导航:首页 > 研究方法 > 电气设备磁场环境的分析方法

电气设备磁场环境的分析方法

发布时间:2023-01-21 23:22:31

1. 电子产品的环境条件

电子产品在储存、运输和使用过程中,经常受到周围环境的各种有害影响,如影响电子产品的工作性能、使用可靠性和寿命等。影响电子产品的环境因素有:温度、湿度、大气压力、太阳辐射、雨、风、冰雪、灰尘和沙尘、盐雾、腐蚀性气体、霉菌、昆虫及其他有害动物、振动、冲击、地震、碰撞、离心加速度、声振、摇摆、电磁干扰及雷电等。
对环境因素的研究主要解决两个基本问题:①如何取得这些环境因素的客观数据;②如何处理这些数据。客观环境因素的数据通常可以部分地从气象环境保护部门取得,但更多的必须通过实测获得。要使实测数据既具有可靠性又有典型性,除需要有完善的调查测试方案外,还必须有能连续、快速和多点记录的仪器。所取得的客观环境数据,如有足够长的记录时间,则可按出现频率进行统计分析。对于要求特别可靠的产品可取客观环境数据的极值,甚至是统计推断的极值,以保证产品在使用中万无一失。对于要求可靠性高的产品,可取客观环境数据出现概率为 1%的数值。对于一般要求的产品,可取客观环境出现概率为 5%,甚至为10%的数值。如客观环境数据记录时间不够长,就要运用数理统计知识对其进行处理。例如,小气候实测调查资料可用相关法延长而推算出历史上可能有的数据;又如,机械振动实测调查资料,可采用包络线法、功率频谱分析法或用时间序列建模法,推算各种概率数值的可能性,然后根据产品的可靠性要求程度取所需的数据。
气候环境条件通常所用的试验严酷度等级是:①温度(℃):-80、-65、-55、-40、-25、-15、-5、+5、+15、+20、+25、+30、+40、+55、+60、+70、+85、+100、+125、+155、+200;②温度变化速率 (℃/分):0.1、0.5、1、3、5,温度变化速率(℃/秒):1、5;③相对湿度(%):10、50、75、90;④压力(毫巴):300000、50000、10000、5000、2000、1300、1060、840、700、530、300、200;⑤压力变化速率(毫巴/秒):1、10;⑥周围介质(水、空气等)与产品的相对移动速度(米/秒):0.5、1、3、5、10、30、50;⑦降雨(毫米/秒):0.3、1、2、3、6、15。
生物环境条件包括霉菌、昆虫和动物等。
①霉菌:对电子产品危害最大的菌种有黄曲霉、黑曲霉、土曲霉、出芽茁霉、宛氏拟青霉、绳状青霉、赭色青霉、光孢短柄帚霉、绿色木霉、杂曲霉、球毛壳霉等。这些霉菌最适宜的发芽温度为20~30℃,相应的相对湿度为80%~90%。
②昆虫:对电子产品危害最大的昆虫有白蚁、蠹虫、木蜂、蟑螂等,在热带地区尤为严重。
③动物:对电子产品危害最大的动物有鼠、蛇、鸟等,在热带地区尤为严重。
机械活性物质环境条件在热沙漠区、砂质海滨区、和干旱内陆区都会发生吹砂现象。在通常情况下,砂粒直径为 0.01~0.1毫米,在砂质荒漠区砂粒平均直径为0.18~0.30毫米。吹尘主要发生在工业烟灰区和干旱风区。灰尘的平均直径在0.0001~0.01毫米间,在多灰尘的极端情况下,浓度可达6×10-9克/厘米3。吹砂和吹尘现象多数出现在气温高、相对湿度小的天气条件下。通常用的试验严酷度等级为:①砂 (克/厘米3):0.01、0.03、0.1、0.3、1、3、10;②尘(毫克/米2·时):1、3、10、30。 化学活性物质环境条件 ①盐雾:空气中悬浮的氯化物液体微粒称为盐雾。盐雾可随风从海上深入到沿海30~50公里处。在船只和海岛上的沉降量每天可达 5毫升/厘米2以上。试验常用的严酷度等级(毫升/厘米2·时)为:1、3、5、10。②臭氧:臭氧对电子产品有危害作用,其常用的试验严酷度等级(毫克/米3)为:0.01、0.03、0.1、0.3、1、3、10、30。③二氧化硫,硫化氢,氨、氮和氧化物:在化学工业部门,包括矿井、化肥、医药、橡胶等的生产场所,空气中含有许多腐蚀性气体,其主要成分是二氧化硫,硫化氢、氨、氮的氧化物等。这些物质在潮湿的条件下可形成酸性、碱性气体,损坏各类电子产品。试验常用的严酷度等级 (毫克/米3)为0.01、0.03、0.1、0.3、1、3、10、30、100、300。 机械环境条件 ①跌落:电子产品在使用、运输过程中都会因不慎而跌落。通常试验用的严酷度等级(米)为0.025、0.050、0.1、0.25、0.5、10、2.5、5.0、10.0。②摇摆:电子产品在装船使用和运输过程中,要承受船只的摇摆运动。通常试验用的严酷度等级(度/6秒)为±5、±10、±25、45。③恒加速度:电子产品在使用和运输中会经受恒加速度力。通常用的试验严酷度等级(米/秒2)为:20、50、100、200、500、1000。④振动:实际的振动条件比较复杂,可能是简单的正弦振动,也可能是复杂的随机振动,甚至可能是正弦振动叠加随机振动。⑤冲击和碰撞:电子产品在运输和使用过程中常会因冲撞而受损。⑥噪声:在织布车间、大型汽轮发电机车间、船舶主机舱等高噪声场所,噪声可达90~100分贝。喷气发动机工作和火箭发射时,噪声可达140~160分贝。常用的试验严酷度等级(分贝)为140、160。 电子产品环境条件
电气环境条件①雷电:湿热带地区雷暴频繁,如印尼爪哇的茂物市年雷暴日(即出现闻雷声或雷雨现象的天数)达 322天。雷电产生的雷电脉冲波形如图。图中T1、T2时间确定的原则是:与明线连接的电子设备,宜用T1=4微秒,T2=300微秒的波形进行试验;与电缆连接的电子设备,宜用T1=10微秒,T2=700微秒;与钢轨或类似传导体连接的电子设备,宜用T1=10微秒,T2=200微秒;模拟对直击雷产生的反击宜用T1=1.2微秒,T2=50微秒。试验时,常用的电压等级(千伏)为:1.5、4、5、6.5。②电气设备的电磁场和机动车辆点火系统产生的电磁场,在距干扰源10米处测得40~1000兆赫频率范围为40分贝(微伏/米)。带电机的电器产生的干扰电压在 0.15~30兆赫范围为66分贝(微伏);在30~300兆赫范围为55分贝(微伏)。当电机功率加大时,干扰电压也将随之增大。高频设备产生的电磁场,在距干扰源 100米处测得的0.15~1000兆赫范围的场强为34~54分贝(微伏/米)。

