导航:首页 > 研究方法 > 钼钨矿石化学分析方法

钼钨矿石化学分析方法

发布时间:2023-01-26 00:09:58

㈠ 常见元素化学分析方法的目录

1金(Au)
1.1甲酸还原磷钼酸分光光度法测定矿石中的金
1.2硫代米蚩酮分光光度法测定硅酸岩中的痕量金
1.3原子吸收分光光度法测定矿石中的微量金
1.4酚藏花红分光光度法测定铜合金中的金
1.5二正辛基亚砜萃取?原子吸收分光光度法测定矿石中的微量金
2银(Ag)
2.1高锰酸分光光度法测定铁中的痕量银
2.2曙红?银?邻菲咯啉分光光度法测定镁合金中的银
2.3EDTA络合滴定法测定银合金中的银
2.4原子吸收分光光度法测定铁矿中的银
2.5硫氰化物容量法测定银合金中的银
2.6镉试剂A?吐温80分光光度法测定照相定影液废水中的银
3铝(Al)
3.1偶氮氯膦Ⅰ分光光度法测定金属铜中的铝
3.2铬偶氮酚KS分光光度法测定铁锰矿石中的铝
3.3EDTA络合滴定法测定钛中的铝
3.4铬天青S分光光度法测定铁合金中的铝
3.5原子吸收分光光度法测定金属材料中的铝
3.6CAS?TPB分光光度法测定金属镍中的微量铝
4砷(As)
4.1砷化物分光光度法测定高纯金属中的微量砷
4.2砷钼酸?结晶紫分光光度法测定岩石矿物中的砷
4.3孔雀绿分光光度法测定矿石中的微量砷
4.4二乙基二硫代氨基甲酸银分光光度法测定水中的微量砷
4.5碘量法测定合金中的砷
4.6钼蓝分光光度法测定合金中的砷
5硼(B)
5.1亚甲基蓝?1,2?二氯乙烷萃取分光光度法测定合金中的微量硼
5.2酸碱滴定容量法测定硼合金中的硼
6铍(Be)
6.1容量法测定合金中的铍
6.2铬天青S分光光度法测定合金中的微量铍
6.3甲基百里酚蓝分光光度法测定铍青铜中的铍
6.4铍试剂Ⅲ分光光度法测定合金中的微量铍
6.5偶氮氯膦Ⅰ分光光度法测定矿石中的微量铍
7铋(Bi)
7.15?Br?PADAP分光光度法测定铅中的铋
7.2二硫代二安替比林甲烷分光光度法测定矿石中的铋
7.3碘化钾分光光度法测定纯金属中的铋
7.4硫脲比色法测定铅合金中的铋
7.5双硫腙?苯萃取分光光度法测定高温合金钢中的铋
8钡(Ba)
8.1EDTA络合滴定法测定铌矿石中的钡
8.2二甲基偶氮磺Ⅲ分光光度法测定碱土金属中的微量钡
8.3重量法测定矿石中的钡
9碳(C)
9.1库仑法测定金属中的碳
9.2气体容量法测定金属中的碳
9.3非水滴定法测定钢铁中的碳
10钙(Ca)
11铜(Cu)
12钴(Co)
13铬(Cr)
14镉(Cd)
15铈(Ce)
16稀土总量
17氯(Cl)
18铁(Fe)
19氟(F)
20锗(Ge)
21镓(Ga)
21?5罗丹明B?苯?乙醚萃取分光光度法测定煤中镓
22汞(Hg)
23铱(Ir)
24铟(In)
25钾(K)、钠(Na)
26锂(Li)
27镁(Mg)
28锰(Mn)
29钼(Mo)
30氮(N)
31镍(Ni)
32铌(Nb)
33钕(Nd)
35铅(Pb)
36钯(Pd)
37铂(Pt)
38铷(Rb)、铯(Cs)
39铼(Re)
40铑(Rh)
41钌(Ru)
42硫(S)
43硅(Si)
44硒(Se)
45锡(Sn)
46锑(Sb)
47锶(Sr)
48钪(Sc)
49碲(Te)
50钛(Ti)
51钍(Th)
52钽(Ta)
53铀(U)
54钒(V)
55钨(W)
56钇(Y)
57锆(Zr)
58锌(Zn)
参考文献

㈡ 钨精矿的分解方法是什么

钨精矿与化学试剂反应,生成水溶性钨酸盐或难溶性钨酸而与大部分杂质分离的过程,为钨冶金流程重要组成部分。
钨精矿的分解方法按所用的化学试剂(分解剂)分为碱分解法和酸分解法两大类。属前者的有钨精矿碳酸钠烧结分解、黑钨精矿苛性钠液分解、白钨矿碳酸钠液压煮分解,属后者的有白钨精矿盐酸分解等。碱分解得到粗钨酸钠溶液和过滤残渣。粗钨酸钠溶液尚含有较多的有害杂质,续后须进行钨溶液净化除去。为从分解的滤渣中回收有价金属及消除污染,须进行黑钨矿碱分解渣综合利用。盐酸分解钨精矿,得到粗钨酸和废盐酸溶液。粗钨酸通常用氨水或氢氧化钠溶液溶解得到钨酸铵溶液或钨酸钠溶液。这种溶液有时亦须进行净化。
现代钨工业已形成黑钨精矿主要使用苛性钠溶液分解法、白钨精矿主要使用盐酸分解法和碳酸钠液压煮分解法的局面。低品位的白钨原料则常用碳酸钠液压煮分解法。
为充分有效利用钨资源,亦有利用如钨中矿、难选钨细泥、等外钨精矿、含钨废杂料等,进行非标准钨矿原料分解处理的。这种处理方法与精矿的分解方法基本相同或相近似。
由于钨精矿在钨生产成本中占很大的比例,提高钨精矿或钨原料的分解率和钨回收率具有重大的经济意义。工业上的钨精矿分解率通常能达98%~99%。

㈢ 矿物成分分析方法

矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。

在选择成分分析方法时,应注意检测下限和精密度。

检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。

精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即

相对误差RE=

×100%

常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。

1.化学分析法

化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。

化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。

2.电子探针分析法

电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。

电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。

图24-3 电子探针结构示意图

电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。

值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。

电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。

电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。

电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。

3.光谱类分析法

光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。

光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。

图24-4 光谱分析流程图

4.X射线光电子能谱分析法

X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。

光电过程存在如下的能量关系:

hv=Eb+Ek+Er

式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。

X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。

5.电感耦合等离子质谱分析法

电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。

ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。

在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。

6.穆斯堡尔谱

穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。

图24-5 某透闪石石棉的穆斯堡尔图谱

由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+

穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。

穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。

㈣ 半微量化学分析法

用60mg试样,采用光度法、原子吸收光谱法和极谱法测定SiO2、Al2O3、TiO2、K2O、Na2O、TFe2O3、MnO、CaO、MgO、P2O5、V2O5、Cr2O3、CuO、CoO、NiO、Nb2O5和ZrO2共17个组分,其分析流程见图67.1。FeO、H2O+、F、Mo和W另取样测定。

图67.1 硅酸盐类矿物半微量分析流程

试剂

铁试剂-乙酸钠缓冲溶液2.4g铁试剂加热溶于500mL水中,另取62g无水乙酸钠溶于400mL水中,再加入74mL乙酸,搅匀。混合上述两种溶液,稀释至1000mL。

