种铺设方法:全面接着式铺设和定点接着式铺设,如图2所示。
图2全面接着和定点接着
3.1.1全面接着式铺设
分别沿隧道纵深方向和横断面按全面接着方式布设传感光纤。沿纵深方向布设的传感光纤用于监测隧道纵向的整体变形情况,而沿横断面布设的光纤则是用于监测隧道横向的变形情况。
全面接着式铺设的特点是可以全程监测隧道的健康状况,监测对象为隧道整体,监测结果为隧道整体的变形情况。此种接着方式应用特定的铺设工艺,使用实验测定的效果优良的混合胶粘剂(以环氧树脂为主),将传感光纤按照设计线路粘着在混凝土的表面,并在传感光纤的末段接驳光缆,将监测信号传送至隧道监控中心。
3.1.2定点接着式铺设
此种接着方式的特点是重点监测变形缝、应力集中区等潜在(或假定)变形处的变形情况。监测对象为变形缝等潜在(或假定)变形处,监测结果为变形缝等潜在(或假定)变形处的应力应变特征。此种接着方式的铺设方法大体等同于全面接着式铺设方式,所不同的是在设计施工面上选择一些特殊点进行粘着,即将光纤每隔1m至1.5m确定一个固定点,粘贴在混凝土墙面上,以此来检测隧道局部接缝处的变形(见图3)。在某些特点地点,根据实际情况,选择在特定的线路上在特定的位置安装接缝传感器,以监测变形缝的变形情况(见图4)。
图3隧道接缝布线示意图
3.2变形计算
由于引起隧道变形的原因比较复杂,有温度造成的构筑物热胀冷缩的整体变形,也有不同方向裂缝开裂和错动引起的局部变形,因此,将 BOTDR所测到的隧道的应变转换到变形,有时比较困难。因此比较可行的解决方法一是要合理地布置光纤监测网,分别监测隧道的整体应变和局部应变及其方向,结合变形特点,计算出构筑物的整体变形与局部变形;二是要采用相应的计算方法,将光纤的应变换算为隧道的变形。
图4接缝传感器示意图
例如,对于均匀应变,可以由下式计算变形:
地质灾害调查与监测技术方法论文集
式中:ε为应变,d为应变段长度,δ为变形。
对于不均匀变形,可以采用按一定间距定点接着的方式铺设光纤,两个粘结点间的应变近似地认为是均匀应变,按上式同样可以得到光纤沿线的不均匀变形。
如果隧道发生整体的不均匀沉降,可以按照挠度的计算方法(见式(3)近似计算它的沉降变形量:
地质灾害调查与监测技术方法论文集
式中:ε1、ε2分别为铺设在构筑物顶部和底部的两条光纤的应变,d为两条光纤的间距。
此外,结合数值模拟技术也可以实现变形的计算。可以将光纤的应变作为数值计算的边界条件或者已知条件,通过有限元或有限差分等计算方法,得到构筑物不同部位的各种变形。
总之,从隧道的应变转换到变形的计算常常比较复杂,但是只要通过合理地布置光纤监测网,采用正确的计算方法,隧道变形的计算是可以得到满意的结果。
4基坑变形监测
基坑变形监测是岩土工程领域的基本问题之一,基坑稳定性的重要性不言而喻。近半年来,课题组通过大量的室内外试验研究,将 BOTDR技术成功地应用到了南京市的几个深大基坑工程中,取得了一些十分有价值的成果。
众所周知,基坑变形原因复杂、类型繁多,但总体来说,主要是由基坑开挖引起的坑体水平位移问题和基底隆起问题。传统的监测方式,如土压力盒、测斜管等,由于自身传感方式的限制,往往有精度不高、抗腐蚀性差、损耗较大、浪费人力等缺点。课题组通过研究,成功地研制了一种具有专利技术的基于BOTDR技术的基坑位移监测分布式光纤传感系统(分布式光纤传感智能测斜管)。
图5基坑位移监测分布式光纤传感系统
如图5所示,利用传统的测斜管器件与先进的BOTDR技术相结合,开发出上述传感器。应用传统的测斜管器件的目的在于:①经传统方法验证,测斜管能够较理想地反映土体变形,是一种良好的材料;②测斜管自身带有卡槽,免去了人工开槽的工作;③该材料是常用的基坑监测材料,方便易得,比较经济;④应用与传统监测方式一致的材料,方便对新、旧技术进行类比。该系统的构成,简言之是将光纤按照一定的施工工艺,用经室内外试验和工程实践验证过的特殊的胶黏着在测斜管上,构成传感系统,我们称之为分布式光纤传感智能测斜管。该传感器具有分布式光纤传感器的一切优点,并可进行准实时监测。
应用BOTDR技术的分布式光纤传感器所得到的监测结果,是沿光纤传感器的轴向物理信息(应变、温度等),因此,如何获得沿光纤传感器分布的基坑水平变形量,也就成了问题的核心。经过研究,应用计算挠度的方法来近似计算基坑的水平变形量。
由材料力学相关知识可知,沿线各点的挠度可利用下式计算。
地质灾害调查与监测技术方法论文集
式中:εx为所求点的光纤实测应变,其值为沿测斜管两侧的两条光纤的应变差;d为粘贴在测斜管两侧的光纤之间的距离;积分起点为深部某无应变点,v(x)为各点的挠度,可以近似地认为是基坑的水平变形量。
5连续配筋混凝土路面检测
连续配筋混凝土路面(CRCP)是全部省略接缝的连续混凝土板,是为了减轻因接缝而引起的振动与噪音,或为改善平整度、提高行车舒适性而使用的路面。对于这种高性能的路面结构形式,其钢筋应力状态、混凝土应力状态和路面的裂缝分布是反映该路面使用性能的主要因素[8.9]。将 BOTDR这项优秀的无损检测技术应用于监测 CRCP路面钢筋、混凝土应力和路面裂缝,具有重要意义。
图6为BOTDR分布式光纤传感系统在连续配筋混凝土路面中的布置图。路面纵向钢筋共有11根。在其中9根钢筋上布设了传感光纤,温度补偿光纤4根,应变传感光纤5根,沿中心对称铺设。
图7为浇注混凝土开始5天内BOTDR检测的板表面混凝土应变变化。从图上可以清楚看出沿路面纵向表面混凝土应变分布情况,而且可以根据最大拉应变的位置预测出路面可能产生裂缝的位置。如图中79m处最有可能出现裂缝。
图6光纤传感系统布置
图7板表面混凝土应变分布
图8为浇注混凝土开始5天内 BOTDR检测的钢筋应变变化。从图上可以清楚看出沿路面纵向钢筋应变分布情况。在混凝土硬化这段时间里,钢筋应变不是均匀的,通过连续监测钢筋应变,有助于预测路面的使用性能。
本实验测试结果表明,BOTDR分布式光纤传感系统能够在线对连续配筋混凝土路面板中的钢筋和混凝土应变进行有效的检测。这说明BOTDR在路面板、桥面板及其他一些类似工程中具有良好的适用性及广阔的应用前景。
6结语
