导航:首页 > 研究方法 > 流体力学研究的描述方法

流体力学研究的描述方法

发布时间:2023-01-21 03:25:07

① 多相流体力学的研究方法

主要有半经验物理模型和统观实验法,数学模型及数值计算法,局部场的实验量测法等。 半经验物理模型和统观实验法 半经验物理模型指以实验观测为基础对多相流的流动形态作出半经验性的简化假设以便进行简化分析计算,如假定多相流为一维柱塞流 (plug flow)等。统观实验法指只研究外部参量变化规律,例如多相流在管道中的阻力或平均传热量与流速间的关系、平均的体积分数等,不研究多相流中各种变量的场分布规律。
数学模型和数值计算法 对多相流基本方程组中各个湍流输运项、相间相互作用项和源项的物理规律以实验或公设为基础提出一定的表达式,使联立的方程组封闭,能够求解,这就是建立数学模型。联立的非线性偏微分方程组只能用数值法,如有限差分方法或有限元法求解。已经制定了二维和三维多相湍流流动计算程序软件,可以初步用于计算旋风除尘器、煤粉燃烧室和气化室、液雾燃烧室、反应堆中水-汽系统以及炮膛中气-固或气- 液各相中的压力、速度、温度、体积分数等的分布。目前,正在研制用于工程中最优化设计的软件。
实验量测法 研究多相流的流动、传热、传质以及化学反应等规律时,观测其流型,测量各相的速度、流量、尺寸、浓度、体积分数或含气率、温度分布等十分重要。观测流型常常用高速摄影、全息照相和电测法等。测量颗粒尺寸分布可用印痕或溶液捕获法、光学或激光散射法、激光全息术、激光多普勒法 (LDV法)等。测量流量、速度、浓度、重量含气率分布等可以用 LDV法、取样探针、电探针、光导纤维探针、分离器法等。测量平均截面含气率可用放射性同位素法、γ射线法、分离器法等。

什么是流体力学流体力学的研究方法

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。那么你对流体力学了解多少呢?以下是由我整理关于什么是流体力学的内容,希望大家喜欢!

流体力学的理论基础

将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。

由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。

与流体动力学平行发展的是水力学(见液体动力学)。这是为了满足生产和工程上的需要,从大量实验中总结出一些经验公式来表达流动参量之间关系的经验科学。

使上述两种途径得到统一的是边界层理论。它是由德国L. 普朗特在1904年创立的。普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。

流体力学的研究方法

可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:

现场观测

对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。但现场流动现象的发生不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。

实验室模拟

在实验室内,流动现象可以在短得多的时间内和小得多的空间中多次重复出现,可以对多种参量进行隔离并系统地改变实验参量。在实验室内,人们也可以造成自然界很少遇到的特殊情况(如高温、高压),可以使原来无法看到的现象显示出来。现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。但是,要使实验数据与现场观测结果相符,必须使流动相似条件(见相似律)完全得到满足。不过对缩尺模型来说,某些相似准数如雷诺数和弗劳德数不易同时满足,某些工程问题的大雷诺数也难以达到。所以在实验室中,通常是针对具体问题,尽量满足某些主要相似条件和参数,然后通过现场观测验证或校正实验结果。

理论分析

根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:

①建立“力学模型”

一般做法是:针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质(见连续介质假设)、牛顿流体、不可压缩流体、理想流体(见粘性流体)、平面流动等。

②建立控制方程

针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。流体运动在空间和时间上常有一定的限制,因此,应给出边界条件和初始条件。整个流动问题的数学模式就是建立起封闭的、流动参量必须满足的方程组,并给出恰当的边界条件和初始条件。

③求解方程组

在给定的边界条件和初始条件下,利用数学方法,求方程组的解。由于这方程组是非线性的偏微分方程组,难以求得解析解,必须加以简化,这就是前面所说的建立力学模型的原因之一。力学家经过多年努力,创造出许多数学方法或技巧来解这些方程组(主要是简化了的方程组),得到一些解析解。