CTMAB溶液(10g/L)1gCTMAB溶于100mL含75g/LKCl的热溶液中。

测钒用混合掩蔽剂将30g柠檬酸三钠,4.6gEDTA和25g焦磷酸钠溶解于500mL热水中(当Co、Cu大于100μg,TiO2大于400μg时使用)。

测亚铁用混合试剂100mL(1+1)H2SO4中加入350mL饱和硼酸和50mLHF,加热至沸,冷却后使用。

分析步骤

(1)试液(A)的制备

称取10mg(精确至0.01mg)试样于银坩埚中,滴入几滴无水乙醇,烘干后加入0.5gNaOH(必要时加0.1~0.2gNa2O2)。加盖,置于升温至700℃的高温炉中保持20min,取出。冷却后,加15~20mL沸水(如使用过氧化钠熔样,则加沸水后将坩埚加热微沸几分钟,或加入几滴0.2g/L锇酸钠溶液加热除去过氧化氢),待熔块溶解后(用塑料棒搅拌),迅速倾入盛有10mL(1+1)HCl和40mL水的烧杯中,用1mL(1+1)HCl和水洗净坩埚,移入100mL容量瓶中,稀释至刻度,摇匀。此溶液为试液(A),供SiO2、Al2O3和TiO2测定用。

a.硅的测定。移取10.0mL试液(A)于100mL容量瓶中,加30mL水、10mL乙醇、5mL60g/L钼酸铵溶液,摇匀。在室温(20~30℃,20℃以下放入20~30℃水中)放置30min。加入20mL(1+1)HCl,摇匀;加入5mL5g/L抗坏血酸溶液,用水稀释至刻度,摇匀。2h后在波长810nm处,根据不同SiO2含量,用1cm或0.5cm比色皿,分别用蒸馏水或标准SiO2显色液为参比(或铑滤光片为参比),进行差示光度法测量。

b.铝的测定[w(Al2O3)>10%]。移取10.0mL试液(A)于50mL容量瓶中,加1~2滴1g/L对硝基酚指示剂,用100g/LNaOH溶液及(2+98)HCl调节至溶液黄色刚褪。加入10mL铁试剂-缓冲混合液,20mLCTMAB溶液,用水稀释至刻度,摇匀。置沸水浴中加热15min,冷至室温后,以水为参比,用1cm比色皿,用385.4nm波长调零,于波长385.4nm及445.0nm双波长处测量吸光度差。

校准曲线0~400μgAl2O3

c.铝的测定[w(Al2O3)<10%]。移取10.0mL试液(A)于50mL容量瓶中,加入4滴百里酚酞指示剂,用纯化的氢氧化铵和(1+99)H2SO4调节溶液呈微红色,再多加10滴(1+99)H2SO4。然后按序加入1mL10g/L抗坏血酸溶液,1.5mL10g/L1,10-邻二氮菲溶液,2mL8g/LCPC溶液,2.5mL2g/LCAS溶液(每加入一种试剂均需摇匀),再加5mL乙酸钠缓冲溶液(pH=6.3),立即用水稀释至刻度,摇匀。放置1~2h,6h之内以水为参比,用1cm比色皿,于波长625nm处测量吸光度。

校准曲线0~50μgAl2O3

d.钛的测定。移取10.0mL试液(A)于25mL容量瓶中,加水至10mL,加1滴对硝基酚指示剂,以80g/LNaOH溶液中和至溶液呈黄色,立即用1mol/LH2SO4酸化至黄色褪去。随即加入2.5mL1mol/LH2SO4,然后加入1mL50g/L抗坏血酸、2mL0.5g/LSAF溶液和5mL4g/LCPB溶液,用水稀释至刻度,摇匀。以试剂空白为参比,用2cm比色皿,于波长540nm处测量吸光度。

校准曲线0~5μgTiO2

(2)试液(B)的制备

称取50mg(精确至0.01mg)试样于铂坩埚中,加入1g(1+10)碳酸锂-硼酸混合熔剂,拌匀,再盖上一层(约0.1g)。加盖,置于1000℃高温炉中熔融15~20min(因硼酸含结晶水,必须在950℃以上将坩埚放入,使硼酸同时脱水熔化,以免溢出)。取出坩埚冷却后,加入10mLHF和1mLHClO4,加盖,低温保持20~25min,洗出坩埚盖,继续加热至高氯酸冒烟。取下坩埚,冷却后用少量去离子水冲洗坩埚壁,再加热冒烟至近干(需测定Nb、Zr时,只能冒烟至湿盐状)。加2mL(1+1)HCl和少量水,温热溶解,倾入100mL容量瓶中,加入3mL20g/LLiCl溶液,用去离子水稀释至刻度,摇匀。此溶液为试液(B)。

a.钾和钠的测定。取试液(B)用火焰光度法或原子吸收光谱法分别在波长589.0nm和766.5nm处测定钠和钾。

校准曲线0~4mgK2O、Na2O。

b.锰和铁的测定。取试液(B)用原子吸收光谱法分别在波长371.9nm及248.3nm处测定全铁和锰。

校准曲线0~250μgMnO,0~5mgFe2O3

c.钙和镁的测定。移取5.0~10.0mL试液(B)于50mL容量瓶中,加1mL50g/L硝酸镧溶液、1mL(1+1)HCl,用水稀释至刻度,摇匀。用原子吸收光谱法分别在波长422.7nm和285.2nm处测定钙和镁。

校准曲线0~1.0mgCaO,0~500μgMgO。

d.磷的测定。移取10.0mL试液(B)于50mL容量瓶中,加5mL4.5mol/LH2SO4、5mL乙醇、1.5mL50g/L钼酸铵溶液,摇匀。加入温水(60~80℃)稀释体积至46~48mL,再加2mL20g/L抗坏血酸溶液,摇匀。置沸水浴中5min后,在冷水槽中迅速冷却至室温,稀释至刻度,摇匀。以水为参比,用1cm或2cm比色皿,于波长810nm处测量吸光度。

校准曲线0~50μgP2O5

e.钒的测定。移取10.0~20.0mL试液(B)于25mL容量瓶中,加1滴酚酞指示剂,用200g/LNaOH溶液和1.5mol/LH2SO4调至红色恰褪,再准确加3mL(1+5)H2SO4。然后加2滴H2O2和2mL0.5g/L5-Br-PADAP溶液,摇匀。加5mL100g/LTritonX-100溶液及2mL测钒用的混合掩蔽剂溶液,用水稀释至刻度,摇匀。放置2h或于70℃热水浴保温20~30min后,以试剂空白为参比,用2cm比色皿,于波长590nm处测量吸光度。

校准曲线0~10μgV2O5

f.铬的测定。移取10.0~50.0μL试液(B)直接进样于石墨管中,按表67.1条件及参数用石墨炉原子吸收光谱法测定。

校准曲线0~80ng/mLCr。

表67.1 石墨炉原子吸收光谱法测定铬的仪器参数

g.铜的测定。移取10.0~50.0μL试液(B)注入石墨管中,按表67.2条件及参数进行原子吸收光谱法测定。

校准曲线0~100ng/mLCu。

表67.2 石墨炉原子吸收光谱法测定铜的仪器参数

h.钴和镍的测定。移取20.0mL试液(B),置于100mL烧杯中,蒸干。加1mL(1+1)HCl,移入25mL容量瓶中,加2.5mL2mol/L磺基水杨酸溶液,摇匀。加3.3mL(1+1)氢氧化铵,摇匀。放置至室温,加5mL5mol/LNH4Cl溶液和0.5mL100g/L丁二肟溶液,用水稀释至刻度,摇匀。放置半小时。于起始电位-0.8V,用导数示波极谱测定。

