1.避免“一步到位”
是指解题过程中,省略关键步骤,而直接得到答案,这样扣分是严重的.由于解答题是严格按照步骤给分的,如果解题过程中失去关键步骤,跳过拟考查的知识点、能力点,就意味着失去得分点,自然被扣分.
例1(2000年全国高考题) 已知函数y= cos2x+ sinxcosx+1,x∈R.
(I) 当函数y取得最大值时,求自变量x的集合;
(II) 该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(I)由题设可得,y= sin(2x+ )+ ,故有
当 x= +k ,k∈Z,函数y取得最大值.
(II) 略.
评注:在(Ⅰ)的解答中犯了“大题小作”中的“一步到位”错误,缺少了化简过程的3个要点与何时取到最大值的1个要点,因而被扣分.
2. 避免“使用升华结论”
在解选择和填空题中,使用升华结论(教材中未给出的正确结论)是允许的,而且还是一种简捷快速的答题技巧.而直接运用(不加说明或证明)在解答题中是不合适的,且是“大题小作”,要适当扣分的.
解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,而学生使用“升华结论”则达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外别的东西,以免被扣分.
例2⑴(1991年全国高考题) 根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.
⑵(2001年全国高考题) 设抛物线y2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
评分标准中指出:
对于⑴:“利用y=x3在[0,+∞)上是增函数的性质,未证明y=x3在(-∞,+∞)上也是增函数而直接写出f(x1)-f(x2)= - <0,未能证明为什么 - <0过程,由评分标准知最多得3分.
对于⑵:有些考生证明时,直接运用课本中的引申结论“y1 y2=p2”而跳过拟考查的知识点、能力点而被扣2分.
对于课本习题、例题的结论,是要通过证明才能直接使用(黑体字结论例外),否则将被“定性”为解题不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全国高考理科第17(Ⅱ)利用面积射影定理,由于不加证明而直接使用,因而被扣分.
3 避免“答非所问”
是指没有根据题意要求或没有看清题意要求,用其它方法或结论作答,这明显也要被扣分的.
例3(1993年全国高考题)已知数列
Sn为其前n项和.计算得 观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.
解:依据题意,推测出Sn的公式为:
Sn= .
∵ ak= = - ,
分别取k=1,2,3,…,n,并将n个式子相加得:
Sn=1- = .
评注 以上解法可谓“简单、明了”,但证明时不用数学归纳法,为“答非所问”,不合题意,扣分是必然的. 又如1999年高考第22题(应用题),第(Ⅰ)问中求“冷轧机至少需要安装多少对轧辊”,要求是用整数作答,不少考生未能用整数作答,违背题意而被扣分.
(四)了解“评分标准”,把握得分点
掌握解答题的“得分点”就要了解高考的评分标准,解答题评分标准是分步给分,但并非写得越多得分越高,而是踏上得分点就给分,即按所用的数学知识,数学思想方法要点式给分,允许“等价答案”,允许“跳步得分”. 因此解答时,应步骤清,要点明,格式齐. 对于不同题型的给分规律有:
1.立几题得分点
通常分作证,计算两部分给分,各段中间又按要点给分.证明主要写清两点:①空间位置关系的判断推理的依据(课本中的定理、公理);②什么是空间角和距离及理由(紧扣定义). 特别要注意没有写清角、距离要被扣分. 计算过程的书写:计算一般是解三角形,要写清三角形的条件及解出的结果. 用等积法解题,要找出等积关系并计算. 都是分段得分的,如1998年23题,1999年22题,都有3个小题,每小题4分,其中作证2分,计算2分.
2.分类讨论题得分点
按所分类分别给分,加上归纳的格式(即写为“综上:当××时,结论是××”)分. 如1996年第20题,按a>1和0<a<1两类分别给5分,归纳给1分. 2000年理19(Ⅱ),求 a 的取值范围,使函数在区间[0,+∞)上是单调函数,按 a≥1和0<a<1讨论各得2分.
