⑴ 概念教学的方法
概念教学的基本方法:
一、注重概念的来源和形成
数学概念不是简单的由数字推导出的结论,其本质是人类对现实世界空间形式和数量关系的概括反映,是从现实生活中抽象出来的真理。概念的形成过程是通过对系列感性材料进行认识、分析、抽象和概括后得出的。认识任何事物都必须先弄清其来龙去脉,数学概念也同样如此,有了这一前提,既消除了学生对于数学概念抽象、死板的印象,又活跃了课堂氛围,调动了学生学习的积极性。在传统的数学概念教学中,一般采取“概念加例题”的方式,不利于学生对概念的理解。注重概念的来源和形成过程,能够从本质上完整地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
二、注重概念的变式练习
真正掌握概念必须学会各种变式练习,变式练习既是知识转化为技能的关键途径,也是巩固学习成果的重要方法。变式训练,就是在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征不变。
三、注重结合生活实例
概念的形成依赖于感性认识,却以理性认识的抽象符号和语言表现出来。根据心理学研究,学生更容易接受具体的感性认识。比如,你描述了若干“圆”的特征,都不如直接拿一个实物来讲解一下容易理解。在数学教学过程中,各种形式的直观教学,是提供丰富、正确的感性认识的主要途径,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,更容易揭示概念的本质特征。
四、掌握概念是学好数学的基础,在教学中教师应注重引导学生形成良好的概念认知结构,培养学生从概念的联系中寻找解决问题的思路和方法的能力。本文介绍的数学概念教学的方法仅供参考,总的来讲,初中数学概念的教学没有固定的模式,只要我们根据学生的具体情况,从学生的心理出发,用各种生动活泼的教学方式调动起他们的学习积极性,让他们充分参与进来,全方位开发创新思维,就一定会收到事半功倍的成效。
初中数学概念教学的基本方法
2数学概念的主要特征
1)数学概念的组成 数学概念通常由概念的名称、定义、例子、属性和符号组成。如等边三角形这个概念,概念的名称是“等边三角形”(符号是“等边△”),数学概念具有抽象与具体的双重性。 数学概念代表的是一类对象而不是个别事物,它在一定范围内具有普遍意义。如“等边三角形”这个概念代表的是各种颜色、大小抽象的等边三角形,而任何具体颜色、大小的等边三角形都只是它的正面例子。数学概念是数学命题、数学推理的基础成分,就整个一个数学系统而言,概念是个实实在在的东西,这是数学概念具体性的一面。
2)数学概念的概括性强,如“等边三角形”就是对千千万万个具体的等边三角形的高度概括的认识。
3)数学概念的名称往往用特定的数学符号表示,如“等腰△”、“y=sinx”这些符号表示,使数学概念具有形式和简明的特点。
4)数学概念具有系统性。每一数学分支的概念由原名出发,经过不断抽象定义,逐步形成一个严密的概念系统。就某一具体知识而言,相关的概念也组成一个系统。例如,与三角形这一知识相关的概念,边、角、高、中线………组成一个关于三角形概念的系统。
3数学概念教学方法
一、注重利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。
二、注重剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。
三、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
四、注重通过比较巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。
4数学概念有效方式
一、重视学生原有认知结构,拓展联想空间
新概念学习的前提是学生具有良好的认知结构和丰厚的知识积累,必须唤起学生原有认知结构中的有关知识和生活经验。有些教师认为学生已具备了相关知识的储备,没有必要进行复习,结果出现学生对新概念茫然混沌、理解碎裂的状况。在案例教学中,三角函数也是反映两个变量之间的关系,为突出函数的本质,我在教学中引导学生复习已学过的函数,再顺势揭题。
三、经历数学概念思维过程,体验成长快乐 。数学概念的教学就应该成为思维的体操,积极展示思维的发生、发展,从具体到抽象,让概念在条理中、在生动活泼的思维历练中自然生成。课例中,通过问题的设计和不断的探究,让学生体会到在直角三角形中:锐角固定,则这个角的对边与邻边的比值固定。自然得出:锐角变化,则这个角的对边与邻边的比值随之变化。正切概念来之自然、呼之欲出。