校准曲线0~6μgCo、Ni。

i.铌的测定。移取10.0mL试液(B)于25mL比色管中,加入1.5mL60g/L酒石酸溶液、3mL4mol/LHNO3、1mL0.007mol/LEDTA溶液和1mL0.8g/L硝基磺酚C溶液,用水稀释至刻度,摇匀。在20~30℃室温放置30min后,于起始电位-0.50V,用导数示波极谱测定。

校准曲线0~4μgNb2O5

j.锆的测定。移取10.0mL试液(B)于25mL烧杯中,滴加(1+4)氢氧化铵至氢氧化铁析出,过量1滴,置于电热板上加热凝聚沉淀,过滤。滤液弃去,用(1+99)氢氧化铵洗涤沉淀,再用水洗2~3次。用热的1.9mL4mol/LHNO3溶解沉淀于原烧杯中,用水洗滤纸几次,加0.75mL0.001mol/L硝基磺酚M溶液、3.8mL50g/L二安替比林甲烷溶液和2mL0.1g/L聚乙二醇溶液,移入25mL容量瓶中,用水稀释至刻度,摇匀,冷却至室温。于起始电位-0.20V,用导数示波极谱测定。

校准曲线0~3μgZr。

(3)亚铁的测定

称取3mg(精确至0.01mg)试样于塑料坩埚中,加4mL10g/L1,10-邻二氮菲溶液、2mL(1+1)H2SO4、1mLHF,加盖。加热至微沸,保持15~20min,加10mL饱和硼酸溶液,加热至沸并保温几分钟。冷后移入100mL容量瓶中,加10mL500g/L乙酸铵溶液,用水稀释至刻度,摇匀。放置20min,以试剂空白为参比,用0.5cm比色皿,于波长510nm处测量吸光度。

校准曲线0~200μgFeO。

(4)氟、钨、钼的测定

称取25~50mg(精确至0.01mg)试样于石墨坩埚中,用1.5gNaOH和0.5gNa2O2熔融,水提取,移入50mL容量瓶中,用水稀释至刻度,摇匀。

分别取上述清液或干过滤溶液用氟离子选择电极法测定氟;用催化极谱法测定钨、钼。

(5)化合水及二氧化碳的测定

A.电量法

用电量法连续测定水分和二氧化碳。根据法拉第定律:电解9.01g水需96500C电量。试样经高温(900~1000℃)灼烧热解,分解出来的水分和二氧化碳由载气送入铂-五氧化二磷电解池,在电解池中反应后产生电解电流,另生成氢气和氧气随气流排出,五氧化二磷得到再生。该电解池可反复使用。本法连续测定时间为3~10min,测定范围0.x%~xx%。

采用相对测量法,即先用标准物质测定仪器的标定系数C。

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:x0为标准物质中H2O+和CO2的含量;m0为标准物质的质量,mg;N0为积分仪读数。

分析步骤:打开载气,调至125mL/min。接通仪器电源,选择适当条件,将仪器平衡至本底电流≤0.5A(一般需1h)。

称取5~10mg(精确至0.01mg)试样,置于铂舟内,放入石英勺中,送入低温区,关闭进样塞,待试样中吸附水赶尽后,将积分仪清零。然后用磁铁吸住石英勺尾部铁芯将试样送入高温区,在1000℃高温热解。待电解完毕,记下各积分仪读数,取出铂舟。

按下式计算试样中化合水和二氧化碳的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(B)为试样中化合水和二氧化碳的质量分数,%;N为积分仪读数;C为标定系数;m为称取试样的质量,mg。

B.气相色谱法

称取1~10mg(精确至0.01mg)试样,用气相色谱法可同时测定0.1%~10%化合水和0.1%~xx%CO2

仪器:CXL-101气相色谱仪(热导检测器)。

色谱条件:

填料,401担体(60~80目),柱长2.5m(内径3mm);

柱温90℃;

汽化室130℃;

热导池110℃;

载气50mL/min;

桥流100mA;

纸速600mm/h。

分析步骤:打开载气,调至所需流速,接通仪器电源,选定适当的色谱条件,将仪器预热至基线稳定(一般约需2~3h),同时将铂舟放在高温电炉上烘烤5min,取出放入干燥器中备用。

称取1~10mg(精确至0.01mg)试样(105℃烘干样)置于铂舟内并排列在干燥器中。将热解炉升温至1000℃(给定值35mV)启动记录仪,随后将铂舟送入热解炉中并旋紧密封塞。然后将六通阀旋至“分析”位置测定二氧化碳和化合水(预先选择好适当的衰减)。待水峰出过后再将六通阀旋至“热解”位置,取出铂舟。每批测定同时作校准曲线,根据峰高计算含量。

㈤ 任务钨矿石分析方法的选择

任务描述

钨在地壳中的平均含量为1.3×10-6,已经发现的含钨矿物有20余种。我国钨矿石基本上是多组分的矿石。本任务对钨的化学性质、钨矿石的分解方法、钨的分析方法选用等进行了阐述。通过本任务的学习,知道钨的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中钨含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。

任务分析

一、钨在地壳中的分布、赋存状态及钨矿石的分类

钨在地壳中的丰度为1.3×10-6。已发现的矿物有20多种,具有工业价值的主要有黑钨矿、钨锰矿、钨铁矿和白钨矿(CaWO4)4种。

黑钨矿常呈褐黑色,是钨铁矿(FeWO4)和钨锰矿(MnWO4)的类质同象混合物。白钨矿常为白色或灰白色,少数为棕色或黄色。在紫外线下发浅蓝色荧光。密度5.8~6.2g/cm3。无磁性。含WO3理论值为80.5%。含少量MoO3。钨酸钙常出现在石英脉和矽卡岩中,常与石榴子石、辉石、角闪石、方解石、磷灰石、石英以及各种硫化矿物共生。

其他含钨的矿物还有:钨华(WO3·H2O)、辉钨矿(WS2)、钨铅矿(PbWO4)。

二、钨的分析化学性质

(一)钨的化学性质简述

钨在元素周期表中,属第六周期第ⅥB族。钨的外层电子结构为5d46s2,其化合价有0、+1、+2、+3、+4、+5、+6和-1、-2价等,在化学分析上有重要意义的是+3、+5、+6价。其中最稳定的是+6价。

在常温下,盐酸、硝酸、硫酸、氢氟酸、王水等都不能溶解钨。加热时,硝酸和王水能慢慢侵蚀它,而盐酸和硫酸对其作用微弱。硫酸-硫酸铵混合溶剂能使钨迅速溶解。过氧化氢、氢氟酸-硝酸混合酸能溶解钨。

常温下,在无氧化剂存在下,钨不与碱作用。当有氧化剂(如过氧化氢、硫酸铵等)存在时,钨能溶解于氨水中。熔融苛性碱,特别有硝酸钾、氯酸钾等氧化剂存在时能与钨剧烈反应。