3.应用题得分点
按设列、解答两部分给分. 特别要注意不答和答错都要扣1分,应注意设、列、解、答的完整性,争取步骤阶段分.
4.推理证明题得分点
按推理格式,推理变形步骤给分. 对于用定义证明函数的单调性、奇偶性,用数学归纳法证题,都有严格的格式分,应完整,避免失分. 即使推理证明不出,宁可跳步作答,也要套用格式. 从条件、结论两头往中间靠,这样写完格式,这样可以少扣分.
5.综合题得分点
按解答的过程,分步给分,每个步骤又按要点给分. 尽可能把过程分步写出,尽量不跳步,根据题意
列出关系,译出题设中每一个条件,能演算几步算几步,尚未成功不等于失败,特别是那些解题层次分明的题目,那些已经程序化的方法,每进行一步得分点的演算都可以得到这一步的满分,最后结论虽然没有算出来,但分数已过半,所以说,“大题拿小分”也是一个好主意. 因此尽量增加分步得分机会,千万别轻易留空白题.
(五)常用的解答题解题技巧
1.较简单的解答题的求解
对于比较容易解答的解答题(一般是前面3道),宜采用一慢一快的方法,就是审题要慢,解题要快,速战速决,为后面3道解答题留下时间.
找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,罗唆重复,用阅卷老师的话,就是写出“得分点”,一般来讲,一个原理写一步就可以了。至于不是题目直接考查的过渡知识,可以直接写出结论,高考允许合理省略非关键步骤,应详略得当。
例2004北京理科第15题
在 中, , , ,求 的值和 的面积.
分析:本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力
解:
又 ,
.
2.较难的解答题的求解
对于较难的解答题(后面3道)来说,要想在有限的时间内做全对是不大现实的.当然也不能全部放弃,应该尽可能的争取多拿分.对于绝大多数考生来说,在这里重要的是:如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略,下面谈四个观点。
(1)、缺步解答
如果我们遇到一个很困难的问题,确实啃不动,一个明智的策略是:将它分解成为一个系列的步骤,或者是一个个子问题,能演算几步就演算几步,尚未成功不等于彻底失败,每进行一步得分点的演算就可以得到这一步的满分,最后结论虽然没有得出来,但分数却已过半。因为近几年高考解答题的特点是:入口易完善难,不可轻易放弃任何一题。
例: (2004浙江理科第21题)已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1.
(Ⅰ)若直线AP的斜率为k,且 ,求实数m的取值范围;
(Ⅱ)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程.
解: (Ⅰ)由条件得直线AP的方程
即
因为点M到直线AP的距离为1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范围是
(Ⅱ)可设双曲线方程为 由
得 .
又因为M是ΔAPQ的内心,M到AP的距离为1,所以∠MAP=45º,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1.因此, (不妨设P在第一象限)
直线PQ方程为 .
直线AP的方程y=x-1,
∴解得P的坐标是(2+ ,1+ ),将P点坐标代入 得,
所以所求双曲线方程为
即
(2)、跳步解答
解题卡在某一过渡环节上是常见的,这时,我们可以先承认中间结论,往后推,看能否得到结论。如果得不出,证明这个途径不对,立即改变方向;如果能得出预期结论,我们再回过头来,集中力量攻克这个“中途点”。由于高考时间的限制,“中途点”的攻克来不及了,那么可以把前面的写下来,再写上“证明某步之后,继而有……”一定做到底。也许,后来中间步骤又想出来了,这时不要乱七八糟地补上去,可补在后面,可书写为“事实上,某步可证如下”。
有的题目可能设有多问,第一问求不出来,可以把第一问当成已知,先做第二问,这也算做是跳步解答。
例: (2004天津文科第18题) 从4名男生和2名女生中任选3人参加演讲比赛.
(I) 求所选3人都是男生的概率;
(II)求所选3人中恰有1名女生的概率;
(III)求所选3人中至少有1名女生的概率.
