❶ 浅谈几种常见的数学思想方法
摘要:数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓。文章主要介绍四种常见的数学思想方法:函数与方程思想、分类与整合的思想、数形结合的思想、化归与转化的思想。在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。
1对数学思想方法的认识
在数学教学和数学教育领域,数学知识、数学方法、数学思想是数学知识体系的三个层次,它们相互联系,共同发展。数学知识是数学思想方法解决问题所依附的材料;数学方法是解决问题的手段和途径,是数学思想发展的前提;数学思想是对数学对象的本质认识,是从某些具体的数学内容(概念、命题、定理)和数学认识过程中提炼出来的基本观点和想法,是数学方法的灵魂,是解决问题的指导思想,对数学活动具有指导意义。数学思想和数学方法是紧密联系的,数学思想方法通常从“数学思想”和“数学方法”两个角度进行阐述。
数学中常用的数学思想方法,概括起来可以分为两类。一类是科学思想在数学中的应用,如分析与综合、分类讨论、类比、化归、归纳与演绎思想等;另一类是数学学科特有的思想方法,如集合与对应、数学建模、数形结合、函数与方程、极限、概率统计的思想方法等。
2教学中主要的数学思想方法
数学思想方法的学习和领悟能帮助学生构建知识体系,使学生所学的知识不再是零散的知识点,能提高学生数学思维能力,提高学习效果。因此,在教学过程中必须重视数学思想方法的教学。
数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓,它支撑和统率着数学知识。教师在讲授概念、性质、定理的过程中应不断渗透与之相关的数学思想方法,让学生在掌握知识的`同时,又能领悟到数学思想,从而提升学生思维能力。在教学过程中,要引导学生主动参与结论的探索、发现及推导过程,搞清知识点间的联系及其因果关系,让学生亲身体验蕴含在知识中的数学思想和方法。
2.1 分类与整合的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是是一个重要的数学方法,又一个重要的数学思想,在解题时,它能避免思维的片面性,保证不遗不漏。
整合就是考虑数学问题时把注意力和重点放在问题的整体结构上,通过对其全面深刻的观察和分析,从整体上认识问题的实质,把中间相互紧密联系着的量作为整体来处理的思想方法。
解题时,我们常常遇到这种情况,解到某一步时,被研究的问题包含了多种情况,我们不能再按照统一标准进行下去,这就需要把条件所给出的总区域划分成若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,再把它们整合在一起,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。
这就需要我们在学习中认识到以下几点:什么样的问题需要分类研究;为什么要分类;如何分类;分类后如何研究与最后如何整合等。例如:等比数列的求和公式就分为q=1和q≠1两种情况;对数函数的单调性就分为a>1,0 2.2 数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”之间不是孤立存在的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的思维策略,即是数形结合的思想。
数形结合的思想,既是一个重要的数学思想,也是一种常用的数学方法,为解决问题提供了方便,是解决问题的一个捷径。数形结合思想一方面,能使数量关系的抽象概念和解析式通过图形变得直观形象;另一方面,能使一些图形的属性通过对数量关系的研究,更精准、更深刻地得出图形的性质。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大拓宽我们的解题思路。华罗庚先生曾作过精辟的论述:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离”。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。
数形结合在数学解题时应用也比较广泛。例如:不连续函数讨论增减性问题,函数求最值问题;根的分布问题及数形结合在不等式中、在数列中、在解析几何中的应用等。这些都是数形结合的思想方法的体现。
2.3 化归与转化的思想化归与转化的思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想方法。化归与转化思想的实质是揭示联系,实现转化。
化归与转化的思想是解决数学问题的根本思想,大部分数学问题的解决都是通过转化实现的。从某种意义上讲,解决数学问题就是从未知向已知转化的过程,解题的过程实际上就是一步步转化的过程。要想熟练运用化归与转化思想,就要积极主动地去挖掘问题之间的联系,要有丰富的联想、机敏细微的观察,要熟练、扎实地掌握基础知识、基本技能和基本方法。在学习中我们要对公式、定理、法则有深刻理解,并对典型例题和习题进行总结和提炼。人们常说:“抓基础,重转化”是学好数学的金钥匙,学习中一定要用好这把金钥匙。运用化归与转化思想的例子比比皆是,如:未知向已知的转化,复杂问题向简单问题的转化,新知识向旧知识的转化,数与形的转化,空间向平面的转化,命题之间的转化,高维向低维的转化,多元向一元的转化,函数与方程的转化等都是转化思想的体现。
2.4 函数与方程的思想函数的思想是用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系刻划出来并加以研究,从而解决问题的方法。
方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略。
函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,,是对知识在更高层次上的抽象、概括与提炼,是研究变量与函数之间的内在联系,并从函数与方程各部分的内在联系出发来考虑问题,研究问题和解决问题的数学思想。
着名数学家克莱因说:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。
在解题时,要学会思考这些问题:①是不是需要把字母看作变量?②是不是需要把代数式看作函数?如果是函数它具有哪些性质?③是不是需要构造一个函数,把表面上不是函数的问题化归为函数问题?④能否把一个等式转化为一个方程?等等。我们常见的运用函数思想的例子有:数列问题借助于函数思想,用函数方法来解决;遇到变量时构造函数关系式来解题;有关的最大、最值问题,可利用函数观点加以分析;实际应用问题,转化成数学语言,建立数学模型和函数关系式,应用函数相关性质来解决等。
参考文献:
[1]钱佩玲.数学思想方法与中学数学(第2版).北京师范大学出版社,2008.
[2]张顺燕.数学的思想、方法和应用.北京大学出版社,2009.
❷ 一般的数学思想方法有哪些
1 函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
2 数形结合思想
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。
3 整体思想
整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
4 转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
5 类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。
(2)国内外研究数学思想方法扩展阅读:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系。
实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
❸ 数学思想方法有哪几种
数学思想方法有以下5种:
一、方程思想
当一个问题可能与某个等式建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
二、分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。
三、隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条过顶点的线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。
四、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
五、极限思想
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。
❹ 数学思想方法有哪些
如下:
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
简介
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
❺ 目前的数学思想方法一共有几种
四种。其中的具体情况如下:
1
数形结合的思想:
这是我们学习数学最先接触的思想方法。数形结合,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
❻ 数学思想方法有哪几种
数学思想方法有:
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。