二、再现数学概念现实背景,激发学习兴趣
数学来源于生活,服务于生活。庞加莱曾讲过这样一个故事:教室里,先生对学生说“圆周是一定点到同一平面上等距离点的轨迹”,可学生听后面面相觑,谁也不明白圆周是什么,于是先生拿起粉笔在黑板上画了一个圆圈,学生们立即欢呼起来“啊,圆周就是圆圈啊,明白了”,这一故事告诉我们进行概念教学时,教师应从实际出发,创设情境,提出问题,让学生在满腹狐疑中觉得有必要学习这个概念。
四、理解数学概念内涵外延,构建问题模式 。多角度、多变式、循序渐进的安排概念问题的训练是概念固化的关键,这个环节的成功与否直接影响学生的解题能力的提高。案例中,既回归生活(坡面),又对概念的内涵和外延进行了例题设计,强化了对正切概念的本质认识,为下课时正弦、余弦概念的学习打好了基础。
⑵ 如何进行小学数学概念课教学
如何进行小学数学概念课教学?数学概念是反映数学对象的本质属性和特征的思维形式。小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。 今天,朴新小编给大家带来数学教学方法。
发现概念 领悟概念
小学生的认知特征是从具体逐渐过渡到抽象。进行概念教学时,教师应尽可能将数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如学习“百分数的意义”时,教师出示一组在日常生活中经常见的数据:有一商场的衣服降价10%;六(3)班同学的体育合格率达98%;今年城镇人口人均收入比去年增长12.5%……让学生初步感知什么样的数是百分数。学生根据上述的材料会提出一系列的问题:百分数的意义是什么?有什么作用?怎样读?怎样写?百分数与分数有什么不同……有了这样的开始,再来学习“百分数”的概念就显得轻松自然了。再如:开始学习“角”,教师凭借常见的直观实物(五角星、三角板等),帮助学生理解“角”的意义。
对于发展性概念,一般采用课前预习、课堂复习的方式,让学生在已有知识和智力能力的基础上,通过已有的概念去认识新的概念,使新概念在已有的概念中深化,产生新的知识,即在旧概念的基础上引入新概念。如,讲“比的化简”时为了讲清“最简单的整数比”这一概念,可以引导学生回忆运用分数的基本性质约分的道理,复习“最简分数”的概念,这样,学生很快理解了“最简单的整数比”就是“比的前项和后项是互质数的比”。再进一步指出化简比的方法与约分方法相同,但要注意如果比的前项和后项有小数或分数,必须转化成整数比再化简。这样,学生在学习中,就能找出新概念与已有的相关概念的联系与区别,实现知识的迁移,同时也巩固了旧知识。
⑶ 如何进行数学概念教学
数学概念比较抽象,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,利用铅笔做教具,重温“平均分”的概念。用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆5朵红花、再摆和红花一样多的5朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
5、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。
⑷ 浅谈如何上好数学概念课
琼海市第一小学张春喜概念是最基本的思维形式.数学中的命题,都是由概念构成的,数学中的推理和证明,又是由命题构成的.因此,数学概念的教学,是整个数学教学的一个重要环节.阿基米德说:给我一个支点,我可以撑起一个地球.正确的理解数学概念,是掌握数学知识的前提,数学概念好比支点,而数学法则、定理好比杠杆,可见概念的重要性.在本学期的教研活动中,我们校数学教研组也组织了全体老师一起研讨怎样组织数学概念课课堂教学,从中我受益匪浅.以下我根据在多年教学中,总结出概念教学的几点注重点,收到了良好的效果.
一、创设生活情境引入概念
教学一个新概念,首先应让学生明确学习它的意义,作用.因此,教师应设置合理的教学情景,使学生体会学习新概念的必要性.概念的引入,通常有两类:一类是从数学概念体系的发展过程引入,一类是从解决实际问题出发的引入.如教研活动中程教研员给我们展示的《认识小数》一课中,程老师在理解教材、尊重教材的基础上,把教材与学生的生活实际紧密联系起来.比如程老师在导入部分借助生活素材,创设了介绍老师女儿的身高和体重等的情景,让学生直观的认识到怎样的是小数从而引入课题;接着出现超市里商品的标价(标价都是用小数表示)等,把学习内容再具体化,拉近教材与学生之间的距离,使学生在生动具体的情境中认识小数,体现教学生活化,同时也能激发学生学习数学的兴趣.