2. 想请问一下关于电镜的磁场干扰问题,有什么解决方法

1、环境磁场检测仪是检测磁场用的,但是不能排除干扰;配套使用的是主动消磁器,可以排除干扰。

3. 用分析变压器的方法分析三相异步电动机其不同点是什么

1、变压器是静止的电气设备,它的主磁场是脉动磁场,一、二次绕组中的电动势和电流具有相同的频率。而异步电动机则是旋转的电气设备,它的主磁场是旋转磁场,转子旋转时,定子、转子绕组中的电动势和电流有不同的频率;
2、变压器中只有能势的传递,通过主磁场把一次侧的电能传送到二次侧。异步电动机中除了能势的传递之外,还有能量的转换。即定子绕组中的电能通过主磁场传送到转子绕组以后,有相当大的一部分要转换成机械能,从转子轴上输出给机械负载;
3、由于异步电动机中有气隙存在,所以空载电流比变压器大得多。在大功率的电动机中,空载电流占额廹电流的20%~30%;而在小功率的电动机中,可达35%~50%。因此,舁步电动机的空载损耗比变压器大;
4、异步电动机是一种低功率因数的设备。用来速立磁场的空载电流比较大,而且定子、转子之间存在着气隙,在容量相同的条件下,异步电动机中的漏磁通比变压器大得多,亦即它的电抗较大。说明,为建立一定的磁场,异步电动机需要较大的无功功率。当电源电压一定时,电动机主磁通的最大值基本上不变,说明建立磁场所需要的无功功率基本上不变。当电动机的负载很小时,电动机的有功功率很小,无功功率所占比例很大,所以功率因数很低(空载时的功率因数不超过0.2)。随着负载的增加,无功功率所占比重逐渐减小,因而异步电动机的功率因数逐渐增加。在接近额定负栽时达到最大(一般不超过0.9〉。当负载更大吋,由于转差率的增加,使转子电抗增加较多,因而功率因数重新下降。