(二)钨的沉淀反应

(1)钨酸沉淀:在浓热的酸性溶液中,六价钨生成钨酸H2WO4沉淀;在冷而稀的酸中得到白色的含水钨酸(H2WO4·H2O)沉淀。钨酸沉淀具有胶体的性质,尤其是白色钨酸沉淀不完全。如果向溶液中加入辛可宁、单宁等有机碱,则可使钨酸沉淀完全。沉淀经灼烧得到三氧化钨,此反应是重量法测定钨的理论基础。钨酸可溶于强碱和氨水中,生成相应的钨酸盐:

H2WO4+2NaOH→Na2WO4+2H2O

H2WO4+2NH3·H2O→(NH42WO4+2H2O

(2)钨酸盐沉淀:钨酸根与铅、银、钡和汞离子生成相应的难溶性的钨酸盐沉淀PbWO4、Ag2WO4、BaWO4、Hg2WO4。这些沉淀都溶于无机酸中,故沉淀反应宜在微酸性溶液中进行。沉淀不宜在碱性介质中进行,因为在碱性溶液中这些金属离子会生成碱式盐或氢氧化物沉淀。

(三)钨的配合反应

(1)多羧配合物:钨的一个极为重要的特点是生成各种多酸配合物。多酸的组成受溶液的温度、酸度、浓度的影响很大。当钨酸分子是由不同酸酐组成时,称为杂多酸。钨极易形成杂多酸,例如与硅、磷、硼、锗、锡、钛、锆、砷等元素,形成以

为配位体的杂多酸配合物。杂多酸分子中的W(Ⅵ)较游离的钨酸容易还原为低价。例如用三氯化钛还原磷钨酸,可以得到钨蓝(一种含有低价钨的蓝色杂多酸)。利用这一反应可以进行钨的光度法测定。

(2)草酸、柠檬酸、酒石酸配合物:草酸、柠檬酸、酒石酸等可与钨生成稳定的配合物。在这些配位剂存在下,可防止在酸性溶液中析出钨酸沉淀。

钨可以和硫氰酸盐形成一系列配合物,其中最重要的是五价钨的配合物,它是光度法测定钨的重要方法基础。用Ti(Ⅲ)或Sn(Ⅱ)将W(Ⅵ)还原至W(Ⅴ),与硫氰酸盐形成黄绿色的配合物[WO(SCN)4-,借此进行光度法测定。

(四)钨的光谱特性

钨属难激发元素,同时谱线非常丰富。钨化合物在空气-乙炔火焰中原子化效率低,需用氧化亚氮-乙炔火焰激发,试液中加入丙酮可提高钨的原子化率。钨的挥发性非常小,在“碳弧中游离元素蒸发顺序”中钨居于末尾位置。采用直流电弧、等离子体激发光源,可测定钨中的易挥发元素。

三、钨矿石的分解方法

钨矿石的分解是利用钨矿石的化学特性:①在盐酸溶液中形成微溶性的钨酸;②在碱性溶液中形成易溶性的钨酸盐;③氨可以溶解钨酸生成钨酸铵溶液;④盐酸可以分解难溶性的钨酸钙。

钨矿石的分解一般有酸溶法和碱熔法。酸溶法的溶剂有盐酸、磷酸、硝酸、硫酸等,在无机酸中,磷酸、盐酸对钨矿石的分解能力很强,尤其是磷酸,在加热时可使钨矿物迅速溶解。碱熔法分解钨矿物的效率很高,常用的熔剂有氢氧化钠、氢氧化钾、过氧化钠、碳酸钠-硝酸钾、碳酸钠-氧化锌等,其中过氧化钠的分解能力最强,使用也最普遍。

四、钨的分离富集方法

钨的分离可采用沉淀法、萃取法等,见表3-1。

表3-1 常用的钨的分离方法

五、钨的分析方法

钨的测定可用重量法、容量法、光度法、极谱法、X射线荧光光谱法、电感耦合等离子体质谱法、电感耦合等离子体光谱法等。目前用得最多的是重量法、光度法和极谱法。

(一)化学分析法

由于钨的化学性质所限,高含量的钨的测定,至今仍主要依靠重量法。钨的重量法大致可分为三种类型:①基于酸性水解生成难溶的钨酸沉淀,灼烧得到WO3;②基于有机试剂使钨生成难溶性沉淀,灼烧也得到WO3,或直接称量有固定组成的钨的有机沉淀物;③基于生成难溶的铅、钙、钡等钨酸盐沉淀。但目前实际应用的主要是辛可宁沉淀法、钨酸铵灼烧法和8-羟基喹啉-单宁酸-甲基紫沉淀法。

(1)8-羟基喹啉-单宁酸-甲基紫沉淀法:试料以磷酸-硫酸-硫酸铵分解,在碱性介质中分离铁、钙、铋、钽、铌(铌仅部分在此处分离)等杂质后,控制pH值,以8-羟基喹啉-单宁酸-甲基紫沉淀钨,灼烧后以三氧化钨形式称量。

(2)钨酸铵灼烧法:试料以盐酸、硝酸分解,钨成钨酸沉淀与铁、锰、钙等大量杂质分离,再用氨水溶解钨酸为钨酸铵溶液,蒸干、灼烧得三氧化钨。该法结果重现性好。

(3)辛可宁沉淀法:与钨酸铵灼烧法一样得钨酸铵溶液后,浓缩赶氨,以盐酸及辛可宁使钨酸再次沉淀,灼烧成三氧化钨,再以氢氟酸赶硅。

(二)仪器分析法

钨的仪器分析法主要是可见分光光度法、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X射线荧光光谱法(XRF)。其他仪器分析方法并不多见,其中应用最广泛的是可见分光光度法。各种仪器分析方法的应用情况列于表3-2中。

表3-2 常见仪器分析方法在钨的测定中的应用情况

六、钨矿石的分析任务及其分析方法的选择

钨矿石的分析主要包括以下几个项目:钨、锡、钼、磷、砷、硅、钙、铁、锰、硫、铜、铅、锑及物相分析(主要是黑钨矿、白钨矿)。

钨的测定主要采用重量法和可见分光光度法。重量法用于矿石中>4% 的三氧化钨量的测定,其中应用最广泛的是钨酸铵灼烧法,该法虽然流程长,操作繁琐,但干扰因素少,重现性好,分析结果准确可靠,因此在国内外均被列为国家标准分析方法。容量法测定高含量的钨虽然也有报道,但因干扰因素多,未能广泛应用。差示比色法虽然也可以测定高含量的钨,但测定的范围仍然有限,且影响因素也较多,对操作者的操作技能要求较高,故仍不能取代经典的重量法。

低含量三氧化钨(<4%)的测定主要采用硫氰酸盐比色法。能用于钨的光度分析的显色剂很多,并不断有新的合成显色剂用于钨的测定。近年来,随着新试剂的研制、新方法的应用,使钨的分光光度分析法更加完善和适用。在钨矿石的分析中,目前应用最普遍的是硫氰酸盐法。钨矿石中杂质元素的分析方法见表3-3。