解: (I) 所选3人都是男生的概率为
(II)所选3人中恰有1名女生的概率为
(III)所选3人中至少有1名女生的概率为
这3道小题可以说是互相独立的,彼此不相干.所以如果第1小题做不来,可以跳过去,直接做第2小题.
(3)、退步解答
“以退求进”是一个重要的解题策略,如果你不能解决题中所提出的问题,那么,你可以从一般退到特殊,从复杂退到简单,从整体退到局部。总之,退到一个你能够解决的问题,比如,{an}是公比为q的等比数列,Sn为{an}的前n项和,若Sn成等差数列,求公比q=____.
对等比数列问题,我们需考虑到q=1,q≠1两种情况,你可以先对特殊的q=1进行讨论,满足题意,找到解题思路和情绪上的稳定后,再讨论q≠1时是否也满足题意,发现无解,如果对q≠ 1的情况你确实不会解,你还可以开门见山的写上:本题分两种情况:q=1或q≠1.
也许你只能完成一种情况,但你没有用一种情况来代替主体。在概念上、逻辑上是清楚的。另外“难的不会做简单的”还为寻找正确的、一般的解题方法提供了有意义的启发。
4、辅助解答
一道题目的完整解答,即要有主要的实质性的步骤,也要有次要的辅助性的步骤,如:准确的作图,把题目中的条件翻译成数学表达式,设应用题中的未知量,函数中变量的取值范围,轨迹题中的动点坐标,数学归纳法证明时,第一步n的取值等,如果处理得当,也会增分,不要小视它们。
另外,书写也是辅助解答,卷面随意涂改及正确答案的位置不合理,都会造成不必要的失分。
所以,有人说,书写工整,卷面整齐也得分,不无道理。
❷ 七年级数学期中考试成绩分析及下期该怎么做(400字)
七年级数学期中考试试卷分析
上个星期我们进行了期中考试,在这我就我们学校七年级数学考试试题和学生的答题情况以及以后的教学方向分析如下.
一、试题特点
试卷包括填空题、选择题、解答题三个大题,共120分,以基础知识为主,。对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%,主要考查了七年级下册第六章《一元一次方程》第七章《二元一次方程组》以及第八章《不等式》。这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。 无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二、学生问题分析
根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题
①数学联系生活的能力稍欠。数学知识来源于生活,同时也服务于生活,但学生根据要求举生活实例能力稍欠,如选择题第10小题,,学生因对“用自己的零花钱去买东西”理解不透,从而得分率不高.
②基本计算能力有待提高。计算能力的强弱对数学答题来说,有着举足轻重的地位。计算能力强就等于成功了一半,如解答题的第19题解方程(组),学生在计算的过程中都出现不少错误.
③数学思维能力差这些问题主要表现在填空题的第13题,第15题,第16题和解答题的21题,第23题.
④审题能力及解题的综合能力不强。审题在答题中比较关键,如果对题目审得清楚,从某种程度上可以说此题已做对一半,数学不仅是一门科学,也是一种语言,在解题过程中,不仅要要求学生学会如何解决问题,还必须要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。
三、今后的教学注意事项:
通过这次考试学生的答题情况来看,我认为在以后的教学中应从以下几个方面进行改进:
1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。不能忽视自认为是简单的或是无关紧要的知识。
2、教学中要重在突显学生的学习过程,培养学生的分析能力。在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。
3、多做多练,切实培养学生的计算能力。有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。
4、关注生活,培养实践能力加强教学内容和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的能力。
5、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的能力。
❸ 怎么提升数学成绩
快速提高数学成绩的方法:
一、课内重视听讲,课后及时复习
接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
二、多做题,养成良好的解题习惯
要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。
在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。
三、调整心态,正确对待考试
考试的时候,大部分的题都是基础题,只有少数几道题时比较难的题,所以我们要调整好心态,鼓励自己,在做题的时候认真思考,不要浮躁,在考试之前做好准备,做一做常规的题型,不要为了赶时间而增加做题速度,要有条不紊的进行。
学习技巧
首先一定要培养对数学学习的兴趣;
其次数学学习的关键点是基础,基础很重要,一定要打好基础,否则越到后期学习起来就越困难;
最后,学好数学一定要利用好课本、笔记本、错题本三个本。
数学的学习是一项艰苦卓绝的工程,这中间有很多的细节需要同学们去品味和琢磨。
❹ 数学成绩分析总结与反思
数学成绩分析总结与反思
考试过后总结往往是我们最容易忽视,实际却很重要的一步。通过总结,我们查漏补缺,找到新的目标,为之努力。学习正如吃饭,而考试失败则就像是饭中的一粒石子,你总不能在人生中对知识最渴求时,因为一次的失败而放弃学习,以下就是我整理的数学成绩分析总结与反思范文,一起来看看吧!