分布式光纤传感技术在我国尚处于起步阶段,虽然在隧道、基坑等部分领域取得了一定成功,但仍然有许多研究工作有待进一步开展,这包括两个方面,一是分布式光纤传感监测技术本身的进一步改良;二是要不断地解决在工程监测中的技术问题。可以相信,随着这一技术的不断研发和成熟,越来越多的大型基础工程将采用这一技术进行分布式监控和健康诊断,应用前景十分广阔,无法估量。
图8钢筋应变分布
参考文献
[1]Horiguchi T,Kurashima T,Tateda M.Tensile strain dependence of Brillouin frequency shift in silica optical fibers.IEEE Photonics Technology Letters,1989,1(5):107~108
[2]Ohno H,Naruse H,Kihara M,Shimada A,Instrial applications of the BOTDR optical fiber strain sensor.Optical Fiber Technology,2001,7(1):45~64
[3]Wu Z S,Takahashi T,Kino H and Hiramatsu K,Crack Measurement of Concrete Structures with Optic Fiber Sensing.Proceedings of the Japan Concrete Institute,2000,22(1):409~414
[4]Wu Z S,Takahashi T and Sudo K,An experimental investigation on continuous strain and crack moni.toring with fiber optic sensors.Concrete Research and Technology,2002,13(2):139~148
[5]Li C et al,Distributed optical fiber bi-directional strain sensor for gas trunk pipelines.Optics and Lasers in Engineering,2001,(36):41~47
[6]Uchiyama H,Sakairi Y,Nozaki T,An Optical Fiber Strain Distribution Measurement Instrument Using the New Detection Method.ANDO Technical Bulletin,2002,(10):52~60
[7]黄民双,陈伟民,黄尚廉.基于Brillouin散射的分布式光纤拉伸应变传感器的理论分析.光电工程,1995,22(4):11~36
[8]查旭东,张起森,李宇峙,苏清贵,黄庆.高速公路连续配筋混凝土路面施工技术研究.中外公路,2003,23(1):1~4
[9]谢军,查旭东编译.连续配筋混凝土路面设计指南.国外公路,2000,20(5):4~6
[10]施斌等.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究.岩石力学与工程学报.Vol.22,No.12,2003
[11]Shi Bin et al,A Study on the application of BOTDR in the deformation monitoring for tunnel engineering,Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers, 2003:1025~1030
[12]徐洪钟,施斌,张丹,丁勇,崔何亮,吴智深.基于小波分析的BOTDR光纤传感器信号处理方法.光电子激光,2003(7)
[13]H.Z.Xu,B.Shi,Dan Zhang,Yong Ding,Heliang Cui,Data processing in botdr distributed strain measurement based on wavelet analysis,Structural Health Monitoring and Intelligent Infrastruc ture,A.A.Balkema Publishers,2003:345~349
[14]张巍,吕志涛.光纤传感器用于桥梁监测.公路交通科技,2003,20(3):91~95
[15]张丹,施斌,吴智深,徐洪钟,丁勇,崔何亮.BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报,2003,36(11):83~87
[16]Dan Zhang,Bin Shi,Hongzhong Xu,Yong Ding,Heliang Cui&Junqi Gao,Application of BOTDR into structural bending monitoring,Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers,2003:271~276
[17]Dan ZHANG,Bin SHI,Junqi GAO,Hongzhong XU,The recognition and location of cracks in RC T-beam structures using BOTDR-based distributed optical fiber sensor,SPIE,2004
[18]张丹,施斌,徐洪钟,高俊启,朱虹.BOTDR用于钢筋混凝土 T型梁变形监测的试验研究.东南大学学报(待刊)
[19]丁勇,施斌,吴智深.岩土工程监测中的光纤传感器.第四届全国岩土工程大会会议论文集2003:283~291
[20]Ding,Y.,Shi,B.,Cui,H.L.,Gao,J.Q.,&Chen,B.2003.The stability of optical fiber as strain sensor under invariable stress.Structural Health Monitoring and Intelligent Infrastructure,A.A.Balkema Publishers,2003:267~270