又如我在四年级下册《三角形的特性》一课中,我找了很多生活中的三角形图片,先让学生观察情境图找出以前学过的三角形,让学生说出生活还有哪些物体上有三角形以及看看老师搜集到的物体上有三角形吗?给学生足够的时间去寻找发现三角形,引导学生汇报总结什么叫做三角形,从而引出三角形的概念.这个环节中我创设了学生感兴趣的生活情境,让学生自己去探索,自己动脑去发现这个图形所具有的特征,才能充分调动自己原有的生活经验,培养他们的观察和操作能力,让学生更加深刻的体会到角顶点和边的存在和三角形的概念.
二、体现自主探索概念的学习方式
学生所要学习的知识不应当都以定论的形式呈现,而是应当给学生提供进行探索性的学习的机会,作为教师需要的是加以适当的点拨.而学习概念的形成阶段,教师可以通过大量典型、丰富的实例,让学生在小组内自主探索活动中进行分析、比较、综合等,揭示概念的本质.例如,我在教学《三角形的特性》一课中,我在教学三角形的意义时,没有直接把由三条线段围成的图形叫做三角形这个定义直接地呈现给学生,而是组织学生仔细观察三角形这个图形,在小组内自主探索学习,然后汇报发现了什么.学生说的不够完整的,老师就紧紧围绕三条线段、围成这两个关键词进行引导学生观察,使学生认识到三角形必须具备两个条件:一、是否具有三条线段;二、是否围成封闭的图形.接着安排判断练习,从正反两方面进一步加深对三角形意义的理解.在上例中,我提供给学生说的时间和空间,满足了他们说的欲望,激发了他们思考问题的积极性,使学生一直处于一种积极主动学习的状态,增强了学生学习的主人翁意识,同学们为了显示自己的能力,不甘落后,纷纷举起了手,这是自主探索知识的学习方式的体现.
让学生动手实践、自主探索与合作交流是学生学习数学的重要方式.又如本学期我校举行的名师课堂教学中,卢冰老师在教学《年月日》一课中,组织了学生在自主探索的活动中学习年月日的概念. 首先卢老师让学生巧猜自己的生日, 引导学生分类观察自主探索出年月日的概念.接着卢老师大胆放手让学生从年历卡的观察中探讨学习,在小组里把自己的发现与同桌交流,完成这张统计卡等.卢老师充分发挥小组合作学习的优势,组织学生先分工再合作,在交流中不断地修正和完善自己的发现,在发现规律中体验到成功的喜悦与合作的快乐.这样做,即节省了时间,又实现了资源共享,这才是真正意义上的小组学习.
三、适当引导学生概括概念
概括是概念教学的核心.概括就是在思想上把从某类个别事物中抽取出来的属性,推广到该类的一切事物中去,从而形成关于这类事物的普遍性认识.概念教学中把握好概念括概念这一环节,有利于学生概括能力的培养.概括概念就是让学生通过前面的分析,比较,把这类事物的共同特征描述出来,并推广到一般,即给概念下了个定义.前面我提到的教学《三角形特性》一课中,我就可以让学生概括三角形的定义了.虽然学生的概括的不够完善,但三角形的本质已经出来了.教师接着给出两个条件:一、是否具有三条线段;二、是否围成封闭的图形.让学生理解由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形. 设计意图让学生关注三角形的特征,进一步完善定义.这样进行概念教学,不仅能扳住学生理解概念,而且能够培养学生的思维能力.
四、让学生明确概念的内涵
明确概念即明确概念的内涵和外延.明确概念,就是要明确包含在定义中的关键词语.例如:三角形的定义是:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形.让学生明确是否具有三条线段;是否围成封闭的图形.因此,教师在教学中,可以通过举例说明,也可以让学生举例生活中的三角形,从而发现问题.特别是举反例,如出示一些类似三角形而又不是三角形的图案让学生判断,这些巩固练习可以加深学生对概念的理解.从概念的形成(具体)到明确概念(一般),再到举出实例(具体)形成一个完整的概念认知过程.