时间过得很快很快,从来不停下脚步等待。命运掌握在我们的手中,有我们自己刻画一个人一生的姿态。
花儿总有凋谢的时候,人也如此,要珍惜年少时的时光。我并没有常常珍惜生活中的点点滴滴,就如珍惜宝藏一样,每一秒都是宝藏,而我却浪费在娱乐上。许多人都没有领略“宝藏”的真正含义。
经历了这次期中考试,我才知道时间是宝贵的,要珍惜时间。
这次数学,我没有考好,心里有一种说不出的滋味,哎,我只考了72分。我开始自卑,好像天空没有往常的湛蓝,而是一片昏暗。我的心中希望的火苗已被扑灭,我对数学失去了希望。
我好像离开这个竞争的世界,希望没有烦恼,但是失败总是避免不了的,这是大自然给我们的考验呀!对呀,失败是成功之母,终于有一天,我会走向成功之路的!
此时,我懂了,我懂得要珍惜时间,把空余的时间用在学习上。六年级学习紧了,不能再像以前那样。我又想起了我们学过的一篇课文—《做一个最好的你》:“……但是成功一向都不容易,许多时候,你得咬紧牙关再坚持一下……”这篇课文,深深地铭记在我的心里。只要我们努力奋斗,就能获得成功的。
“人之初,性本善。”这句话告诉我们每个人生下来都是善良的,就跟我们的学习一样,成绩掌控在我们手中,命运由我们改变。
现在,乌云从我的心上飘过,雨过天晴,阳光普照大地,彩虹挂在天边。自卑消失了,自信荡漾在我的心头。
加油!下次努力!
在刚刚结束的期中考试里,我犯了很多不该犯的错误。
我知道老师对于我有着很大的期望,可是我还是没有考好。对于这点我感到十分抱歉。但是既然犯了错误就要改正,所以,通过考试我也想了很多以后一定要学习的东西。
首先我要改掉考试不细心读题目的坏习惯。有时候我往往看着题目前面就顺手把后面的问题写上了,但是却错了很多。这也许也和答题技巧有关系。总之,通过以后的练习,我一定要在考试的过程之中认真审题,自习读题,把题目看准、看好。时间允许的时候要多检查几遍,绝对不允许自己再犯类似于这样的无谓的错误。
其次,我还要加强英语的习题强化。通过考试,我终于明白山外有山,人外有人。平日大家都聚在一起做一样的题目,感觉不出来有什么明显的差异。可是一当考试,才发现原来那么多考试题目是我从来看都没看过的(你就先编着吧)。只怪自己买的练习题做的少。不能允许自己再继续这样下去,所以,我一定要加倍努力,从这次考试之中汲取教训,增加力量,为下一次考试做好准备,打好基础。
考试技巧贵在练习。生活之中,我还要多多加强自己的练习和复习,考试之前制定周详的复习计划,不再手忙脚乱,没有方向。平日生活学习中学会积累,积累英语好词好句,积累英语难的题目,积累英语语法项目。对做完形填空等练习题也是提高英语的好方法。
期中考试毕竟不是期末考试,我还是有机会的。下一次考试,我要更努力,争取不让老师、家长和同学们失望。不让自己失望。
对于老师,我希望老师不要对我失去信心,虽然我这次考得并不理想,但是我相信自己的实力。下一次考试,我一定会努力的!