4. 磁场畸变的原理和方法

磁场畸变是金属零件在地磁场环境下,相对方向不断变化的地磁场对应力集中所引起的磁场畸变的影响至今缺乏一致的结论。通过模拟工件在地磁场环境中绕竖直方向旋转的试验,研究了地磁场等弱场的方向变化与应力集中导致的畸变磁场幅度之间的关系。试验结果显示,固定应力引起的磁场畸变与拉伸作用力方向上的磁场大小呈近似线性的正相关关系,说明在地磁场环境下,应力集中引起的畸变磁场的大小主要受与载荷方向平行的外磁场分量影响。一般解决磁场畸变故障,应该采用补偿绕组的方式进行处理。加装附加磁极以便使畸变的磁通得以补偿。对大型电机,在主磁极的顶部加装补偿绕组可使磁通分布畸变得以修正。

5. 电气设备故障分析处理的步骤有哪些

电气故障排除应遵循的步骤
为避免在二次设备故障查找中少走弯路,必须自始至终的根据故障的特征现象冷静分析,也就是说要在分析判断,综合运用理论的基础上进行,而任何盲目的急躁、蛮干都是解决不了问题的,甚至是越查越糊涂。为此必须遵循以下几个方面:
1.熟悉电路原理。当一台设备的电气控制系统发生故障时.不要急于动手拆卸,首先要了解该电气设备产生故障的原因、经过、范围、现象,熟悉该设备及电气系统的基本工作原理,分析各个具体电路。弄清原理中元件之间的相互联系以及信号在电路中的来龙去脉,仔细分析.结合实际经验。经过周密思考,确定一个科学的检修方案。
2.先电源后机械。电气设备都以电气一机械原理为基础,特别是机电仪一体化的先进设备,机械和电子在功能上有机配合,是一个整体的两个部分。往往电源出现故障,影响了机械系统,许多机械传动部件的功能就不起作用。因此不要被表面现象迷惑,电气系统出现故障并不全部都是电气本身的问题,有可能是机械部件发生故障引起的。
3.先简单,后复杂。一是检修故障要先用最简单易行、日已最拿手的方法去处理,再用复杂、精确的方法。二是排除故障时,先排除直观、显而易见、简单常见的故障,后排除难度较高,没有处理过的疑难故障。
4.先外部检查.后内部处理。外部是指暴露在电气设备外壳或密封件外部的各种开关、按钮、插口及指示灯。内部是指在电气设备外壳或密封件内部的印刷电路板、元器件及各种连接导线。先外部调试,后内部处理,就是在不拆卸电气设备的情况下,利用电气设备面板上的开关、旋钮、按钮等调试检查,压缩放障范围。首先排除外部部件引起的故障,再检修机内的故障,尽量避免不必要拆卸。如有必要拆卸时,必须对机械、电气联系复杂的相关部件、接线端子做上记号,以防止在恢复安装时出错。
5.先静态测试,后动态测量“静态”是指发生故障后,在不通电的情况下,对电气设备进行检修;“动态”是指通电后对电气设备的检修。许多电气设备发生故障检修时,不能立即通电,如果通电的话,会人为扩大故障范围,烧毁更多的元器件,造成不应该的损失。因此,在故障机通电前,先进行电阻的测量,采取必要的措施后,方能通电检修。
6.先公用电路,后专用电路任何电气系统的公用电路出故障,其能量、信息就无法传送、分配到各具体电路,专用电路的功能、性能就不起作用。如一个电气设备的电源部分出故障,整个系统就无法正常运转,向各种专用电路传递的能量、信息就不可能实现。因此只有遵循先公用电路、后专用电路的顺序,才能快速、准确无误地排除电气设备的故障。
7.先检修通病,后攻疑难杂症 电气设备经常容易产生相同类型的故障就是“通病”。由于通病比较常见,积累的经验较丰富,因此可以快速地排除,这样可以集中精力和时间排除比较少见、难度高、古怪的疑难杂症,简化步骤,缩小范围,有的放矢,提高检修速度。