五、让学生合理应用概念
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的原型,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成.学生在掌握概念的过程中,为了理解概念,需要有一个应用概念的过程,即通过运用概念去认识同类事物,推进对概念本质的理解.这是一个应用于理解同步的过程.学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造.除此之外,教师通过反例、错解等进行辨析,也有利于学生巩固概念.例如《三角形的特性》明确它的概念后,可以让学生判断是否是三角形,和生活中应用三角形稳定性的的例子.这是学生能用概念判断面临的某一事物是否属于反映的具体对象,是在知觉水平上进行的应用.
总之,对概念的讲解,一定要注意它的教法,一定要让学生理解,切勿死记硬背,如果学生概念不清,必将思路闭塞,逻辑紊乱,对法则、定理的理解更是无从谈起.因此,对数学概念课的教法,是数学教师需要长期探数学概念是客观事物中数与形的本质属性的反映.数学概念是构建数学理论大厦的基石,是导出数学定理和数学法则的逻辑基础,是提高解题能力的前提,是数学学科的灵魂和精髓.
⑸ 小学数学概念教学的几种方法
数学概念是数学教学的重点内容,也是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件。在小学数学教学中,会遇到众多的概念、定律,如果学生能在理解的基础上,掌握正确完整的数学概念,就有助于掌握各种性质、法则、公式等基础知识,有助于各种、能力的形成和提高。但有些学生采用死记硬背的机械方法来记这些概念、定律,这样必然带来解答问题中的生搬硬套,影响学生对知识的理解和应用,也影响学生思维能力的发展和学习积极性的提高。因此,在数学教学过程中,数学概念的教学尤为重要。笔者结合教学实践,就小学数学概念教学的基本方法进行交流和介绍,以期实现共同提高教学效益。
一、以旧引新法
数学中的许多概念,都与旧知识有着内在的联系,教师就要引导学生充分运用旧知识,从中引出新概念来。这样既概括了旧知识,又学了新概念,有利于精讲多练。例如在对“比的基本性质”这一概念教学时,首先将以前学过的除法的基本性质、分数的基本性质进行一次复习和巩固。让学生理解“被除数和除数同时扩大或同时缩小相同的数(零除外),以及分数的分子和分母同时乘以或除以同一个数(零除外),得出的商(分数值)不变。”这两个性质,让学生自己从这两个性质中得出“比的基本性质即比的前项和比的后项都同时扩大(或缩小)相同的倍数(零除外)比值不变。从而达到在复习巩固已学概念的同时,掌握新新概念,并能在学习中灵活地运用新知识和掌握新知识。
二、直观引入法
感知是认识过程的初级阶段,感知所积累的感性材料,是理性认识的基础,缺乏足够的感性材料,思维就不能进行,让学生借助直观的作用形成充分的表象才能有助于概念教学的形成。直观引入法适用于几何形体的概念,整数、分数的概念。数学概念之间不是孤立的,而是存在着各种各样的联系,有相邻的、有相反的、有并列的等等。特别是到了高中年级,随着知识面的不断扩展,概念的不断增多,思维方式从形象思维向逻辑思维过渡,但这种抽象逻辑思维在很大程度上,仍要凭借事物的具体形象或表象来完成。例如,在教学长方体和正方体一单元中棱和面的概念时,如果教师只凭着书本来讲是很难讲清楚的,学生也很难理解和掌握。只要拿一个长方体让学生观察,他们就能清楚地看到棱是由两个面相交的一条边。长方体有几个面,每个面都是长方形的(也可能有两个相对的面是正方形),从而给学生建立起正确、严谨、完整的棱和面的概念,这样既激发了学生学习的兴趣,又调动了学生的学习积极性。
三、区别比较法