表3-3 钨矿石中杂质元素分析方法

技能训练

实战训练

1.实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,完成钨矿石委托样品从样品验收到派发样品检验单。

3.填写附录一中质量表格1、表格2。

㈥ 从矿物中分离铬与钼容易而分离钼和钨却很难,为什么

由于镧系收缩现象,Mo与W原子半径相近故化学性质相似,而Cr与Mo原子半径相差大故化学性质相差大,所以,从矿物中分离铬和钼容易,而分离钼和钨难

㈦ 寻求钼酸铵以及钼矿石的标准分析方法

GB/T 11893-89水质总磷的测定钼酸铵分光光度法 132KB
CJ/T 104-1999 城市生活垃圾全磷的测定偏钼酸铵分光光度法 329KB
GB 11893-89 水质 总磷的测定 钼酸铵分光光度法 扫描版 155KB
GB/T 21931.3-2008 镍、镍铁和镍合金 磷含量的测定 磷钒钼黄分光光度法 414KB
GB/T 20931.5-2007 锂化学分析方法 硅量的测定 硅钼蓝分光光度法 (单行本完整清晰扫描版) 233KB
GB/T 20255.4-2006 硬质合金化学分析方法 钴、铁、锰、钼、镍、钛和钒量的测定 火焰原子吸收光谱法- 121KB
GB/T 5059.9-2008 钼铁 硫含量的测定 红外线吸收法和燃烧碘量法(单行本完整清晰扫描版) 384KB
YY 0605.12-2007 外科植入物金属材料 第12部分:锻造钴-铬-钼合金 (单行本完整清晰扫描版) 121KB
GB/T 3462-2007 钼条和钼板坯 1605KB
GB/T 3253.1-2008 锑及三氧化二锑化学分析方法 砷量的测定 砷钼蓝分光光度法 (横版扫描色淡不太清晰)- 371KB
GB-T 13700-1992 六氟化铀中钼的分光光度法测定 (单行本完整清晰扫描版).pdf 116KB
GB-T 14990-1994 铁钴钼磁滞合金热轧(或锻)棒材.pdf 146KB
GBT 16103-1995 车间空气中钼及其化合物的硫氰酸盐分光光度测定方法.pdf 93KB
GBT 1819.12-2004 锡精矿化学分析方法 二氧化硅量的测定 硅钼蓝分光光度法 379KB
GBT 1819.5-2004 锡精矿化学分析方法 砷量的测定 砷锑钼蓝分光光度法和蒸馏分离-碘滴定法 654KB
GBT 6730.46-2006 铁矿石 砷含量的测定 蒸馏分离-砷钼蓝分光光度法 (单行本完整清晰扫描版) 204KB
GBT 6730.45-2006 铁矿石 砷含量的测定 砷化氢分离-砷钼蓝分光光度法 (单行本完整清晰扫描版) 169KB
GBT 6730.9-2006 铁矿石 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法 (单行本完整清晰扫描版) 304KB
YST 568.9-2008 氧化锆、氧化铪化学分析方法 氧化铪中铝、钙、镁、锰、钠、镍、铁、钛、锌、钼、钒、锆含量的测定 电感耦合等离子体发射光谱法.pdf 129KB
YST 568.8-2008 氧化锆、氧化铪化学分析方法 氧化锆中铝、钙、镁、锰、钠、镍、铁、钛、锌、钼、钒、铪含量的测定 电感耦合等离子体发射光谱法.pdf 130KB
YST 568.7-2008 氧化锆、氧化铪化学分析方法 磷含量的测定 锑盐-抗坏血酸-钼蓝分光光度法.pdf 121KB
YST 235-2007 钼精矿 (单行本完整清晰扫描版).pdf 268KB
YB-T 547.4-1995 钒渣化学分析方法 酸碱容量法和铋磷钼蓝光度法测定磷量.pdf 256KB
YB T 5046-1993 化钼块化学分析方法 孔雀绿光度法测定锑.pdf 128KB
YB T 5045-1993 氧化钼块化学分析方法 新铜试剂光度法测定铜.pdf 115KB
YB T 5044-1993 氧化钼块化学分析方法 苯基荧光酮光度法测定锡.pdf 128KB
YB T 5043-1993 氧化钼块化学分析方法 正丁醇-三氯甲烷烷萃取光度法测定磷.pdf 109KB
SHT 0605-2008 润滑油及添加剂中钼含量的测定 原子吸收光谱法 (单行本完整清晰扫描版).pdf 213KB
GBT 3649-2008 钼铁 (横版) 815KB
YS/T 244.2-2008 高纯铝化学分析方法 第2部分:钼蓝萃取光度法测定硅含量 206KB
GB/T 223.31-2008 钢铁及合金 砷含量的测定 蒸馏分离-钼蓝分光光度法 542KB
GBT 6730.18-2006 铁矿石 磷含量的测定 乙酸丁酯萃取-钼蓝光度法测定磷量 (单行本完整清晰扫描版).pdf 409KB
GBT 223.59-2008 钢铁及合金 磷含量的测定 铋磷钼蓝分光光度法和锑磷钼蓝分光光度法 (单行本完整清晰扫描版).PDF 4821KB
GB/T 223.5-2008 钢铁 酸溶硅和全硅含量的测定 还原型硅钼酸盐分光光度法 4146KB
GB/T 5686.4-2008锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝光度法和碱量滴定法 759KB
GB/T 5686.2-2008 锰铁、锰硅合金、氮化锰铁和金属锰 硅含量的测定 钼蓝光度法、氟硅酸钾滴定法和高氯酸重量法 1649KB
GB/T 223.26-2008 钢铁及合金 钼含量的测定 硫氰酸盐分光光度法 1456KB
GB/T 13748.10-2005镁及镁合金化学分析方法 硅含量的测定 钼蓝分光光度法 182KB
GB/T 8704.7-1994 钒铁化学分析方法 钼蓝光度法测定磷量 124KB
GB/T 8654.5-1988 金属锰化学分析方法 钼蓝光度法测定磷量 101KB
GB/T 8654.3-1988 金属锰化学分析方法 钼蓝光度法测定硅量 95KB
GB/T 3654.5-1983 铌铁化学分析方法 钼蓝光度法测定磷量 175KB
GB/T 3653.6-1988 硼铁化学分析方法 锑磷钼蓝光度法测定磷量 114KB
YB/T 178.5-2000 硅铝合金、硅钡铝合金化学分析方法 磷钼蓝分光光度法测定磷含量 152KB
YB/T 109.5-1997 硅钡合金化学分析方法 钼蓝光度法测定磷量 122KB
GB/T 10512-2008 硝酸磷肥中磷含量的测定 磷钼酸喹啉重量法 (单行本完整清晰扫描版) 260KB
YS/T 74.1-1994 镉化学分析方法 钼蓝分光光度法测定砷量 86KB
YB/T 159.4-1999钛精矿(岩矿)化学分析方法 铋磷钼蓝分光光度法测定磷含量 170KB
SN/T 1964-2007 出口钼铁取样规程(单行本完整清晰扫描版) 251KB
DZ/T 0214-2002 铜 铅 锌 银 镍 钼矿地质勘查规范 620KB
GB/T 3876-2007 钼及钼合金板(单行本完整清晰扫描版) 1155KB
YY 0117.3-2005 外科植入物 骨关节假体锻、铸件钴铬钼合金铸件- 161KB
YS/T 475.5-2005铸造轴承合金化学分析方法 砷量的测定 砷锑钼蓝分光光度法 134KB
YS/T 461.5-2003 混合铅锌精矿化学分析方法 二氧化硅量的测定 钼蓝分光光度法 104KB
YS/T 248.4-2007 粗铅化学分析方法 砷量的测定 砷锑钼蓝分光光度法和萃取-碘滴定法 单行本完整清晰扫描版 387KB
YB/T 5129-1993 氧化钼块 51KB
YB/T 191.6-2001 铬矿石化学分析方法 磷钼蓝分光光度法测定磷含量 152KB
SHJ520-91 (旧版p d f)铬钼耐热钢管道焊接规程 469KB
SH/T 3520-2004石油化工铬钼耐热钢焊接规程 单行本完整清晰扫描版 2055KB
SH/T 3520-2004 石油化工铬钼耐热钢焊接规程 1077KB
SH/T 3127-2001 石油化工管式炉铬钼钢焊接回弯头技术标准 530KB
SH/T 0587-1994极压二硫化钼锂基润滑脂 46KB
SH 3085-1997 管式炉碳钢和铬钼钢炉管焊接技术条件 412KB
GB/T 8647.4-2006 镍化学分析方法 磷量的测定 钼蓝分光光度法 单行本完整清晰扫描版 96KB
GB/T 8647.3-2006 镍化学分析方法 硅量的测定 钼蓝分光光度法 单行本完整清晰扫描版 109KB
GB/T 6901.2-2004 硅质耐火材料化学分析方法 第2部分:重量-钼蓝光度法测定二氧化硅量 177KB
GB/T 6901.11-2004 硅质耐火材料化学分析方法 第11部分 钼蓝光度法 测定五氧化二磷量 154KB