‘肆’ 急需:高危作业施工监测监控方案(高速公路,我方是施工单位),谢谢!!! 我的邮箱:[email protected]
施工测量及监控方案
目 录
第一章 施工测量 1
1.1 测量依据 1
1.2 控制测量依据 1
1.3 测量质量管理目标和基本质量指标 1
1.4 基本测量程序 1
1.5 隧道开挖测量 7
1.6 隧道施工测量 8
1.7 隧道贯通误差测量 9
1.8 地下监控测量成果的检查与检测 10
1.9 竣工测量 11
1.10 质量保证措施 13
第二章 安全生产教育和培训制度 16
2.1 监控量测目的和意义 16
2.2监测方案的设计依据 16
2.3 监测项目 16
2.4 监测点布置 17
2.5 监测方法及监测频率 17
2.6 监测量测反馈程序 24
第一章 施工测量
1.1测量依据
1)《地下铁道、轻轨交通工程测量规范》(GB50308-1999)
2)《新建铁路工程测量规范》(TB10101-99)
3)《北京地铁房山线施工测量管理细则》
4)《北京地铁新建线路控制测量总体技术要求》
1.2控制测量依据
地面控制测量由北京城建勘测设计研究院有限责任公司提供平面控制点(DS63、DS65、DS66、DS67)和高程控制点(DS63~DS67、BM[4]11~BM[4]12)。经过复测,误差符合规范要求。
1.3测量质量管理目标和基本质量指标
1)施工测量质量管理目标
确保全线建筑物、构筑物、设备、管线安装按设计准确就位,避免因施工控制测量、放样测量超差而造成重大设计变更和工程事故。
2)质量指标
(1)在任何贯通面上,地下测量控制网的贯通中误差,横向不超过±50mm,竖向不超过±25mm。
(2)隧道衬砌不侵入建筑限界,设备不侵入设备限界。
3)测量标准
《地下铁道、轻轨交通工程测量规范》(GB50308-1999)。
1.4基本测量程序
1.4.1地面控制测量
1)平面控制测量
对业主提供的控制导线点进行复测,并与相邻标段及临近控制点进行贯通联测。利用全站仪进行地面施工导线布设,导线点埋设混凝土标石。
2)高程控制测量
对业主提供的精密水准点进行复测并与临近水准点贯通联测。使用精密水准仪和标尺在提供的水准点之间加密水准网,布设成闭合环线,闭合差≤±8 mm(L为环线长度,以千米计),操作方法精度指标执行Ⅱ等水准点测量要求。
导线测量的主要技术要求
等级 导线长度(km) 平均边长(km) 测角中误差(″) 测距相对中误差 测回数 方位闭合差(″) 相对闭合差
DJ1 DJ2 DJ6
三等 14 3 1.8 ≤1/150000 6 10 3.6
≤1/55000
四等 9 1.5 2.5 ≤1/80000 4 6 5
≤1/35000
一级 4 0.5 5 ≤1/30000 2 4 10
≤1/15000
二级 2.4 0.25 8 ≤1/14000 1 3 16
≤1/10000
三级 1.2 0.1 12 ≤1/7000 1 2 14
≤1/5000
注:①表中n表示测站数。
②测区测图的比例尺为1:1000时,一、二、三级导线的平均边长可适当放长,但最大长度不应大于表中规定的2倍。
精密水准测量的主要技术要求
每千米高差中误差(mm) 符合水准路线的平均长度km 水准仪等级 水准尺 观测次数 往返误差,附合或环线闭合差(mm)
偶然中误差 全中误差 与已知点联测 附合线环线 平坦地面 山地
+2 +4 2~4 DS1 铟钢尺 往返各测一次 往返各测一次
+8√n
+2√n
注:L为往返测段附合或环线的路线长度(以km计),n为单程测站数
精密水准测量观测的视线长度、视距差、视线高度的要求
标尺
类型 视线长度 前后
视距差
(m) 前后视距累计差
(m) 视线高度
(m)
仪器等级 视距 视线长度20m以上 视线长度20m以下
铟钢尺 DS1 ≤60 ≤1.0 ≤3.0 0.5 0.3
精密水准测量的测站观测限差(mm)
基辅分划读数差 基辅分划所测高差之差 上下丝读数平均值与中丝读数之差 检测间歇点高差之差
0.5 0.7 3.0 1.0
1.4.2联系测量
1)趋近测量
从地面控制点采用趋近导线向竖井引测坐标和方位。地面趋近导线应附合在精密导线点上,近井点要与GPS点或精密导线点通视,使定向最为有利,除近井点设置固定标志外,其它地面趋近导线点均可设置临时标志,地面趋近导线全长不能超过350m,平均边长60m,最短边长大于30m,趋近导线采用严密平差,其近井点的点位中误差在±10mm之内。
导线点可做成如下形式:
单位:mm
2)竖井开挖测量
竖井四个角点,用钢板或木板做成三角架固定在锁口圈上,斜边中心做记号吊5kg以上的垂球控制开挖轮廓线。如右图:
(3)竖井定向控制测量
竖井施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点,把井口上测设的临时导线点投在投点板上。
(投点仪标称精度1/200000)
为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图1。然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图2所示。
为了检核投点精度,在井上作两次投点。投在投点板上的P1′P2′、P1〞、P2〞点。然后将全站仪分别架设在各点上,观测通道内设置的P3、P4,采用测回法观测各点的角度、距离、平差后计算出各点坐标,以此作为通道、隧道暗挖控制的定向边(P3~P4)。
(4)高程传递
利用加密水准网点作趋近水准测量,按Ⅱ等水准测量方法和仪器施测,限差≤±8 mm,埋设不少于两点的高程点,以利校核。使用检定过的钢尺及检定重量的重锤用悬吊的方法经竖井传递高程,上、下两台水准仪同时观察读数,每次错动钢尺3cm~5cm,测三测回。高差较差控制在±3mm以内,取平均值使用。如下图:
1.4.3地下控制测量
1)地下导线测量
