❶ 平方根怎么计算有简便的方法吗
如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算0.5*(350+136161/350)得到369.5
然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数。即算
0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾数字是5,因此685^2=469225
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
再如1234567。1100^2<1234567<1200^2,我们挑选1150作为一次计算数.0.5*(1150+123457/1150)得到1111.768261。再挑选1100和1111.768261中间一个数1105.得到0.5*(1105+123457/1105)得到1111.127602与真实值1111.110706相差无几...
计算机中也是这么算的。希望能帮到你~
❷ 平方根怎么算
平方根计算方法一:能简化的根式先尽量简化。再将根数相乘,得出结果。最后把任何可以简化为完全平方数的数分离出来。方法二:能简化的根式先尽量简化。开始简化根数。再把根数进行相乘。然后因式分解出完全平方数。最后将系数相乘得出结果。
平方根
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。
算术平方根
一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根。
算术平方根与平方根的联系
1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。
2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。
3、0的算术平方根和平方根相同,都是0。
❸ 求一个数的平方根怎么算
开方的计算步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商(2×30除256,所得的最大整数是 4,即试商是4);
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(2×30+4)×4=256,说明试商4就是平方根的第二位数);
6、用同样的方法,继续求平方根的其他各位上的数.
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。实际中这种算法也是计算机用于开方的算法。
❹ 怎样笔算开平方根,简单一点的方法,过程要详细点。
假设被开放数为a,如果用sqrt(a)表示根号a,设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值。依此方法,最后得到一个足够精度的(x+a/x)/2的值。
❺ 平方根有没有简便方法(计算或者背)
计算一个数的平方根有竖式。如果不用竖式,就只能用计算器。
你可网络一下:
开方的计算步骤
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到
笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.
例如:
❻ 怎样求平方根
1、查平方根表
2、计算器
3、笔算
笔算方法如下:
1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商.如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求.
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了.我们可以采取下面办法,实际计算中不怕某一步算错!而上面方法就不行.
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表.
我们计算0.5*(350+136161/350)得到369.5
然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1.我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了.再举个例子:计算469225的平方根.首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数.即算
0.5*(650+469225/650)得到685.9.而685附近只有685^2末尾数字是5,因此685^2=469225
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位.
实际中这种算法也是计算机用于开方的算法
希望对你有帮助,祝你开心