GB/T 6610.3-2003 氢氧化铝化学分析方法 钼蓝光度法测定二氧化硅含量 156KB
GB/T 6609.3-2004 氧化铝化学分析方法和物理性能测定方法 钼蓝光度法测定二氧化硅含量 170KB
GB/T 6609.17-2004 氧化铝化学分析方法和物理性能测定方法 钼蓝分光光度法测定五氧化二磷含量 139KB
GB/T 5070.2-2002 镁铬质耐火材料化学分析方法 第2部分:钼蓝光度法测定二氧化硅量 181KB
GB/T 4186-2002钼钨合金杆 104KB
GB/T 4183-2002钼钨合金丝 231KB
GB/T 20975.2-2007 铝及铝合金化学分析方法 第2部分 砷含量的测定 钼蓝分光光度法 单行本完整清晰扫描版 254KB
GB/T 11213.4-2006 化纤用氢氧化钠 硅含量的测定 还原硅钼酸盐分光光度法 单行本完整清晰扫描版 138KB
GB/T 6987.6-2001 铝及铝合金化学分析方法 钼蓝分光光度法测定硅量 179KB
GB/T 5059.6-2007 钼铁 磷含量的测定 铋磷钼蓝分光光度法和钼蓝分光光度法 单行本完整清晰扫描版 364KB
GB/T 4699.3-2007 铬铁、硅铬合金和氮化铬铁 磷含量的测定 铋磷钼蓝分光光度法和钼蓝分光光度法 单行本完整清晰扫描版 500KB
GB/T 4182-2003 钼丝 331KB
GB/T 20255.3-2006 硬质合金化学分析方法 钼钛钒量的测定 火焰原子吸收光谱法 单行本完整清晰扫描版 111KB
GB/T 1515-2002 锰矿石 磷含量的测定 磷钼蓝分光光度法 138KB
GB/T 12689.8-2004 锌及锌合金化学分析方法 硅量的测定 钼蓝分光光度法 104KB
GB/T 11848.15-1991 铀矿石浓缩物中铁、钙、镁、钼、钛、钒的测定 原子吸收光谱法 221KB
GB/T 4324.5-1984 钨化学分析方法 钼蓝光度法测定砷量 146KB
GB/T 4324.28-1984 钨化学分析方法 硫氰酸盐光度法测定钼量 149KB
GB/T 4324.24-1984 钨化学分析方法 铍为载带沉淀剂-钼蓝光度法测定磷量 164KB
GB/T 4324.12-1984 钨化学分析方法 氯化-钼蓝光度法测定硅量 165KB
GB/T 4185-1984 钼钨合金条 84KB
GB 4333.2-1988 硅铁化学分析方法 铋磷钼蓝光度法测定磷量 75KB
YS/T 639-2007纯三氧化钼 164KB
YS/T 629.1-2007高纯氧化铝化学分析方法二氧化硅含量的测定正戊醇萃取钼蓝光度法 223KB
YS/T 581.9-2006氟化铝化学分析方法和物理性能测定方法第9部分钼蓝分光光度法测定五氧化二磷含量 111KB
YS/T 581.6-2006氟化铝化学分析方法和物理性能测定方法第6部分钼蓝分光光度法测定二氧化硅含量 129KB
YS/T 37.2-2007高纯二氧化锗化学分析方法钼蓝分光光度法测定硅量 191KB
YS/T 273.9-2006冰晶石化学分析方法和物理性能测定方法第9部分钼蓝分光光度法测定五氧化 145KB
YS/T 273.6-2006冰晶石化学分析方法和物理性能测定方法第6部分:钼蓝分光光度法测定二氧化硅含量 165KB
GBZ/T 160.15-2004工作场所空气有毒物质测定钼及其化合物 24KB
GB/T 11893-89水质总磷的测定钼酸铵分光光度法 132KB
ZB U 05 006.16-89 锡基轴承合金化学分析方法 蒸馏分离-砷钼 蓝光度法测定砷量 347KB
YY 0117.3-1993 外科植入物 骨关节假体锻、铸件 钴铬钼合金铸件 151KB
SN/T 0770-1999 出口中碳鳞片石墨中二氧化硅的测定 硅钼蓝分光光度法 106KB
SN/T 0750-1999 进出口碳钢、低合金钢中铝、砷、铬、钴、铜、磷、锰、钼、镍、硅、锡、钛、钒含量的测定-电感耦合等离子体原子发射光谱(ICP-AES)法 652KB
SJ/T 11065-96 钼基钨靶 178KB
SJ/T 11031-96 电子器件用金铜及金镍钎焊料的分析方法 磷钼蓝分光光度法测定磷 127KB
SJ/T 11017-96 电子器件用纯银钎焊料的分析方法 磷钼蓝分光光度法测定磷 101KB
SJ/T 10744-96 钨钼丝生产专用名词术语 1795KB
SJ/T 10168.2-91 真空开关管用金属异型制品 冲制钼圆片 170KB
SJ 2657-86 钼的光谱分析方法 195KB
SJ 20848-2002 钼铜合金棒规范 589KB
SJ 20607-96 钼酸铅单晶规范 605KB
SJ 20145-92 军用覆铂钼丝规范 146KB
SJ 20144-92 电子器件用钼杆、钼丝、钼片规范 261KB
NY/T 1121.9-2006 土壤检测 第9部分:土壤有效钼的测定 490KB
JB/T 9687.1-1999 电力半导体器件用钼圆片 287KB
JB/T 9552.9-1999 铜铬锆合金化学分析方法 甲基异丁基酮萃取-钼蓝光度法测定硅 158KB
JB/T 9548.9-1999 铁铬铝合金化学分析方法 硫氰酸盐直接光度法测定钼量 141KB
JB/T 9548.5-1999 铁铬铝合金化学分析方法 硅钼蓝光度法测定硅量 149KB
JB/T 9548.11-1999 铁铬铝合金化学分析方法 磷钒钼黄萃取光度法测定磷量 148KB
JB/T 9220.9-1999 铸造化铁炉酸性炉渣化学分析方法 磷钒钼黄甲基异丁基甲酮萃取光度法测定五氧化二磷量 141KB
JB/T 8926-1999 火焰喷钼涂层的检验方法 238KB
JB/T 8425-1996 铁基喷涂粉末中铬、镍、钼和钒的X身线荧光光谱分析标准试验方法 233KB
JB/T 8063.3-1996 粉末冶金材料与制品化学分析方法-铁基材料与制品中钼的测定(硫氰酸盐光度法) 183KB
JB/T 7948.8-1999 熔炼焊剂化学分析方法 钼蓝光度法测定磷量 214KB
JB/T 7520.3-1994 磷铜钎料化学分析方法 钒钼酸光度法测定磷量 65KB
JB/T 6326.4-1992 镍铬及镍铬铁合金化学分析方法 硅钼蓝光度法测定硅量 107KB
JB/T 6326.12-1992 镍铬及镍铬铁合金化学分析方法 磷钒钼黄萃取光度法测定磷量 105KB
HG/T 3540-1990 工业循环冷却水中磷含量的测定 钼酸胺分光光度法 335KB
HG/T 3256-2001工业二硫化钼 394KB
HG/T 3256-2001 工业二硫化钼 411KB
HG/T 3174-2002 尿素高压设备制造检验方法 尿素级超低碳铬镍钼奥氏体不锈钢的选择性腐蚀检查和金相检查 228KB
HG/T 3173-2002 尿素高压设备制造检验方法 尿素级超低碳铬镍钼奥氏体不锈钢品间腐蚀倾向试验 285KB
HG/T 3172-2002 尿素高压设备制造检验方法 尿素级超低碳铬镍钼奥氏体不锈钢品间腐蚀倾向试验的试样制取 664KB
HG/T 2781-1996 一氧化碳耐硫变换催化剂中钴钼含量的测定 246KB
HG 2958.5-1988 天青石矿石中硅含量的测定 钼蓝分光光度法 139KB
HG 2220-1991 重过磷酸钙中磷含量的测定 磷钼酸喹啉重量法 207KB
铜钼镍矿山建设标准 529KB
CJ/T 104-1999 城市生活垃圾全磷的测定偏钼酸铵分光光度法 329KB
CB 1160.9-86 船舶螺旋桨用铸造铝铍钴青铜化学分析方法 磷钼钒黄光度法测定磷量 167KB
CB 1160.12-86 船舶螺旋桨用铸造铝铍钴青铜化学分析方法 硅钼蓝光度法测定硅量 169KB
GJB 533.20-88 潜艇舱室空气45种组分检测方法 肼含量的测定 磷钼酸吸光度法 312KB
GB/T 14540-2003复混肥料中铜、铁、锰、锌、硼、钼含量的测定 373KB
GB/T 14540.1-93复混肥料中钼的测定方法 119KB
GB 17100-1997外科植入物用铸造钴铬钼合金 128KB
GB 7878-87森林土壤有效钼的测定 210KB
GB 11893-89 水质 总磷的测定 钼酸铵分光光度法 扫描版 155KB
到易启标准网去搜索后下载吧,以上是我在易启标准网的搜索结果,供您下载参考.
易启标准网有这些全文电子版免费下载的.
下载方法,先在网络搜索到易启标准网,打开网站后免费注册成为会员,登陆后搜索您要的标准或者书籍,然后下载.如有问题可参考这个网站的帮助文件的.