地下施工控制测量用控制导线,直线隧道掘进大于200m时,曲线隧道掘进到直缓点时,埋设洞内导线控制点,直线隧道施工控制导线点平均边长为150m,特殊情况下,不短于100m。曲线隧道施工控制导线点埋设在曲线五大桩点上,一般边长不小于60m。边长往返观测各两测回,往返观测平均值较差小于7mm,每次延伸施工控制导线测量前提是对已有的施工控制导线前三个点进行检测,检测点如有变动,选择另外稳定点的施工控制导线点进行施工控制导线延伸测量。施工控制导线在隧道贯通前测量三次,测量时间与竖井定向同步。重合点重复测量的坐标值与原测量的坐标值较差小于10mm时,采用逐次的加权平均值作为施工控制导线延伸量的起算值。如下图:
2)地下高程控制测量
①地下水准测量用Ⅱ等水准测量的方法和仪器施测,不等值、闭合差限差满足≤±8 mm的精度。
②开挖至隧道全长1/3和2/3处,贯通前50m~100m,分别对地下水准点按Ⅱ等水准精度要求复测,保障高程贯通精度。
1.5隧道开挖测量
直线隧道施工测量在线路中线上安设激光导向仪,激光导向仪调节后的激光束代表线路中线的方向和线路纵断面的坡度。曲线隧道施工测量把激光导向仪安装在线路弦线上,调节后的激光束代表线路弦线的方向及线路纵断面的坡度。利用内业计算资料的弦线偏距及里程、标高指导施工,隧道上部开挖用激光导向仪控制标高,下部开挖采用放起拱线标高来控制,要经常检测激光导向仪的中线和坡度,抄平时要往返水准测量。激光导向仪的安装如下图所示:
标准段激光导向仪安装 人防段激光导向仪安装
1.6隧道施工测量
断面测量采用支距法。拱部断面采用五寸台法测绘,沿中线自外拱顶线高程向下每隔0.5m向两侧测设断面的开挖支距,然后把各支距的端点连接起来,为拱部开挖断面的轮廓线。如下图所示:
洞门断面的测量:曲墙地段自起拱线高程起,沿中线向下每隔0.5m向左右两侧按开挖的尺寸量取支距,至轨顶高程为止。直墙地段自起拱线高程起,沿中线向下每1m向下左右两侧按开挖尺寸量取支距至轨顶高程为止。仰拱断面应由内轨顶高程每隔0.5m向下量支距至开挖深度。
如图所示:
量支距时,应考虑隧道中线和线路中线的偏移值d,直线地段d值为零,即两线重合。在曲线地段,隧道中线从线路中线向圆心方向内移一个d值,而标定在开挖面上的中线是按线路中线标定的,所以在绘断面图时,内侧支距都比外侧支距大2d。
1.7隧道贯通误差测量
平面贯通测量,贯通面处采用坐标法从两端测定贯通点坐标差,并归算到预留的断面和中线上,求得横向贯通误差和纵向贯通误差。平面与高程贯通误差限差如下表:
平面与高程贯通误差限差表
地面控制测量 联系测量 地下控制测量 总贯通中误差
横向贯通中误差 ≤±25 mm ≤±25 mm ≤±35 mm ≤±50 mm
纵向贯通中误差 L/40000 L/40000 L/40000 L/12000
竖向贯通中误差 ≤±16mm ≤±12mm ≤±15mm ≤±25mm
区间隧道贯通后,当地下导线闭合差不超过限差规定时,进行平差计算。按导线点平差后的坐标值调整线路中线点,改点后再进行中线点检测,直线夹角不符值≤±6″,曲线上折角互差≤±7″,高程也用平差后成果。将平差后成果作为净空测量的起始数据,净空断面测量采用解析法。
1.8地下控制测量成果的检查与检测
为确保隧道正确贯通和满足净空限界,建立严格的检查和检测制度,检测按规定的同等级精度作业要求进行:地上、地下导线的坐标互差≤±12mm,≤±20mm;地上、地下高程点的高程互差≤±3mm,≤±5mm;地下导线基线边方位角互差≤±10″;相邻高程点的高程互差≤±3mm;导线边的边长互差≤±8mm;隧道中线点坐标的互差≤±16mm;经竖井悬吊钢尺传递高程的互差≤±3mm。
1.9竣工测量
隧道直线地段每50m,曲线地段每20m,以及其它需要地方,均应测量隧道净空断面。净空断面测量应以线路中线为准,测量内拱顶高程、轨顶面以上1m、2m、3m、4m处的宽度,其允许偏差为±3mm。如图所示:
隧道竣工后,在中线复测的基础上埋设永久中线点。复测工作依据施工中线进行。永久中线在直线上每200~250米设置一个,缓和曲线的始点各设一个,圆曲线地段按通视条件加设。永久中线点用混凝土包金属心标志埋设。如图:
永久中线点设立后,在隧道边墙上绘出标志。
洞内高程点在复测的基础上每千米埋设一个。小于一千米的隧道设一个,并在墙上绘出标志。标志如下图所示:
1.10质量保证措施
地下工程施工测量不同于一般工程测量,施测的周围环境和条件复杂,要求的施测精度相当高,因此必须精心组织实施。
1)施工准备
(1)为确保地铁测量精度,我们将抽调具有地铁测量经验的测量工程师和有测量上岗证的测量员组成精测队,配备全站仪和精密水准仪。
(2)开工前,根据设计提供的测量数据资料,布设施工控制网点,这些网点必须吻合设计提供的三角网和水准网点的基本数据,并满足规定的施测精度。
2)分级测量复核制度
(1)工区负责本作业区的日常施工测量,施工放样及控制桩点的埋设及防护。
(2)经理部精测组负责复核和指导测量组完成施工测量任务,并负责向工区测量组现场交点、交桩、交测量资料和成果。负责控制护桩的测量。
(3)现场监理工程师对日常测量工作进行监督和复测。
(4)施工控制导线由城勘院测量队复核。
3)内业资料计算
工区日常测量资料必须由两名以上技术员独立计算并相互核对计算数据,核对无误后交由技术主管复核、鉴认,主管鉴认后方可交付测量组使用;进行施工控制桩测量,在此基础上由测量工程师复核,认为无误后方可使用。
4)外业测量
以备内业计算时能够及时发现错误,日常测量必须保证两个测回,施工控制桩测设则须四个测回,外业测量必须进行闭合测量,外业记录资料必须完整、详细,闭合到业主交付的导线点上,经过内业计算达到精度后方可使用,对业主提供的导线点及自己布设的施工控制桩必须定期复核,精度达不到规范要求时,及时调整。竖井、施工通道及正线每施工5m由工区测量人员贯通复测,施工10m由经理部测量组贯通复测。
5)人员配备
指定专人负责,日常测量不少于3人,施工监测不少于3人,每组必须两人精通,可相互使用仪器及内业资料计算。每个工程队指定2人为经理部测量组成员,需要贯通复测时由测量工程师抽调,直接安排工作,其余时间由工区安排。
6)测量仪器的管理
(1)测量仪器实行分级管理制度,精密测量仪器由经理部统一管理,一般测量仪器由工区自行管理,建立保管、使用、维修制度。