终究不如自己写的好,自己写才能真真与老师共同交流,找出自己的不足此次考试总体来说可以用三个词来形容“闻者伤心,见者流泪,惨不忍睹!”试卷发下来的那一刹那间,我屏住了呼吸。面前两个鲜红显眼的数字令我目瞪口呆。上帝啊,我的语文成绩有了历史性的“突破”!离及格只差那短短的一步之遥了。这个成绩是空前的,可不知道是不是绝后的。
所谓种瓜得瓜,种豆得豆。我这是自食其。哎,早知今日,何必当初啊?古人云:“风萧萧兮,易水寒。”今我叹:“考试结束兮,我玩完!”亡羊补牢,无济于事啊。想不到自认优秀的我如今也会落到这般田地。说到原因嘛,是多方面的。其一也是首要的当然是自己不知道努力,没有持之以恒的刻苦精神。有的只是那三分钟的热度。这种种恶习是酿成失败的主要原料。当然,古往今来,凡成大事,离不开天时、地利、人和三者融汇.幸运女神这次从我身旁俏然而逝,没有得到她的青睐,又怎能不落到失败的'深渊呢?能爬多高,就能跌多深,我算体会到了。
拿起试卷一看,触目惊心!那一个个错叉好似一把把尖锐无比的刺刀,扎的我快要窒息了。该对的没对,该会的不会。今晚即将上演家庭不定项式乒乓比赛,男子单打,女子单打或男女混合双打。啊,吾命休矣!
小小的考试透露出我内心的那一份自满,那一份狂傲。让我知道自己在众人之中是多么渺小,多么不堪一击!这也算是对我一个小小的惩戒吧,为我敲响了警钟,也提前给我打上了预防针。一次失败算不了什么,失败也许是成功的前兆。一次成功也证明不了什么,它终究要成为历史。我们不可能未卜先知,只能凭着自己的那一份付出,去期待丰硕的收获!
努力吧,剩下的时间不多了......
这次考试之所以没有考好,总结原因如下:
1 平时没有养成细致认真的习惯,考试的时候答题粗心大意、马马虎虎,导致很多题目会做却被扣分甚至没有做对。
2 准备不充分。毛主席说,不打无准备之仗。言外之意,无准备之仗很难打赢,我却没有按照这句至理名言行事,导致这次考试吃了亏。
3 没有解决好兴趣与课程学习的矛盾。自己有很多兴趣,作为一个人,一个完整的人,一个明白的人,当然不应该同机器一样,让自己的兴趣被平白无故抹煞,那样不仅悲惨而且无知,但是,如果因为自己的兴趣严重耽搁了学习就不好了,不仅不好,有时候真的是得不偿失。
失败了怎么办?认真反思是首先的:
第一,这次失败的原因是什么?要认真思考,挖掘根本的原因;
第二,你接下来要干什么?确定自己的目标,不要因为失败不甘心接着走,而是要正确地衡量自己。看看想要什么,自己的优势在什么地方,弱势是什么;
第三,确定目标。明确自己想要的,制定计划,按部就班的走。
失败不可怕,可怕的是一蹶不振以及盲目的追求。
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
;❺ 提高数学成绩的四个方法
数学题型千变万化,数学思维错综复杂,那么怎么才能学好数学呢?下面是我整理的提高数学成绩的四个 方法 ,欢迎大家阅读分享借鉴,希望对大家有所帮助。
提高数学成绩的四个方法
首先,要从数学概念入手
数学的 学习方法 千变万化,但终归是有规律可循的,其中“基础”就是永恒不变的,只有把基础夯实,才能在今后的学习中有所建树。学好数学基本概念就是夯实基础的重要途径之一。
数学概念包括:数学定义、数学公式、数学定理等内容。只有掌握了正确的数学概念,才能懂得基本的数学语言,才能更好的理解数学含义,才能用数学的思维去处理问题。
这就需要我们理解课本上的基本定义、熟练掌握课本上的数学公式以及数学定理、理解课本上例题的解题的解题思路。只有熟练掌握了基本的数学概念,才能举一反三,让数学知识融会贯通,进而提升数学成绩。
第二,要养成良好的学习习惯
数学学习习惯包括课堂习惯、作业习惯、考试习惯,下面就来详细 说说 这三个习惯:
一、课堂习惯
课堂学习是学习活动的主要阵地,课堂效率也会直接影响学习效果,因此,课堂上,要做到“四会”,即:会思考、会提问、会笔记、会“发现”。
会思考:就是要跟着老师的思路走,这样就能让数学知识更加有条理,也更容易接受。
会提问:学习就是发现问题、解决问题的过程,所以,有疑就问,才能获得更多的数学知识。
会笔记:做课题笔记的过程就是手、眼、大脑多器官参与的过程,这样会加深知识的掌握程度,提高课堂效率。
会“发现”:通过对数学题的 总结 归纳,能够找到规律,这样学起来就能事半功倍。
二、作业习惯
很多学生觉得自己在课堂上已经学会了,所以,对于数学作业就是“混”,结果导致基础知识不牢,基本概念模糊不清。
好的作业习惯核心是“独立完成,积极主动”,日常作业要做到“今日事今日毕”,当天的作业一定要当天完成,这样,才能在第一时间巩固课堂知识,保证记忆效率。此外,作业要独立完成,“抄袭”是很多同学的通病,一旦养成抄袭的坏习惯,数学成绩就会一落千丈;即使遇到难题,也要请同学或者老师帮忙,共同探讨,这样才能加深印象,学习效果才越来越好。
三、考试习惯
考试是学习的一个重要环节,通过考试能够总结某一阶段的学习成果,能够发现学习中的问题。数学学科中,同学们最长犯的错误就是“粗心”,当然,粗心并非表面那么简单,实则有很多原因,后期方法君会和大家详细聊“粗心”的话题。而想要养成良好的考试习惯就要从认真复习、认真审题、认真思索、认真总结这四个过程中入手,才能让每一次考试成为进步的阶梯。
第三,做数学题要讲技巧
很多 教育 专家、数学老师都不建议大家采用“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,只是需要加两个词“有选择”“善总结”。
我们在做题的过程中要有选择性,想好了这道题主要是考哪些知识点、以前是否遇到过类似的题目,只有精选、精做代表性的题目,才能强化对知识点的理解和掌握。
很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题 经验 ,这样才能取得理想成绩。
第四,要刻苦努力
“一分耕耘一分收获”,想要获得好成绩不仅仅是“耍小聪明”,更多的是辛苦的付出,很多学生成绩不好,不是因为不聪明也不是因为方法不对,而是不能吃苦。“宝剑锋从磨砺出”,凡是成绩好的学生都是把学习当做一种兴趣,而非任务,所以,想要数学成绩好,就要做好长期攻坚的准备,只有辛勤付出,才能有所收获。
提高数学成绩的方法与技巧
第一,要学会吃透课本
吃透课本要从以下四个方面做起:弄清所学课本共有几章内容,每章主要讲什么,也就是熟悉知识框架;每章有什么基本题型;将知识框架和基本题型列成提纲,反复看;通过做题,熟悉并补充上述提纲。
第二,善于总结
要从以下三个方面进行总结:(1)总结解法,尤其注意一题多解和一解多题现象;(2)总结大的题型。做到先总结题型,后总结方法;(3)总结错误。如果遇到想不通的马上请教老师或同学。经过一段时间的训练,再拿起题目时已不像无头苍蝇一般无所适从了。
第三,合理使用例题
例题在初中数学学习中占据重要的地位,我们要从以下两个方面来让例题发挥出更大的作用。
1、课后分析看例题 课堂上例题弄懂了,并不说明你具备了解题能力和知识迁移能力。课后还需要从一个新的角度重新审视、分析例题。由于新的知识的掌握、知识面的扩展以及老师的引导、点拨,再看例题时则对难点有了不同的认识,进入了更高的层次。对题中基础知识的运用,分析、推理方法的选择都会有更深的理解。如果课后不看例题思维就会停留在一个浅层次,无法完成由浅入深,由表及里的转化过程。