④对解进行分析解释

求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。

数值计算

前面提到的采用简化模型后的方程组或封闭的流体力学基本方程组用数值方法求解。电子计算机的出现和发展,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性。数值方法可以部分或完全代替某些实验,节省实验费用。数值计算方法最近发展很快,其重要性与日俱增。

四种研究方法之间的关系:

③ 流体运动学的流动的分析描述

在流体力学中描写运动的方法有两种,即拉格朗日方法和欧拉方法。拉格朗日方法着眼于流体质点(见连续介质假设),设法描述每个流体质点的位置随时间变化的规律。通常利用初始时刻流体质点的直角坐标或曲线坐标a、b、c作为区分不同流体质点的标志。流体质点运动规律可表示成方程(1)的形式:

其中 是流体质点的矢径;t为时间;变数a、b、c、t统称为拉格朗日变数。对时间 t求式(1)的一次偏导数和二次偏导数,可分别得到流体质点的速度矢量相加速度矢量。欧拉方法着眼于空间点,设法在空间的每一点上描述出流体运动随时间的变化状况。通常用速度矢量v表示流体运动。于是欧拉方法中流体质点的运动规律可表为下式:

变数 称为欧拉变数。式(2)确定的速度函数是定义在时间t和空间点上的,所以它是场。由式(2),可按下式求出加速度(见随体导数):

虽然拉格朗日方法和欧拉方法都能描述流体的运动,但在流体力学中,人们广泛采用欧拉方法,较少采用拉格朗日方法,这是因为用欧拉变数得到的是场,可以运用研究得很充分的场论知识;而在拉格朗日方法中,由于式(1)不是场,所以无此优点。其次,在欧拉方法中,由于加速度是一阶导数,所以运动方程组是一阶偏微分方程组,它比拉格朗日方法中的二阶偏微分方程组容易处理。

④ 流体的研究内容

流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。
风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。
生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。
因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
描述流体的两种方法——拉格朗日方法和欧拉方法
拉格朗日方法,着眼于流体质点。设法描述出每个流体质点自始至终的运动过程,即它们的位置随时间变化的规律。如果知道了所有流体质点的运动规律,那么整个流体的运动状况也就知道了。
欧拉方法,其着眼点不是流体质点,而是空间点,设法在空间中的每一点上描述出流体运动随时间的变化状况。

⑤ 流体力学的研究方法

可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:
①建立“力学模型”
一般做法是:针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质(见连续介质假设)、牛顿流体、不可压缩流体、理想流体(见粘性流体)、平面流动等。
②建立控制方程
针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。流体运动在空间和时间上常有一定的限制,因此,应给出边界条件和初始条件。整个流动问题的数学模式就是建立起封闭的、流动参量必须满足的方程组,并给出恰当的边界条件和初始条件。
③求解方程组
在给定的边界条件和初始条件下,利用数学方法,求方程组的解。由于这方程组是非线性的偏微分方程组,难以求得解析解,必须加以简化,这就是前面所说的建立力学模型的原因之一。力学家经过多年努力,创造出许多数学方法或技巧来解这些方程组(主要是简化了的方程组),得到一些解析解。
④对解进行分析解释
求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 前面提到的采用简化模型后的方程组或封闭的流体力学基本方程组用数值方法求解。电子计算机的出现和发展,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性。数值方法可以部分或完全代替某些实验,节省实验费用。数值计算方法最近发展很快,其重要性与日俱增。
四种研究方法之间的关系:
解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据以建立流动的力学模型和数学模式;最后,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。

⑥ 流体力学中拉格朗日法和欧拉法有什么不同

1、含义上的区别

拉格朗日法,又称随体法,跟随流体质点运动,记录该质点在运动过程中物理量随时间变化规律。

欧拉法,又称流场法,是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。

2、特性上的区别

拉格朗日法基本特点是追踪流体质点,以某一起始时刻每个质点的坐标位置,作为该质点的标志。

欧拉法的特点是单步,显式,一阶求导精度,截断误差为二阶。基本思想是迭代,逐次替代,最后求出所要求的解,并达到一定的精度。

3、作用上的区别

拉格朗日法可直接运用固体力学中质点动力学进行分析,综合所有质点的运动,构成整个流体的运动。

欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。采用区间两端的函数值的平均值作为直线方程的斜率,改进欧拉法的精度。