(2)各种测量仪器、量具按计量部门有关规定定期进行计量检定,做好日常保养工作,保证状态良好,建立测量设备台帐,准确记录检定维修情况。
主要仪器设备
仪器名称 规 格 生产厂家 数 量
全站仪 TCRA1102 瑞士 1
莱卡投点仪 NL 瑞士 1
精密水准仪 AT—G2 日 本 1
经纬仪 TDJ2 博 飞 3
水准仪 C32Ⅱ 索 佳 3
第二章 监控量测
2.1监控量测目的和意义
1)监控量测目的
“信息化施工”的前提是对施工过程中的地层变形、支护结构的受力有清楚的了解。要达到这样一个目的,必须在很大程度上依赖于施工监测,根据监测结果,调整支护参数或修改施工方案。
2)监控量测意义
本区间的监测意义在于:
(1)掌握隧道周围地层、支护结构、地下管线和周边建筑物的动态,观测开挖过程中隧道的状态及其对周边环境的影响,预防工程破坏事故和环境事故的发生。
(2)将现场测量结果与预测值相比较以判别前一步施工工艺和施工参数是否符合预期要求,以确定和优化下一步施工参数,从而指导现场施工,做到信息化施工。
(3)将量测结果用于信息化反馈优化设计,使设计达到优质安全、经济合理、施工快捷。另外还可将现场监测结果与理论预测值相比较,用反分析法导出更为接近实际的理论公式用于指导其它工程。
2.2监测方案的设计依据
1)北京地铁房山线大葆台站至郭公庄站区间设计图纸。
2)中华人民共和国国家标准《地下铁道设计规范》(GB50157-92)。
3)中华人民共和国国家标准《建筑变形测量规范》(JGJ/T 8-97)。
2.3监测项目
监控量测项目主要根据工程地质、水文地质、结构形式、施工方法、周边环境等因素综合确定,力求在满足需要的前提下,少而精。
本工程的主要监测项目如下:
1)A项量测项目(常规监测)
主要有:地质及支护观察、地表沉降、周边管线及建筑物变形、拱顶下沉、周边收敛。
2)B项量测项目
主要有:土体水平位移、土体垂直位移、围岩压力、钢架应力、衬砌内应力。
2.4监测点布置
A项量测中的地表沉降、拱顶下沉,净空收敛沿隧道中线每10米布设1个监测断面。其中地表沉降点沉降点按断面总宽70m在隧道中心线左右平均布置,每个断面21个测点,测点距离2.5~5米。
B项量测项目选有代表性的2个断面,并在断面变化处或接口处布设B项量测项目。
详见图13-1“大葆台站~郭公庄站区间监测点布置图”。
2.5监测方法及监测频率
1)工程地质与支护状况的观察
①洞室开挖完成后,立即进行工程地质状况的观察记录和地质描述,这对于判断围岩稳定性和预测开挖面前方的地质条件,为地层超前支护提供真实的地层参数是十分必要的。
②初期支护完成后,进行喷层表面观察、记录和裂缝描述,若发现初期支护有不稳定趋势,及时采取补强措施,并为后续工程提供、改进支护参数。
2)地表沉降监测
①测点布置
在地表沿隧道轴线方向每10m设一个量测断面,每断面对称布置21个测点,测点为埋入地表下一定深度的钢桩,并用混凝土固定,以保证其不移动、丢失。
②量测方法
利用精密水准仪和铟钢塔尺。按照一定的量测频率和时间进行观测,并做好记录,绘制散点图。隧道开挖前在变形影响范围外,便于长期保存的稳定位置,埋设基准点,进行水准布网,测得量测点初始读数。
③量测频率
在洞室开挖或支护的半个月内,每天观测2次;半个月到一个月内,每两天观测一次;一到三个月每周观测2次;三个月后,每月观测2次;遇有突发性事件则加强监测,一般每1~2小时监测一次。
④控制基准
根据本工程的实际情况,我们将地表沉降管理基准值分两种情况来考虑:当地表有重要管线,取管理基准值为15mm,其他情况取30mm。当监测数据达到管理基准值70% 时,加强监测频率,当监测数据达到或超过管理基准值时,停止施工。修正支护参数后方能继续施工。
3)初期支护位移量测
洞室开挖改变了围岩的初始应力状态,由于围岩应力重分布和隧道周边应力释放,使围岩产生了变形,隧道周边初期支护有不同程度的净空向内位移和拱顶下沉,因此,必须在隧道开挖支护后及时进行初期支护位移量测,根据量测结果判断围岩和支护结构的稳定性,并及时修改支护参数,确保施工安全。
初期支护位移量测分如下几项:
①拱顶下沉量测
沿隧道轴线方向每10m设置一个量测断面,测点采用钢桩预埋在拱顶初期支护中,用精密水准仪和经校验的钢尺进行测量。
②洞周边收敛量测
沿隧道纵向每10m设一个量测断面,该断面与拱顶下沉量测断面为同一断面,每断面设1对测点,采用收敛仪进行量测,通过测微计读取隧道周边两点相对位置的变化,从而计算出该两点在连线上的相对位移值。拱顶下沉及收敛测点布置见下图。
③监测频率:
洞周边收敛位移和拱顶下沉的监测频率可根据位移速度而定,如下表所列:
位移速率(mm/d) 15 1~15 0.5~1 0.2~0.5 <0.2
频率 1~2次/d 1次/d 1次/2d 1次/7d 1次/15d
④控制基准
当拱顶下沉达到35mm时,加强监测频率,当监测数据达到或超过50mm时,停止施工。修正支护参数后方能继续施工。洞周收敛位移控制基准值为0.005B(B为坑道宽度)。
4)建筑物沉降、倾斜及裂缝监测
①建筑物的沉降监测
A.人行天桥的沉降观测点的位置和数量根据天桥的基础型式、结构类型及地质条件因素综合考虑。为了反映沉降特征和便于分析,测点埋设在天桥的桥面及桥柱基础上。
B. 监测方法:采用精密水准仪及铟钢塔尺量测。
C.监测频率:在洞室开挖或支护的半个月内,每天观测2次;半个月到一个月内,每两天观测一次;一到三个月每周观测2次;三个月后,每月观测2次;遇有突发性事件则加强监测,一般每1~2小时监测一次。
②建筑物倾斜监测
A.监测方法
倾斜监测就是对建筑物的倾斜度、倾斜方向和倾斜速率进行监测。由于天桥具有明显的外部特征和宽敞的观测场地,所以采用投点法或测水平角法。
B.监测仪器及监测频率:用高精度J2经纬仪及S1水准仪每5天观测1次。
C.控制基准:当建筑物倾斜率超过0.002时,立即停止施工。修正支护参数后,方能继续施工。
③周围建筑物裂缝监测
A.裂缝宽度的量测方法
a.一般量测
对于测量精度要求不高的部位,如墙面开裂,简易有效的方法是粘贴石膏饼,将10mm厚、50mm宽的石膏饼骑缝粘贴在墙面上,当裂缝继续发展时,石膏饼随之开裂。裂缝宽度用裂缝宽度板来对比。