在小学数学中,有些概念含义接近,但本质属性又有区别,这类概念学生比较容易混淆,必须把他们加以比较,以避免相互干扰。比较时主要是找出它们的相同点和不同点,是学生看到进行比较对象的内在联系,又看到它们的区别,这样学得概念就更加明确了。如在对于“比”和“比例”这一章节中出现的“比”的基本性质、“比例”的基本性质,学生难以理解,也很容易将二者混淆。为了帮助学生理解和掌握这两个概念,在课堂教学中,教师可以采用区别比较的教学方法,先从“比”和“比例”这两个概念入手,理解两个数相除,又叫做这两个数的比,而这两个数之间的运算关系,“比例”则是两个“比”间的等量关系。“比”是由两个数组成的,而比例则是由四个数构成的等式。如2:3与3:7=9:21,前者是比,后者才是比例。这样学生理解了“比的前项和后项都同时扩大或者都同时缩小相同的倍数(零除外)比值不变”这一比的基本性质后,再来理解“在比例里,两个内项之积等于两个外项之积”,这一比例的基本性质就比较容易了。再如,在进行“质数”与“互质数”的教学时,也可以采用此方法,质数是指根据约数的个数而言的,质数是给某一个数(自然数)下结论。即一个数的约数只有1和它本身,这个数就是质数。而两个数的公约数只有1,这两个数叫互质数。通过区别比较,学生就不会将二者混淆了。
四、情境引入法
马克思曾经说过:“激情、热情是人强烈追求自己对象的本质力量。”所以,教师在课堂教学中,要注意 运用具体事例,去激发学生的求知欲,为学生创设乐学的情境。 如教学“圆的认识”时,可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地 回答:“都是圆形的。”“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑 板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师 揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短 几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取 得事半功倍的效果。
五、计算引入法
有的概念, 与计算有着紧密的关系。因此,可通过计算来引入概念。如通过计算 11 ÷ 3,41 ÷ 33,55 ÷ 6 等发现余数重复出现,商也重复出现,然后引入循环小数的概念;又如通过计算 19 ÷ 7 而引入被除数、除数、商和余数的概念;再如通过计算圆周长与直径的比值,引入圆周率的概念等。
总之,小学数学概念教学方法是多种多样的,只要教师在教学中能教给学生方法,就能做到既教给学生知识,又能培养学生的思维能力,全面提高数学教学质量。
⑹ 数学概念教学的方法与策略
要正确处理好传授数学基础知识,有关数学概念、公式、定理与发展学生逻辑思维的关系;处理好培养运算能力、空间想象能力与发展学生逻辑思维的关系。努力做到在传授知识的基础上发展智能,在发展智能的指导下传授知识,使学生在掌握知识上达到高质量,在智能发展上达到高水平。
⑺ 数学概念教学方法具体是什么
教学时注意概念的内涵和外延
概念的内涵指的是概念所反映对象的本质特征;概念的外延指的是概念所反映的本质属性的对象,概念的内涵是质的方面,概念的外延是概念量的方面,它说明概念所反映的事物有哪些.概念的内涵和外延是对立统一的,内涵明确,则外延清晰;外延清晰则内涵明确.例如在新课程必修4的角的概念的推广的教学中,角的概念的内涵是平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形,外延就是角的分类:正角,负角和零角.在教学中,可以通过变式来明确概念的外延.
例:函数奇偶性的教学(人教A版)
函数的奇偶性是必修1的内容,是函数单调性之后很重要的一个性质.在教材中,通过具体的函数得到了偶函数的概念,
由,得到了奇函数的概念.教材中通过例5让学生判断函数的奇偶性,笔者认为,通过这样的习题还没有真正明确函数奇偶性这个概念的外延.
………………更多文章详情详见教育界杂志社官网,希望能帮到你!