⑦ 地球流体力学的研究方法

地球流体力学同大气动力学或海洋动力学之间并无明确的界限。一般说,地球流体力学研究的对象较广并侧重一般规律,主要任务是建立由自然界流体运动抽象出来的模式和研究如何抽象的方法。而对大气运动和海洋运动的具体形态的研究则分别属于大气动力学和海洋动力学的范围。
地球流体力学的研究方法有理论分析法、模拟实验法和数值试验法。理论分析法是通用的。模拟实验法对研究地球流体运动的机理很有用,但难于在实验室中复制大气运动和海洋运动,因为不可能同时满足众多的相似条件。数值试验法起着愈来愈重要的作用,因为自然界流体运动中各种现象往往同时并存,起作用的因子很多,机制极其复杂,非做数值计算难于得到较精确的结果。此外,实地观测虽也是认识自然界流体运动的基该方法,但它属于气象学和海洋学的范围,不包括在地球流体力学之中。

⑧ 流体力学的研究方法有哪些各有何特点

进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:现场观测现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。实验模拟不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。理论分析理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:首先是建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。数值计算其次是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。在流体力学理论中,用简化流体物理性质的方法建立特定的流体的理论模型,用减少自变量和减少未知函数等方法来简化数学问题,在一定的范围是成功的,并解决了许多实际问题。对于一个特定领域,考虑具体的物理性质和运动的具体环境后,抓住主要因素忽略次要因素进行抽象化也同时是简化,建立特定的力学理论模型,便可以克服数学上的困难,进一步深入地研究流体的平衡和运动性质。20世纪50年代开始,在设计携带人造卫星上天的火箭发动机时,配合实验所做的理论研究,正是依靠一维定常流的引入和简化,才能及时得到指导设计的流体力学结论。此外,流体力学中还经常用各种小扰动的简化,使微分方程和边界条件从非线性的变成线性的。声学是流体力学中采用小扰动方法而取得重大成就的最早学科。声学中的所谓小扰动,就是指声音在流体中传播时,流体的状态(压力、密度、流体质点速度)同声音未传到时的差别很小。线性化水波理论、薄机翼理论等虽然由于简化而有些粗略,但都是比较好地采用了小扰动方法的例子。每种合理的简化都有其力学成果,但也总有其局限性。例如,忽略了密度的变化就不能讨论声音的传播;忽略了粘性就不能讨论与它有关的阻力和某些其他效应。掌握合理的简化方法,正确解释简化后得出的规律或结论,全面并充分认识简化模型的适用范围,正确估计它带来的同实际的偏离,正是流体力学理论工作和实验工作的精华。流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了“计算流体力学”。从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。综合方法解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据,以建立流动的力学模型和数学模式;最后,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。

阅读全文

与流体力学研究的描述方法相关的资料

热点内容
拆盲袋的方法和步骤顺序 浏览:508
小孩的数学教学方法 浏览:368
怎么备份系统的方法 浏览:580
三钩的使用方法图 浏览:833
塞纳小桌板安装方法 浏览:955
柠檬草茶的功效与作用及食用方法 浏览:331
个税计算方法地区 浏览:144
吉列剃须刀使用方法 浏览:875
如何解释命运的方法 浏览:918
肩肌训练方法 浏览:396
2052除以57的简单方法 浏览:74
胸软筋挫伤治疗方法 浏览:392
烤猪肉的简单腌制方法 浏览:341
大腿外侧冷的原因和解决方法 浏览:51
ddc桩工程计算方法 浏览:689
指针万用表使用方法图解 浏览:372
差热分析最佳方法 浏览:631
收被子方法视频 浏览:123
记忆宫殿方法如何训练的坏处 浏览:58
材料进场验收的基本方法有哪些 浏览:382