b.对于精度要求较高的裂缝量测,如混凝土构件的裂缝,采用仪表进行量测,在裂缝两侧粘贴几对手持应变计的头子,用手持式应变仪量测。
B.裂缝深度的量测方法
a.浅层裂缝:采用凿出法或单面接触超声波法。凿出法就是预先在细小裂缝中灌入彩色溶液如墨水,若裂缝走向是垂直的,用针筒打入,待其干燥后从裂缝一侧将混凝土渐渐凿除,露出裂缝另一侧,观察是否留有溶液痕迹(颜色),以判断裂缝深度。
b.深层裂缝:当裂缝发展很深时,采用取芯法量测裂缝深度。取芯法是用钻芯机配人造金刚石(空心薄壁)钻头,跨于裂缝之上沿裂缝面由表向里钻孔取芯。当一次取芯未及裂缝深度时,可换直径小一号的钻头继续往里取,直至裂缝末端出现,然后将取芯拼接起来,量测裂缝深度。
④监测仪器及监测频率:用高精度J2经纬仪及S1水准仪每5天观测1次。
5)围岩与初期支护间的接触应力量测
①沿隧道纵向选取有代表性地段设置量测断面,在每个断面的拱顶、拱腰、起拱、边墙、仰拱等处布点,在初期支护背后埋设钢弦式双模压力盒,配合频率接收仪量测压力值。压力盒的布置见下图:
区间标准断面压力盒布置图
②量测频率
开挖初期,每天测1次,14~30天后每2天测1次,基本趋于稳定后,每周量测1~2次。
③数据处理
将围岩各部位量测压力值与理论计算的竖向压力、侧向压力进行比较,分析判断作用在初期支护上土压力大小及分布状态,反映出结构实际受力状态。
6)初期支护结构应力监测
①测点布置
在初期支护结构中有代表性位置的钢格栅上,焊接钢弦式钢筋计,通过传感器采集数据。标准段如下图所示:
区间标准段钢筋计安装布置图
②应力传感器的安装
A.根据测点应力计算值,选择钢筋应力计的量程,在安装前对钢筋计进行拉、压受力状态的标定。
B.安装时尽可能使钢筋应力计处于不受力状态,更不能处于受弯状态。将应力计上的导线逐段捆扎在邻近钢筋上,引到初期支护结构外侧试匣中。
C.喷射混凝土后,检查应力计电路电阻值和绝缘情况,做好引出线和测试匣的保护。
③量测频率
喷射混凝土结束后测出应力传感器的稳定测量值,作为计算应力变化的初始值。洞室开挖初期,每天测1次,14~30天每2天测1次,基本趋于稳定后每周至少测量1次,每次应力量测值与初始值之差,即为应力变化。
7)地下水位监测
在距隧道外侧5m左右布设地下水位观测孔,监测隧道开挖期间地下水位变化。水位观测孔采用地质钻机钻孔,孔径φ128mm,钻孔深度达到隧道基底下2m,用钢尺量测地下水位变化。一旦发现降水不满足施工要求时,则立即与降水部门协调解决。
7)隧底回弹监测
在隧道底典型位置设三处,用地中位移计进行隧底回弹监测。
2.6监控量测反馈程序
监控量测资料均用计算机配专业技术软件进行自动化初步分析、处理。根据实测数据分析、绘制各种表格及曲线图,当曲线趋于平衡时推算出最终值,并提示结构物的安全性。
监测人员按时向施工监理、设计单位提交监控量测周报和月报,同时对当月的施工情况进行评价并提出施工建议,及时反馈指导信息,调整施工参数,保证安全施工。
2.6.1监测资料的反馈程序
监测资料的反馈程序见下图所示。
2.6.2监控信息的反馈程序
监测信息反馈流程见下图所示:
‘伍’ 基于GIS的大型工程分布式光纤传感监测系统研究
基金项目:国家杰出青年基金项目(40225006),国家教育部重点项目(010886),南京大学985工程项目。
索文斌王宝军施斌刘杰
(南京大学地球科学系地球环境计算工程研究所,南京,210093)
【摘要】BOTDR是一种新型的分布式光纤传感监测技术,其分布式、高精度、长距离、实时性、远程控制等特点,已逐渐受到工程界的广泛关注。由于监测是分布式的,所以得到的数据与地理位置具有重要的相关性。结合工程实践中遇到的具体问题,研发了一套基于GIS的大型工程分布式光纤传感监测系统。本文重点论述系统的设计要求,包括设计目标、技术框架和特色功能。结合某隧道 BOTDR监测工程开发的一套相应的监测数据管理系统,实现了工程监测数据的采集与管理、监测结果的可视化、监测信息的对比查询等功能,是一套集智能化分析与决策化管理为一体的多功能管理系统。
【关键词】BOTDRGIS分布式光纤传感器监测系统
1引言
光纤传感技术以其良好的耐久性、抗腐蚀、抗电磁干扰,适合于在恶劣环境中长期工作等优点受到越来越多的工程建设者和科研人员的重视[~3]。BOTDR(Brillouin Optic Time-Domain Reflectometer)布理渊光时域反射计,作为新型的分布式传感技术,逐渐得到工程界的认可。日本、加拿大、瑞士等国已成功地将该技术应用到水坝、桩基、边坡、堤岸等工程的监测中[~3]。我国自2001年由南京大学地球环境计算工程研究所率先从日本引进该技术以来,开展了大量的室内外实验研究,并成功地完成了多个工程项目,取得了一系列重要的研究成果[4-7]。
在具体应用中,BOTDR所提供的监测结果存在诸如直观表现差、数据配准和空间定位困难、综合管理功能弱等方面的缺陷,未经过系统培训的工程技术人员,很难读懂 BOTDR的监测结果,后期成果处理也非常繁琐。本文针对大型工程分布式光纤传感监测领域存在的数据分析与管理中存在的不足,提出了一套比较切合工程实际的解决方案,并结合具体工程实例设计和开发了一套应用系统。实践表明,该系统可以很好地实现对监测数据的采集与管理、监测结果的可视化显示以及监测信息的对比查询等功能。
2问题的提出
2.1 BOTDR的监测原理[1]
激光在光纤中传播时,光波与光声子相互作用即会产生布理渊散射光。当环境温度的变化量不大(T≤5°)时,布理渊光频率漂移量(vB)与光纤所受的应变量(ε)成正比,其关系式如下式所示:式中:υB(ε)表示光纤受到ε应变时的布理渊频率漂移量;υB(0)表示光纤不受应变时的布理渊频率漂移量;
地质灾害调查与监测技术方法论文集
为了得到沿光纤分布的应变信息,只需测量沿光纤分布的布理渊频率漂移量的变化情况,沿光纤距离光源为Z长度的点可由下式求得:
地质灾害调查与监测技术方法论文集
式中:c为光速,n为光纤折射率,T为自激光发射与接收到布理渊散射光所经历的时间。
监测原理如图1所示。
图1BOTDR的应变监测原理图
2.2 BOTDR在结果表现上存在的问题