6. 如何测电磁辐射

怎样简单检测到电磁辐射
我教你个简单的方法吧 你拿个收音机(要打开状态的)放胆旁边 如果有收音机有明显的波动就证明有辐射了,波动越大 辐射越大喽!
有什么软件可以检测辐射大小的?
没有,就是有也是骗人的必须用专业工具才能检测
请教如何测量电磁辐射
矢量分析仪 或者网络分析仪 +专用的检测探头
电磁辐射检测
电磁辐射污染又称电子雾污染,高压线、变电站、电台、电视台、雷达站、电磁波发射塔和电子仪器、医疗设备、办公自动化设备和微波炉、收音机、电视机以及手机等家用电器工作时,会产生各种不同频率的电磁波,这些电磁波充斥空间,无色、无味、无形,可以穿透包括人体在内的任何物质,当电磁波辐射的强度超过人体或环境所能承受的限度时就会对人体造成污染。

一些受到较强或较久电磁波辐射的人,已经有了病态表现,主要反映在对心血管系统的影响:表现为头痛,心悸,部分女性经期紊乱,心动过缓,心搏血量减少,窦性心律不齐,白细胞和血小板减少,乏力,免疫功能下降等。

对神经系统的影响:表现为记忆力减退,容易激动,失眠。

视觉系统的影响:为使眼球晶体混浊,严重时造成白内障,是不可逆的器质性损害,影响视力。

对生殖系统的影响:表现为性功能降低,男子 *** 质量降低,使孕妇发生自然流产和胎儿畸形等。

装有心脏起搏器的病人处于高电磁辐射的环境中,会影响心脏起搏器的正常使用。长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变,影响人体的循环系统、免疫、激素分泌、生殖和代谢功能,严重的还会加速人体的癌细胞增殖,诱发癌症以及糖尿病、遗传性疾病等病症,对儿童甚至还可能诱发白血病。

检测方法:HJ/T 10.2-1996 辐射环境保护管理导则-电磁辐射监测仪器和方法

检测规范:HJ/T24-1998《500kV超高压送变电工程电磁辐射环境影响评价技术规范》

标准;

GBZ/T189.1-2007 《工作场所物理因素测量》第1部分:超高频辐射

GBZ/T189.2-2007 《工作场所物理因素测量》第2部分:高频电磁场

以上由北京大元环境检测技术研究中心为您解答,谢谢采纳。。。
室内电磁辐射怎样检测
有很多地方可以检测:1、当地疾控中心。钉、当地环境监测站。3、检测公司。一般都是用全向场强仪或微波漏能检测仪进行检测,仪器应经校准后有计量标识才能使用。
如何检测室内辐射
最简单的方法是用收音机,关闭屋里的所有电器,打开收音机,最好是有多波段的,选几个波段来回到没台(没有信号的)听听杂音,杂音大说明辐射大,反之则辐射小,对比方法是在屋里和在屋子外面。
电磁辐射检测方式
一般使用场强仪(电场和磁场)和紶谱分析仪来测试。测试仪器和方法都可以参考国家标准或规定(GB 8702-88 电磁辐射防护规定,GB 9175-88 环境电磁波卫生标准)。
电磁辐射信号能测出来吗?怎么测的
有测辐射的仪器仪表。如果只是大概测试下辐射量,比如微波炉,电视机等家电,可以使用辐射丁试仪。如果要定性分析辐射源分布,强度,频率等参数要使用频谱分析仪或是信号接收机
有什么东西可以测试辐射的强度吗
你好;

一)家电辐射强度的简单测试——

实验开始,拿一只小收音机,调至中波波段,在各种打开的电器附近移动,干扰越严重表明辐射越大,实验结果如下:

电饭煲辐射极微弱,几乎不产生干扰;

电冰箱机体后部干扰较明显,但还不影响收听;

电视机在一米之外几乎无干扰,在0.2到1米的范围内干扰明显,收音机有很明显的嘈杂声,在0.2米之内干扰极为严重,几乎无法听清广播,而且机体后部比前部要严重,这充分说明电视机的辐射也是比较大的;

电脑的情况和电视机差不多,这里的电脑主要指显示器,一般来说普通显示器的辐射较大,而液晶显示器几乎无辐射;