⑻ 数学概念教学方法具体是什么
数学概念是抽象化的空间形式和数量关系,是反映数学对象本质属性的思维形式。数学概念也是数学基础知识和基本技能的核心,它是理解、掌握其它数学知识的基础,对培养学生的逻辑思维和灵活运用知识实现迁移的能力有重要的作用,在数学课堂中如何有效地实施概念教学,直接影响教学效果的提高。现结合数学概念教学的实践,谈几点自己的认识与做法。
一、重视教学情境创设,实现概念引入的自然化
数学教材多是直接给定概念,教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程。合理设置情境,使学生积极参与教学,了解知识发生、发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解。
1.以数学史话引入概念
教学中,适当引入与数学概念相关的故事,并巧妙处理,既可激发学习兴趣,又可达到教育之目的。如教曲线方程时讲讲笛卡尔和费马;学数列时讲数学家高斯故事;讲二项式定理时向学生介绍杨辉等。在故事引入的同时鼓励学生勇于探索,培养他们爱科学、学科学、用科学的科学精神。
2.以实际问题引入概念
数学概念来源于实践,又服务于实践。从实际问题出发引入概念,使得抽象的数学概念贴近生活,使学生易于接受,还可以让学生认识数学概念的实际意义,增强数学的应用意识。例如可从教室内墙面与地面相交,且二面角是直角的实际问题引入“两个平面互相垂直”的概念。
3.利用学生探究实现概念的自然引入
以概念为基础,以过程为导向,是概念教学的基本理念。让学生在学习中发现问题,并通过一定的方式解决问题,这是新课程理念的最好体现。在概念教学过程中,教师应在学生现有的知识背景、能力水平和心理特点的基础上,给学生提供适当的范例,引导学生对实例进行观察、比较,对概念进行假设、验证,从而获得正确的概念。如在“异面直线距离”的概念教学时,不妨先让学生回顾学过的有关距离的概念,如两点间的距离、点到直线的距离、两平行线间的距离,引导学生发现这些距离的共同特点是最短与垂直。然后启发学生思考在两条异面直线上是否也存在这样的两点,它们间的距离最短?如果存在,有什么特征?经过探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在。在此基础上,自然地得到“异面直线距离”的概念。在引入过程中调动了学生积极性,培养了勇于发现,大胆探索的精神。
二、善于解剖概念,实现概念教学的深刻化
数学概念是为了解决数学问题,对概念理解不清,在解题时就会出现错误;对概念理解不透彻,常会遇到问题束手无策。要正确深刻地理解概念绝非易事,数学概念具有严密的科学性,因此概念教学应让学生准确把握概念的内涵和外延,教师要根据学生的知识结构和能力特点,从多方面着手,适当引导学生剖析概念,抓住概念的实质。在教学中可以从以下几个方面解剖概念:
1.强调概念中的关键词语
如对函数概念中的“任何”与“唯一”要重点强调。然后举例 ,前者可以称 是 的函数,后者不能称 是 的函数。因为对于任何一个 ,不是对应唯一 。这样通过正反实例,强调概念中的关键词语,更能加深概念的理解。
2.注重数学语言的翻译
数学语言有文字语言、符号语言、图形语言。符号语言有较强的概括性,更能反映概念的本质。如等差数列的概念可用符号“ ”( 为常数)概括。用定义证明一个数列是等差数列时,就是应用概念的符号语言。图形语言则能更形象地反映概念的内容。如讲“交集”概念时,用文氏图表示“A B”,可以很容易理解概念。
3.注重相似概念的对比分析
有比较才有鉴别。用对比方法找出容易混淆的概念的异同点,有助于学生区分概念,获取准确、明晰的认识。比如对分类计数原理与分步计数原理、排列与组合的概念,就可以通过概念对比,并结合实例的方式加深概念理解。
三、精心设计练习,实现概念教学的持续化
数学概念教学的主要目的是让学生在理解概念的基础上,运用知识解决数学问题,提高数学能力,全面提高学生素质。所以在练习设计上一定要精、针对性强,便于提高学生的能力。
1.加强应用概念中易错原因剖析
很多概念本身就是解题方法。如“反函数”概念,就已经体现了反函数求法:“反解 ”——“将 与 互换”——“标明反函数的定义域”(要通过原函数的值域来确定)。在反函数的求解中,学生常出现反函数定义域由反函数解析式本身确定而导致的错误。如果注意在解题中强化反函数概念以及它的由来,就可以避免这样的错误了。
2.加强概念的逆用、变用,从中获得解题方法