在实际工程应用中,根据工程实际情况的不同,可按照不同的黏着方式将传感光纤粘贴在所需监测结构(或材料)的表面,从而获得被粘贴结构(或材料的)沿光纤的径向应变分布信息。但 BOTDR所提供的监测结果存在以下几个方面的缺陷:
(1)海量数据的综合管理缺陷。BOTDR提供的监测数据是沿光纤径向的每一点的应变信息(点之间的间距和仪器的距离分解度相关),而这些点的应变信息是以数据点的形式给出的,造成原始数据繁多复杂。
(2)实际里程与监测结果的数据配准问题。分布式光纤传感器在实际铺设过程中,出于定位需要,经常预留一些冗余光纤,为了将所测得的应变量和实际的光纤里程对应起来,必须获得发生应变部位距离光纤光源的实际里程,而 BOTRD提供的监测里程是光纤的实际长度(包括冗余部分),并不是工程实际里程,也就是说监测结果与实际里程之间存在数据配准问题。
(3)监测结果的直观表现不佳。BOTDR原始监测系统并不提供阈值设定功能,即对于特定的工程而言,我们必须人为地设定阈值寻找应变异常信息。
(4)实测数据影响因子多。BDTOR监测结果是在诸如温度影响在内的多种因子的影响下测得的数据,未经处理的实测数据可信度差。
(5)缺乏面向最终用户的监测数据。BOTDR监测结果是未经配准和处理的纯文本文件,这些数据并不是面向最终用户,而是面向具有 BOTDR操作经验的科研人士,也就是说未经专业培训的工程技术人员很难读懂 BOTDR的原始成果。
3基于GIS的大型工程分布式光纤传感监测系统设计
3.1系统设计目标
针对上述所存在的问题,基于GIS的大型工程分布式光纤传感监测系统应该遵循以下的总体设计目标:
(1)完成对所监测工程的日常健康诊断,分析工程安全性。以应变分析为核心,建立工程安全评价体系,完成对影响规划、管理、决策及科学研究的数据进行储存更新、查询检索、智能评价、统计分析、类比判别和制图制表等任务,提高工程管理质量和效率。
(2)利用BOTDR提供的数据,经系统处理后再配合工程实地调查数据,完成以工程质量为目标的各项监测工作。应用横向纵向两方面类比模式监测工程安全性,即利用不同光纤反馈回来的数据,以及同一根光纤不同时间测试的数据进行类比分析,得出工程可信的结果。
3.2系统技术框架
结合目前GIS的发展趋势,并考虑工程实际的可操作性,系统应用ESRI公司提供的MapOb-jects组件,在Visual Basic 6.0环境下开发了以组件式GIS为核心的管理系统,系统的技术框架如图2所示:
图2系统技术框架图
从图2的技术框架图中可以直观地看出,系统设计以各种不同用户的需求作为指导,并在开发中通过信息反馈不断更新和完善系统功能及工作模式。系统以基础地理及属性数据库为基础利用GIS的开发实现空间数据的提取,结合光纤监测数据库实现监测数据的配准以及可视化表示,以不断更新和完善的管理与决策数据库实现科学决策,构建集基础功能、智能分析、决策管理于一体的多功能系统。
3.3系统的功能与特色
基于GIS的大型工程分布式光纤传感监测系统基本实现了如图3所示功能。
从图3可以看出,该系统基本上可以解决工程监测数据的采集与管理、监测结果的可视化显示、监测结果的智能化分析,是一个以工程应用为目标,以监测结果为核心的多功能管理与智能化分析系统。
(1)图层控制:系统加载多个图层(ESRI的Shape文件、AutoCAD的DXF文件或图像文件JPG、BMP、GIF、TIF等)。在使用中用户可以通过图层控制图层是否可见、图元颜色、可视化范围、图层顺序等,以便于对特定图层进行浏览。
图3系统的功能与特色
(2)视图控制:系统提供图像的放大、缩小,全局显示、局部显示,漫游等基本功能。
(3)动态标注:系统实现了空间任意位置的动态跟踪标注。用户点击鼠标后可随时获得鼠标所在位置的属性信息。
(4)数据维护:用户可以选择两种不同方式查询、检索、更改数据,提供完善的从图到属性和从属性到图的数据查询、检索、更改方式。
(5)绘图功能:系统提供自助的绘图方式,用户可按照自己的想法和要求新建图层或者在原图上自行绘制图形,并根据程序提供的属性表为数据添加属性。
(6)元素选取:系统能够识别图中选取的元素,通过线、矩形、区域、多边形、圆来拾取物体,并显示拾取元素的属性数据。当选中特定位置的光纤时,光纤以闪烁3次来回应用户选中的光纤。
除上述功能之外,鉴于分布式光纤监测的工程特点,本系统还具备以下几个特色功能:
(1)数据分析:系统以绘制专题应变曲线图的方式提供数据分析功能。通过 BOTDR实测数据,绘制光纤应变曲线专题图,根据不同的阈值设置不同颜色的应变曲线图。
(2)数据配准:在实测数据与工程实际里程之间,根据实际工程光纤铺设的特征数据信息(光纤定位信息),系统提供一个精确的配准模块,误差小,应用性强。
(3)图例显示:系统提供独特的图例,便于工程管理。如,实际工程若铺设5根光纤,并且光纤铺设在不同墙面,采取二维示意图显示,可以绘制不同的图例显示,用以区别不同墙面铺设的不同光纤。
(4)对比查询:系统提供了由系统操作主界面至应变曲线绘制界面的对比查询方式,用户可选则从图到曲线或从曲线到图的两种方式进行结果查询,这样,工程监测的质量和效率就大大提高了。
4工程应用实例
4.1工程概况
某隧道工程是一湖底隧道,全长约2.56km,其中湖底隧道长约1.66km,为双向六车道,三箱室结构形式,其中左右两个箱式为车行道,中间箱室为净宽3m的管廊与检修通道。隧道设计宽约32m,净空高度4.5m,设计车速为60km/h。
2002年7月,隧道项目指挥部经反复调研和论证后,决定采用BOTDR技术进行隧道整体变形监测。2002年11月~12月,项目组完成了传感光纤铺设,铺设情况如图4所示,并分阶段对隧道变形进行监测。2003年1月~4月,为施工监测阶段,2003年5月通车后至9月为常规监测阶段。施工监测阶段主要进行由于后期施工对隧道变形的影响以及隧道箱体接缝变形监测,监测频率为2天/次。常规监测阶段主要进行通车条件下隧道稳定性监测,监测频率3~5次/周。
图4某隧道光纤总体平面布置图
4.2隧道工程监测数据管理的系统实现
4.2.1数据准备
系统的基本数据包括施工区域图、隧道信息、光纤铺设信息、光纤监测数据等四大类。这四类数据既包含了空间信息数据又包含了属性数据,是构成系统数据结构的基础,又是系统数据分析和管理的前提。