电磁炉结果相当惊人,在离电磁炉还有还有2米以上的时候,干扰已经相当明显,距离为1米的时候,已经几乎干扰到无法收听的地步,而距离在0.5米之内时,收音机已经无法工作,完全是杂音,正常的广播完全被掩盖,而且还有很短促的杂音有规律的发出,这充分说明电磁炉的辐射量之大另人咋舌。

(二)在家用电器中,电磁辐射危害较大的有电视机、电脑、组合音响、手机、电热毯等。电磁辐射不仅会引起心悸、失眠、心动过缓、窦性心律不齐等症状;长期处于高辐射环境中,会使血液、淋巴液和细胞原生质发生改变,影响人体循环系统、免疫、生殖和代谢功能,严重时还会诱发癌症。

卧室是人们休息的主要场所,而且睡眠时生理机能减缓,人体抵抗力下降,这时如果处于电磁辐射之下,危害更加严重。

家里大大小小的家用电器可以用“堆积如山”这个词了。堆积如山的家用电器,也带来了堆积如山的电磁辐射.

警惕这些电器放入卧室

卧室:“床头音响”勿放床头

床铺大概要算是测量家中电磁场的重头戏。如果长期睡在高磁场的地方,可以想见这影响有多大。由此也可以知道所谓的“床头音响”是不应该放置在床头的。原则上任何的电器用品都应该远离你的床铺。游人总抱怨睡眠质量不好,其实很可能就是宾馆的床铺附近放置了电暖器、电风扇、空气清新机、空调等电器作怪,要知道,一个小型电暖器的磁场就可以高达200mG以上。微波炉:微波对小男孩伤害大一些微波炉的磁场极高。与其他家电用品不同的是,即使仅是插着电没有使用它,有的机型前方按键板的磁场仍可高达30~60mG,使用时的磁场则超过200mG。另外,研究显示,这些泄漏的微波对男性生殖系统的伤害尤其大,因此小男孩更应避开。

冰箱:把散热管上灰尘吸掉

电冰箱是厨房中一个高磁场的所在,特别是在冰箱正在运作、发出嗡嗡声时,冰箱后侧或下方的散热管线释放的磁场更是高出前方几十甚至几百倍(冰箱前后范围测得1~9mG,后方正中央可高达300mG)。如果冰箱的效率不高,嗡嗡声就特别久,也特别大,如果用吸尘器把散热管线上的灰尘吸掉,就会提高冰箱的效率,也减低家中的磁场。

非照明用的小型灭蚊灯,可别小看它,其磁场也可以超过500mG,应该把它放在墙角。

很多家长让孩童在电视前玩耍,或是靠得太近观看,要知道发育中的小孩受磁场的干扰比成人更大。

电脑:液晶显示器辐射较小

如果你的电脑桌太小,迫使你与屏幕的距离太近,不妨将显示器尽可能向后退,当然,换成液晶显示器,辐射就相当小了。至于电脑主机,一般人也容易忽视而常常放置在腿边的位置,以方便插入磁盘。主机前方磁场可超过4 mG,越靠后面磁场越高,所以能放远一点就尽量放远一点。电脑桌下方常常有一堆电线及变压器,要尽可能地远离你的脚。

旧电脑对人体更有害!

手机充电器:与之保持距离

带变压器的低压电源一般磁场都很高,在接线的地方可以亥到300mG以上,不过距离仅30厘米远......