2、作业推理识例题。做练习是运用知识解决问题提高能力的最重要最有效的方法,也是学好数学的关键。做作业时首先要识别例题,即这道题属于本章节所讲例题的哪一类型;其次要回忆上课老师是如何解题的,再分析有几种解题方法,最后明确哪一种方法最简便。如果识记不清或对以前学过的例题产生了遗忘,要不惜时间去翻阅、分析、记忆。
第四,要学会使用错题本
1、对照答案进行批改,将错题打上红叉,将正确答案用不同颜色的笔写在旁边,并重做这道题,直到得到正确答案为止。
2、建立错题本,将每道错题抄在上面,每次考前看一看。从错题中提炼出抽象的错误原因,提取共性,总结成今后应该注意的一条条规则,考前看一看。
比如:将做过的卷子钉在一起,然后在每份卷子的卷头表明自己做错的题的题号。这样一翻开卷子,哪些是错题,一目了然,不用前翻后找地浪费时间了。
再如:将错题按知识点所在的章节排列,这样便于分析错误原因。还有可以在每一道错题后加上自己的注释,记下自己错误的原因。考前看看自己写下的注释,会很有收获的。
初中数学基础差怎么补救
1总结规律很多数学题都有非常明显的规律性,而这种规律的探索,只能靠你自己,老师们所能教会你们的,仅仅是发现规律的窍门。很多学生、家长都很好奇如何摸索规律,除了大量练习之外,小城老师没有更好的建议。
2做题求精在公式记清楚的前提下,适当的做题,不要盲目的做很多题型,然后到最后一种都没有记住,其实这样就是在浪费时间,然后成绩还没有提高上去,不知道大家有没有听过这样的一句话,就是不管做题也好,做事情也好不在于做的多,而是在于精,只要你把一种题型掌握熟练了,以后遇到同类型的题,还是会易如反掌的,所以不要盲目追求多。
3量变到质变数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。
4检查错题养成写完检查错题的习惯。在考试时,让孩子将检查出的错题数量记下来,老师和家长可以根据孩子检查的成果给予一定的奖励,借以鼓励孩子认真检查。
初中数学五大解题思想
初中数学想要取得好成绩除了基础好之外,解题效率也是影响成绩的重要因素,因此,要掌握正确的解题思想也是学好数学的关键,下面是初中数学五大解题思想,一起来学习。
1、函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2、数形结合思想
数与形在一定的条件下可以转化。如某些代数问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
3、解题类型
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4、转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
常见的转化方法
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系与空间形式关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5、特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
提高数学成绩的四个方法相关 文章 :
★ 怎样快速提高数学成绩
★ 十种方法让你快速提高数学成绩
★ 提高数学成绩的四大技巧
★ 怎样才能让数学成绩提高
★ 如何提高数学考试成绩
★ 如何快速提高数学成绩
★ 怎样可以提高数学成绩
★ 怎样数学成绩才能提高
★ 数学成绩低怎么办
★ 提高九年级的数学成绩的方法技巧
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❻ 快速提高数学成绩的方法!