㈧ 化学分析中钨和钼的分度法分析用什么做显示剂它们的性质很相近,怎样才能互不干扰

钨的分光光度法:统氰酸钾~三氯化钛比色法:;硫氰酸盐萃取光度法;硫氰酸钾差示分光光度法。
Mo可分为1.硫氰酸盐光度法,硝酸~氯化亚锡法;硫酸~硫脲法等。
2.罗丹明B~硫酸氰盐~聚乙烯醇法。
Mo干扰W目前未很好解决。还可考虑极谱法。

㈨ 钨矿怎么分解

用高钼钨矿制备高纯仲钨酸铵的方法包括:(1)、将钨矿或钨细泥球磨,碱煮浸出,过滤,浓缩钨酸钠结晶;(2)、水溶过滤钨酸钠,硫化;(3)、离子交换除钼;(4)、钨酸钠交后液除硫;(5)、离子交换除杂质,用氨水与氯化铵溶液解吸钨,制备钨酸铵溶液;(6)、蒸发结晶得到仲钨酸铵。本发明的技术进步效果表现在利用黑白钨混合矿要比黑钨精矿的价格低1500-2000元/吨,钨细泥价更低,约5000-7000元/吨,经济效益明显,如果处理钨细泥,经济效益更好,本发明为我国大量的黑白钨混合矿及钨细泥等高钼矿物提供了一种先进的冶炼新工艺。
这是我在网上给你找的,希望你能用到。(*^__^*)

㈩ 钨量及钼量的测定 催化波极谱法

1 范围

本方法规定了地球化学勘查试样中钨及钼含量的测定方法。

本方法适用于水系沉积物及土壤试料中钨及钼量的测定。

本方法检出限(3S):0.3μg/g钨、0.2μg/g钼。

本方法测定范围:0.9μg/g~400μg/g钨、0.6μg/g~80μg/g钼。

2 规范性引用文件

下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。

下列不注日期的引用文件,其最新版本适用于本方法。

GB/T 20001.4 标准编写规则 第4部分:化学分析方法。

GB/T 14505 岩石和矿石化学分析方法总则及一般规定。

GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。

GB/T 14496—93 地球化学勘查术语。

3 方法提要

试料经碱熔分解,水浸取,铁、锰、钴、镍等元素呈氢氧化物沉淀与钨、钼分离。分取澄清溶液,在0.34moL/L硫酸-2g/L苯羟乙酸-30g/L氯酸钠-0.08g/L辛可宁底液(同一溶液测定钨钼的兼顾条件)中,钨和钼均能产生灵敏的极谱催化波,峰电位约为-0.76V和-0.15V(对饱和甘汞电极而言),分别测定钨和钼的峰电流。在同时制备的工作曲线上查得试料中相应的钨和钼的量。

4 试剂

除非另有说明,在分析中仅使用为分析纯的试剂和蒸馏水(去离子水)。在空白试验(6.2)中,若已检测到所用分析纯试剂中含有大于0.3μg/g的钨量及0.2μg/g的钼量,并确认已经影响试料中低量钨及钼量的测定,应净化试剂。

4.1 乙醇[w(C2H5OH)=99.5%]

4.2 氢氧化钠

4.3 甲基橙溶液[ρ(C14H5N3O3S·Na)=0.2g/L]

4.4 硫酸(1+1)

4.5 苯羟乙酸溶液{ρ[C6H5CH(OH)COOH]=100g/L},

如混浊需过滤后使用。

4.6 氯酸钠溶液[ρ(NaClO3)=125g/L]

4.7 辛可宁溶液[ρ(C19H22N2O)=4g/L]