7. 电磁辐射预测方法有哪些

电磁辐射污染的控制
(一)电磁辐射的主要防护措施
为了减小电子设备的电磁泄漏,必须从产品设计、屏蔽与吸收等角度人手,采取治本与治表相结合的方案,防止电磁辐射的污染与危害。
制定防护技术措施的基本原理有以下几个方面:
1.加强电磁兼容性设计审查与管理
纵观中外,无论是工厂企业的射频应用设备,还是广播、通信、气象、国防等领域内的射频发射装置,其电磁泄漏与辐射,除技术上的原因外,主要问题就是设计与管理方面的责任。因此,加强电磁兼容性管理是极为重要的一环。
2.认真做好模拟预测与危害分析
无论是电子、电气设备,还是发射装置,在产品出厂前,均应进行电磁辐射与泄漏
状态的预测与分析,实施国家强制性产品认证制度。大、中型系统投入使用前,还应当
对周围环境电磁场分布进行模拟预测,以便对污染危害进行分析。
3.合理设计设备
1)提高槽路的滤波度
滤波度不好的设备,不仅造成很强的谐波辐射,产生串频现象,影响设备的正常工作,而且也会带来过大的能量损失。因此,在进行设备的槽路设计时,必须精确计算,采取妥善的技术措施,努力提高其滤波度,达到抑制谐波的目的。
2)元件与布线要合理
元件与布线不合理,比如高、低频布线混杂在一起,元件距离机壳过近等,均是造成电磁辐射与泄漏的原因之一。因此,在进行线路设计时,元件与布线必须合理。例如,元件与布线均应高、低频分开,条件允许时宜在高、低频中间实行屏蔽。
目前,在布线上多采用垂直交叉布线或高、低频线路远距离布设并采用屏蔽等技术方案,效果良好。
3)屏蔽体的结构设计要合理
一般要求设备的屏蔽壳设计要合理,比如机壳的边框不能采用直角过渡,而应当采用小圆弧过渡。各屏蔽部件之间尽量采用焊接,特殊情况下采用螺钉固定连接时,应当在两屏蔽材料之间垫入弹片后再拧紧,以保证它们之间的电气性能良好。
4.实行屏蔽
由于设备的屏蔽不够完善,例如以往的设备,有些屏蔽体不是良导体,或者缺乏良好的电气接触;有些设备的结构不严密,缝隙过大;有些设备的面板为非屏蔽材料,因而造成漏场强度很大,有时出现局部发热或喷火现象。由于屏蔽体的结构设计不合理,有部分设备主要辐射单元的屏蔽壳采用了棱角突出的设计,容易引起尖端辐射。如某广播发射机面板处电磁场强度均为30V/m,而其机箱框边为直角,没有小圆弧过渡,结果场强高达50V/m。所以正确、合理的屏蔽,是防止电子、电气设备的电磁辐射与泄 漏,实现电磁兼容的基本手段与关键。
5.射频接地
射频防护接地情况的好坏,直接关系到防护效果的好坏。随着频率的升高,地线要求就不太严格,微波频率甚至不需要接地。射频接地的作用原理,就是将在屏蔽体(或屏蔽部件)内由于感应生成的射频电流迅速导人大地,以便使屏蔽体(或屏蔽部件)本身不再成为射频的二次辐射源,从而保证屏蔽作用的高效率。必须强调的是,射频屏蔽要妥善进行接地,二者构成一个统一体。射频接地与普通的电气设备保护接地极不相同,二者不能互相替代。
6.吸收防护
吸收防护是将根据匹配原理与谐振原理制造的吸收材料,置于电磁场之中,可以把吸收到的波能转化为热能或其他能量,从而达到防护目的。采用吸收材料对高频段的电磁辐射,特别是微波辐射与泄漏抑制,效果良好。吸收材料多用于设备与系统的参数测试。防止设备通过缝隙、孔洞泄漏能量,也可用于个人防护。
7.采用机械化与自动化作业,实行距离防护
从理论上分析,感应电磁场与距离的平方成反比,辐射电磁场与距离成反比。因此可知,屏蔽间距愈大,电磁场强度的衰减幅度愈大。所以,加大作业距离可提高屏蔽效果。
8.滤波
即使系统已经有合适的设计和安排,并考虑了恰当的屏蔽和接地,但仍然有泄漏的能量进入系统,使其性能恶化或引起故障。滤波器可以限制外来电流数值或把电流封闭在很小的结构范围内,从而把不希望传导的能量降低到系统能圆满工作的水平。确定设备滤波要求(或屏蔽、接地要求)的原始依据,是设计人员所采用的正式或非正式的技术规范。关键设备引线上允许的干扰电平必须在设计初期就加以规定,以使电路设计人员知道它们的分机所必须满足的条件。因此应在功能试验阶段和其他阶段连续确定它们是否能符合这些技术规范的要求。然而,当必须采用滤波器的时候。应该注意避免由于各个设计组之间的不协调所引起的重复滤波。
9.正确使用设备