(1)施工区域图。主要提供隧道基本信息与周边环境状况,用以确定施工地理信息、施工线路等,为绘制隧道二维示意图提供标准。
(2)隧道信息。主要提供隧道纵剖面、横剖面信息。横剖面信息用于了解光纤铺设里程和方位,纵剖面信息主要用于掌握具体施工操作面,为准确绘制隧道二维示意图做数据基础。
(3)光纤铺设信息。主要提供传感光纤铺设信息。拟铺设的5条传感光纤处在隧道南洞、北洞不同的墙面上,每条光纤的实际铺设长度与工程里程必有误差,通过在铺设过程中了解光纤定位信息,为数据配准模块提供数据基础。
(4)光纤监测数据。主要指 BOTDR实测应变数据,这些实测数据通过数据配准、阈值设定等系统转换处理后,将得到精确的隧道不同位置的应变信息。
4.2.2系统工作流程
数据管理与分析是该系统的核心组成部分,是得到精确工程监测信息的重要组成部分。数据管理与分析主要靠以下流程来实现:
步骤一:数据准备
将BOTDR实测数据以*.txt文件存放到指定位置,以备数据处理调用。
步骤二:选择光纤
在5根铺设的光纤中,在主操作界面中点击所需监测光纤,即完成所需光纤的选择,点击所选光纤时,与之相对应的系列在后台被调入。
步骤三:选择系列
所谓系列,就是不同时间监测的不同光纤的应变信息和数据配准信息。选择系列操作包括调入监测数据,选择数据配准,设置隧道变形阈值等。
步骤四:应变分析
进行系列选择之后,选择绘制曲线,系统即在新窗口绘制出经数据配准的隧道整体应变分析图。
除上述主要数据管理与分析功能之外,系统还设置了分段管理与分析的功能,即通过对所需监测段进行设置起点、设置终点操作,进行局部数据的管理与分析。另外,系统还提供了由图到曲线(或曲线到图)的对比查询方式,选择图到曲线(或曲线到图)的菜单项之后,图和曲线完美地对应起来,并提供了阈值设定功能,做到自动预警,避免人为干扰。图5至图7显示了系统数据与管理功能的操作界面,其中,图5为数据分析界面,图6为选择系列界面,图7为隧道应变分析曲线界面。
图5数据分析界面图
图6选择系列界面
图7隧道应变分析曲线界面
5结语
综上所述,应用GIS管理分布式光纤监测工程可实现海量数据的高效管理。GIS以其独特的数据管理、查询、检索、分析模式成为工程管理的首选。它的海量数据分层管理、数据结果的可视化表现、实现双向查询、面向最终用户的特点更显示其理想的工程管理能力。具体的说,系统具有以下优点:
(1)系统改善了BOTDR原系统中海量数据的综合管理模式,结果显示更加清晰直观。
(2)系统设置了数据配准、阈值管理等模块,监测结果可直接应用,避免了人为判别的误差,提高了工作效率。
(3)系统采用可视化显示,面向最终用户,无须对具体工程监测人员进行系统培训。
(4)系统实现了工程监测数据的采集与管理、监测结果的可视化显示、监测信息的对比查询等功能,是一个集智能化分析与决策化管理为一体的多功能管理系统。
本系统以具体工程为实例,具有更加科学、高效、直观、方便等优点,并减少了BOTDR监测结果的后期人为干扰,使得测试结果更加客观、准确,有利于科学管理和提高效率。
参考文献
[1]Hiroshige Ohno,Hiroshi Naruse,et al.Instrial Applications of the BOTDR Optical Fiber Strain sensor[J].Optical Fiber Technology 7,2001:45~64
[2]Inaudi D, Casanova N.Geo-structural monitoring with long-gage interferometric Sensors[A].Proceedings Of The Society Of Photo-Optical Instrumentation Engineers(SPIE),3995[C].Bellingham,WA:Spie-Int Society Optical Engineering,2000:164~174
[3]Ohno H, Naruse H,Kurashima T,et al.Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles[J].IEICE Trans.Electron,2002,E85-C(4):945~951
[4]Shi B,Xu H Z,Zhang D,et al.A study on BOTDR application in monitoring deformation of a tunnel[A].Proc 1 st inter conf of structuraI health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:1025~1030
[5]Ding Y,Shi B,Cui H L,et al.The stability of optic fiber as strain sensor under invariable stress[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:267~270
[6]Zhang D,Shi B,Xu H Z,et al.Application of BOTDR into structural bending monitoring[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276
[7]Xu H Z,Shi B,Zhang D,et al.Data processing in the distributed strain measurement of BOTDR based on wavelet analysis[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276
[8]Building Applicatins with MapObjects[M]USA.Enviromental System Research,Institute,Inc.1999