称取0.40g辛可宁(生化试剂)于250mL烧杯中,加入10mL水和5滴硫酸(4.4),溶解后用水稀释至100mL,混匀后备用。

4.8 混合底液

将苯羟乙酸溶液(4.5)、氯酸钠溶液(4.6)及辛可宁溶液(4.7)以1∶12∶1体积比混合后备用。现用现配。

4.9 钨标准溶液

4.9.1 钨标准溶液Ⅰ[ρ(W)=200μg/mL]

称取0.1261g已于750℃灼烧10min后的高纯级三氧化钨[w(WO3)99.95%],置于250mL塑料烧杯中,加入10g氢氧化钠(4.2)及50mL水溶解后,移入500mL容量瓶中,用水稀释至刻度,摇匀。立即移入洁净干燥的塑料瓶中保存。

4.9.2 钨标准溶液Ⅱ[ρ(W)=20.0μg/mL]分取50.00mL钨标准溶液Ⅰ(4.9.1),置于500mL容量瓶中,用水稀至刻度,摇匀。

4.10 钼标准溶液

4.10.1 钼标准溶液Ⅰ[ρ(Mo)=100μg/mL]称取0.1500g已于105℃干燥2h的高纯三氧化钼,[w(MoO3)99.95%],置于150mL塑料烧杯中,加入2g氢氧化钠(4.2)及10mL水,加热溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。

4.10.2 钼标准溶液Ⅱ[ρ(Mo)=4.00μg/mL]分取20.00mL钼标准溶液Ⅰ(4.10.1)置于500mL容量瓶中,加入1g氢氧化钠(4.2),用水稀至刻度,摇匀。

4.11 钨、钼混合标准溶液[ρ(W)=0.20μg/mL、ρ(Mo)=0.04μg/mL]分取10.00mL钨标准溶液Ⅱ(4.9.2)及10.00mL钼标准溶液Ⅱ(4.10.2),置于1000mL容量瓶中,加入1g氢氧化钠(4.2),用水稀至刻度,摇匀。

5 仪器及材料

5.1 JP-2型示波极谱仪

5.2 参比电极

饱和甘汞电极。

5.3 石墨坩埚

规格:30mL。

6 分析步骤

6.1 试料

试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶或小塑料瓶中备用。

试料量 称取0.5g~1.0g试料,精确至0.0002g。

6.2 空白试验

随同试料分析全过程做双份空白试验。

6.3 质量控制

选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试样同时分析。

6.4 测定

6.4.1 称取试料(6.1)置于石墨(或镍)坩埚中,放入高温炉内,升温至450℃灼烧1h(石墨坩埚控温宜低于400℃。)若有机质较低,可不需灼烧,取出冷却。加几滴乙醇(4.1)润湿试料,加入6g氢氧化钠(4.2),放入高温炉内,慢慢升温至620℃,保温15min。取出,稍冷后,将坩埚放入盛有60mL沸水的塑料烧杯中(如溶液中有锰离子的绿色出现,则加几滴乙醇(4.1)还原)。待熔融物完全脱落后,用水洗出坩埚,冷至室温。移入100mL容量瓶中,用水稀释至刻度,摇匀。放置澄清或干过滤。

注:曾用12个石墨坩埚按(6.4)测定手续作空白试验,统计计算其检出限分别为:Mo 0.1μg/g、W 0.2μg/g。不同质量的镍坩埚都含有微量钼杂质。新购镍坩埚宜先做空白试验,认真挑选。若已检测到含有大于本方法规定检出限钼量的镍坩埚,不要采用。

6.4.2 分取10.00mL清液(6.4.1)于25mL容量瓶中,加入1滴甲基橙溶液(4.3),用硫酸溶液(4.4)中和至红色并过量0.95mL,冷却至室温。加入7.0mL混合底液(4.8),用水稀释至刻度,摇匀,放置30min。

6.4.3 倒出部分溶液(6.4.2)于电解池中,选择适当的电流分路,于示谱极谱仪上,在起始电位约-0.76V测量钨的峰值电流。同时进行工作曲线中钨量的测定。从工作曲线上查得相应的钨量。

6.4.4 倒出部分溶液(6.4.2)于电解池中,选择适当的电流分路,于示谱极谱仪上,在起始电位约-0.15V测量钼的峰值电流。同时进行工作曲线中钼量的测定。从工作曲线上查得相应的钼量。

6.4.5 工作曲线绘制 于一组25mL容量瓶中,分取0.0mL、0.25mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL、8.00mL、10.00mL钨、钼混合标准溶液(4.11);加入与试样量相当的空白试验(6.2)溶液(为了便于控制体积,可将两份空白试验(6.2)溶液合并在同一容量瓶中,这样就可以加入分取试料溶液体积的一半)。加1滴甲基橙溶液(4.3),用硫酸(4.4)中和后再过量0.95mL,冷却至室温。以下手续同6.4.2进行。分别以钨量、钼量为横坐标,峰值电流为纵坐标,绘制工作曲线。

7 分析结果的计算

按下式计算钨、钼的含量:

区域地球化学勘查样品分析方法

式中:m1——从工作曲线上查得试料溶液中钨或钼的量,μg;m0——从工作曲线上查得空白试验溶液中钨或钼的量,μg;V1——分取试料溶液的体积,mL;V0——制备溶液总体积,mL;m——试料质量,g。

8 精密度

钨、钼的精密度见表1及表2。

表1 精密度[w(W),10-6

表2 精密度[w(Mo),10-6

附 录 A

(资料性附录)

A.1 从实验室间试验结果得到的统计数据和其他数据

如表A.1、表A.2。

本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。

表A.1及表A.2中不需要将各浓度的数据全部列出,但至少列出了3个或3个以上浓度所统计的参数。

A.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后属界外值而被舍弃的实验室数据)。

A.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值;x0为一级标准物质的标准值。

A.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差、SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为“重复性变异系数”及“再现性变异系数”。

A.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。

表A.1 W统计结果表

表A.2 Mo统计结果表

附加说明

本方法由中国地质调查局提出。

本方法由武汉综合岩矿测试中心技术归口。

本方法由广东省物料实验检测中心负责起草。

本方法主要起草人:李展强、张汉萍、潘孝林、李锡坤。

本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。

阅读全文

与钼钨矿石化学分析方法相关的资料

热点内容
乳腺增生治疗乳康方法 浏览:587
毛细血管锻炼方法 浏览:69
布边太紧有什么好方法 浏览:453
黄金果树苗种植方法 浏览:428
咽炎的分类及中医治疗方法 浏览:859
汽车固体打蜡方法及步骤 浏览:230
记忆枕的使用方法 浏览:344
商品住宅市场研究方法 浏览:750
如何化解饥饿的方法 浏览:107
牛不反应怎么解决方法 浏览:57
牙美如何使用方法 浏览:817
喝酒醉有什么解决方法 浏览:983
心血管病早期治疗方法 浏览:565
中药生地的功效与作用及食用方法 浏览:600
宝宝尿布折叠方法视频 浏览:487
物理考试怎么考好的方法 浏览:797
好方法解决盈亏问题 浏览:454
德育方法写成了德育原则怎么办 浏览:19
大益一星大白菜鉴别方法 浏览:264
研究圆锥的体积的实验方法 浏览:259