当设备投入使用前,必须结合工艺与加工负载,正确调整各项电气参数,最大限度地保证设备的输出匹配,使设备处于优良的工作条件下。同时,还要加强对设备的维护与保养。例如,l0kW的高频设备,其阳极电流调整到0.8~1.5A之间,栅极反馈电流调整到150~300mA之间,属于正常范围。但在使用上,往往阳极电流大而栅极电流小,这表明了振荡部分本身的耗散功率高,从而使得加热效率很差。因此,为达到最佳的工作状态,即理想的匹配与耦合状态,要求调整阳极电流到谷点,栅极电流到峰点。但要注意工作频率不可过低或过高。若过高,则高频辐射所造成的散射功率过多;若过低,则涡流减小,加热效果差。
10.加强个人防护
增强自我保护意识,加强自我防护。减轻电磁波污染的危害,有许多易于操作的措施,总的原则有两个:其一,尽量增大人体与发射源的距离;其二,由于工作需要不能远离电磁波发射源的,必须采取屏蔽防护的办法。因为电磁波对人体的影响,与发射功率大小、发射源的距离紧密相关,它的危害程度与发射功率成正比,与距离的平方成反比。以移动电话为例,虽然其发射功率只有几瓦,但由于其发射天线距人的头部很近,其实际受到的辐射强度,相当于距离几十米处的一座几百千瓦的广播电台发射天线的辐射强度。好在人们使用的时间很短,一时还不会表现出明显的危害症状,但使用时间一长,辐射引起的症状将会逐渐暴露。有鉴于此,在平时工作和日常生活中,应自觉采取措施,减少电磁波的危害。如在机房等电磁场强度较大的场所工作的人员,应特别注意工作期间休息,适当到远离电磁场的室外活动;家用电器不宜集中放置;观看电视的距离应保持在2~5m,并注意开窗通风;微波炉、电冰箱不宜靠近使用;青少年尽量少玩电子游戏机;电热毯预热后应切断电源;儿童与孕妇不要使用电热毯;平时应多吃新鲜蔬菜与水果,以增强肌体抵御电磁波污染的能力;积极采用个体防护装备。
11.加强城市规划与管理,实行区域控制
根据日本及其他国家的实践,应当强调工、科、医设备的布局要合理,凡是射频设备集中使用的单位,应划定一个确定的范围,给出有效的保护半径,其他无关建筑与居民住宅应在此范围之外建造。大功率的发射设备则应当建在非居民区和居民活动场所之外的地点,实行区域控制和距离防护。全市应划分干净区、轻度污染区与严重污染区,确定重点,逐步加以改造与治理。进一步加强对无线电发射装置的管理,对电台、电视台、雷达站等的布局及新设台址的选择问题,必须严格执行我国制定的《关于划分大、中城市无线电收发信区域和选择电台场址暂行规定》。新建电台不宜建筑在高层建筑物的顶部。只有合理的布局,妥善治理,加强城市规划与管理,努力实现电磁兼容,才是搞好电磁防治的关键。
(二)高频设备的电磁辐射防护
高频设备的电磁辐射防护的频率范围一般是指0. 1~300MHz,其防护技术有电磁屏蔽、接地技术及滤波等。
1.电磁屏蔽
1)电磁屏蔽的机理
电磁屏蔽主要利用了电磁感应原理。在外界交变电磁场下,通过电磁感应,屏蔽壳体内产生感应电流,而这电流在屏蔽空间又产生了与外界电磁场方向相反的电磁场,从而抵消了外界电磁场,达到屏蔽效果。在抗干扰辐射危害方面,屏蔽是最好的措施。通俗地讲,电磁屏蔽就是利用某种材料制成一个封闭的物体,这个封闭的物体有两重作用,它既可使封闭体的内部不受外部的电磁场的影响,同时封闭体的外部区域也不受其内部的电磁场的影响。
电磁干扰过程必须具备三要素:电磁干扰源、电磁敏感设备、传播途径,三者缺一不可。采用屏蔽措施,一方面可抑制屏蔽室内电磁波外泄,抑制电磁干扰源;另一方面也可防止外部电磁波进入室内。电磁屏蔽一般可以分成三种:第一种是对静电场(包括变化很慢的交变电场)的屏蔽,这种屏蔽现象实际上是由于屏蔽物的导体表面的电荷,在外界电场的作用下重新分布,直到屏蔽物的内部电场均为零时才能停止,如高压带电作业工人所穿的带电作业服;第二种屏蔽是对静磁场(包括变化很慢的交变磁场)的屏蔽,它同静电屏蔽相似,也是通过一个封闭物体实现屏蔽,它与静电屏蔽不同的是,它使用的材料不是铜网,而是磁性材料,有防磁功能的手表,就是基于这一原理制造的;第三种屏蔽是对高频、微波电磁场的屏蔽,如果电磁波的频率达到百万赫兹以上,这种频率的电磁波射向导体壳时,就像光波射向镜面一样被反射回来,同时也有一小部分电磁波能量被消耗掉,也就是说电磁波很难穿过屏蔽的封闭体。另外,屏蔽体内部的电磁波也很难穿出去。
屏蔽室按其结构可以分成两类:第一类是板型屏蔽室,是由若干块金属薄板制成,对于毫米波段,只能采用这类屏蔽室;第二类是网型屏蔽室,是由若干块金属网或板拉网等嵌在金属骨架上构成。在制作中,有的是按装配方法,也有按焊接的方法。