我是一名理科生但我认为数学不应该分文理的,数学是万物之灵。数学完全是靠一种灵感来学,一旦那天你开窍了,你会发现原来那么简单。我现在是一名大一的学生去年这个时候我也想你一样在担心成绩,但这个时候前往不能这样,你现在 不能奢求提高多少。高考发挥正常就已经不错了。我建议你现在不要单纯的追求做题,而是考虑一下把自己掌握的东西在在回头看一边。我想会对你有很大的帮助。当然这并非数学这一科。数学和地理有些类似,都需要理解内涵。单纯做题体会不到。
希望我的建议可以帮助你,我去年发挥的有点差,希望你今年能高奏凯歌。
❼ 如何进行成绩分析
如何进行成绩分析
学生期末考试成绩分析
一、基本情况
1、题型与题量
全卷共有三种题型,分别为选择题、填空题和解答题。
2、内容与范围
从考查内容看,几乎覆盖数学教材中所有主要的知识点,而且试题偏重于考查教材中的主要章节,如有理数、代数式、一元一次方程、一元一次不等式、数据的统计和分析。试题所考查的知识点隶属于数与代数、空间与图形、统计与概率、实践与综合应用四个领域。纵观全卷,所有试题所涉知识点均遵循《数学新课程标准》的要求。
3、试卷特点等方面:
从整体上看,本次试题难度适中,符合学生的认知水平。试题注重基础,内容紧密联系生活实际,注重了趣味性、实践性和创新性。突出了学科特点,以能力立意命题,体现了数学课程标准精神。有利于考察数学基础和基本技能的掌握程度,有利于教学方法和学法的引导和培养。有利于良好习惯和正确价值观形成。其具体特点如下:
(1)强化知识体系,突出主干内容。
考查学生基础知识的掌握程度,是检验教师教与学生学的重要目标之一。学生基础知识和基本技能水平的高低,关系到今后各方面能力水平的发展。本次试题以基础知识为主,既注意全面更注意突出重点,对主干知识的考查保证了较高的比例,并保持了必要的深度。
(2)贴近生活实际,体现应用价值。七年级上册期末考试卷“人人学有价值的数学,”这是新课标的一个基本理念。本次试题依据新课标的要求,从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。
(3)巧设开放题目,展现个性思维。
本次试题注意了开放意识的浸润,如在第26小题这一题。
本次考试抽取10名学生的考卷为样本进行分析。样本最高分114分,样本最低分30分,样本平均分62.8分,及格率为65.0%,优生率16.3%。
二、学生答题分析:
1、基本功比较扎实。
综观整套试题,可以说体现了对学生计算能力、综合分析能力、解决实际问题能力等方面的综合测试。尤其是本套试题提升了实践能力,是对学生学习的全方面情况进行了测查。我俩班学生在测试中,也充分展示了自身的学习状况,中上水平的学生成绩比较理想。如解方程组的测试中,参加考试的学生的正确率也是比较高的,体现了扎实的基本功和准确进行计算的能力。
2、应用知识的能力比较强。
运用数学基础知识,解决数学和生活中的数学问题,是数学课标中提出的最基本教学目标。本次试题比较集中地体现了这一思想。尤其是在第23题和这充分体现了学生分析解决问题的能力是比较突出的。
三、存在的主要问题及采取的措施:
此次测试,虽然教学上取得了一些成绩,但是也发现了一些问题。现归纳如下,以便于将来改进。
(1)部分学生审题能力较差。一个学生知识不懂,老师可以再讲,可如果养成了做题不认
真的习惯,那可是谁也帮不了。所以在今后的教学中,不光要注意知识的培养,还要注意一些好习惯的培养。
(2)学生的知识应用能力不强。
学生对基本的知识和概念掌握的不够牢固,应用基本概念和基本知识解决问题的能力不强.缺乏独立思考的习惯.
❽ 如何分析数学成绩
数学成绩分析,要看学生错题的方面,一是知识方面,看是不是没有用所学的知识去解决问题,二是习惯方面,主要看是不是马虎,计算不准确,审题不不认真,书写不工整,我认为第二个方面才是最重要的方面,也就是说,习惯教育将会影响学生的一生。
❾ 数学学业成绩评价的基本方法有哪些,分别体现了什么样的教育理念
除了数学成绩的评价以外,还可以评价她的学习态度是否端正,是否有一个良好的学习习惯?是否有一个好的学习方法?我们不但要在意孩子的学习成绩,更要在意要让他们养成一个良好的学习习惯。