8. 急 电功率及磁场详解

用电功率表示消耗电能的快慢.电功率用P表示,它的单位是瓦特,简称瓦,符号是W.电流在单位时间内做的功叫做电功率,也就是说:电气设备与电源连接形成回路,当电流通过电气设备时,电源输出电能,电气设备消耗电能。电能是指一段时间内电源力所做的功。电能的单位是千瓦·小时。
单位时间内电源力所做的功叫做电功率。
1KW=1000W
作为表示消耗能量快慢的物理量,一个用电器功率的大小等于它在1秒(1S)内所消耗的电能.如果在”t”这么长的时间内消耗的电能”W”,那么这个用电器的电功率”P”就是
P=W/t 电功率等于电压与电流的乘积
1瓦=1焦/秒=1伏·安
符号意义及单位
W—电能—焦耳(J) W—千瓦*时(kW*h)
t—时间—秒(s) t— 小时(h)
P—用电器的功率—瓦特(W) P—千瓦(kW)
(两套单位,根据不同需要,选择合适的单位进行计算)
有关电功率的公式还有:P=UI
P=I�0�5R
P=U�0�5/R
每个用电器都有一个正常工作的电压值叫额定电压
用电器在额定电压下的功率叫做额定功率
电功率是表示在一定时间电流做功的快慢
P=W/t .因为W=UIt 所以P=UI磁场(magnetic field ):在磁极或任何电流回路的周围以及被磁化后的物体内外,都对磁针或运动电荷具有磁力作用,这种有磁力作用的空间称为磁场。它和电场相似,也具有力和能的特性。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁力线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。电磁场(electromagnetic field ):有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 地磁场(geomagnetic field ):从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。 地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。 近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。 地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。 地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。 地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。 地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。

9. 怎样分析带电粒子在磁场的运动

以下分析不考虑粒子的重力。(1)带电粒子的速度方向与磁场相同或相反时,不受磁场力作用,粒子做匀速直线运动;(2)若带电粒子速度方向与磁场方向垂直,洛仑兹力充当向心力,粒子做圆周运动qVB=mV V/R解得轨道半径为R=mV/qB ,周期T=2πm/qB (3)若带电粒子运动方向与磁场方向夹角α(0<α<90度),可以将速度分解为一个垂直磁场方向的分速度V1和一个平行磁场方向的分速度V2,粒子的运动可以理解为一个速度为V2匀速运动,和一个与之垂直的匀速圆周运动,合运动的轨迹为一等距螺旋线。

10. 电磁场的主要分析方法有哪些

求磁场强度,安培环路定理
求电动势,法拉第电磁感应定律/动生电动势

阅读全文

与电气设备磁场环境的分析方法相关的资料

热点内容
柠檬草茶的功效与作用及食用方法 浏览:331
个税计算方法地区 浏览:144
吉列剃须刀使用方法 浏览:875
如何解释命运的方法 浏览:918
肩肌训练方法 浏览:396
2052除以57的简单方法 浏览:74
胸软筋挫伤治疗方法 浏览:392
烤猪肉的简单腌制方法 浏览:341
大腿外侧冷的原因和解决方法 浏览:51
ddc桩工程计算方法 浏览:689
指针万用表使用方法图解 浏览:372
差热分析最佳方法 浏览:631
收被子方法视频 浏览:123
记忆宫殿方法如何训练的坏处 浏览:58
材料进场验收的基本方法有哪些 浏览:382
惠普后视镜安装方法 浏览:402
体脂率是多少计算方法 浏览:200
刀塔2攻速计算方法 浏览:419
c编程简单方法 浏览:446
厂房吊顶龙拉杆的安装方法 浏览:77