❶ 如何分析静电场的散度和旋度
静电场的电场线没有涡旋结构,是无旋场,即旋度为0;
静电场的电场线发于正电荷止于负电荷,是有源场,散度电荷密度除以真空电容率.
要证明上面的静电场有源,需要用高斯定理;证明无旋的性(或者说静电势能的有位性),直接用库仑定理+电场叠加原理.具体证明可参看大学物理教材.
❷ 利用高斯定理求解静电场分布的步骤
利用高斯定理求解静电场分布的步骤:先分析电荷分布对称性 球对称性点电荷、电荷均匀分布的球面、均匀带电球 体 轴对称性 无限长均匀带电棒、无限长均匀带电圆柱面圆柱体。
然后分析电场强度分布对称性 球对称性电场强度方向沿半径方向 轴对称性 电场强度方向沿垂直于轴线方向,或者沿垂 直于面的方向,以上为步骤。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
依据是库伦定律,F=kq1q2/(r*r),
方法是在电场当中放置一个检验电荷,一般为正电荷,测量该电荷的受力大小和方向,则该点的电场的方向就是受力方向,电场大小为受力大小除以检验电量
❹ 静电场测试仪的工作原理是什么
测量原理
做为测量对象的静电,可认为有两种类型。一种是工厂某地已经产生的;另一种是在实验室的基础研究中使之产生的。前者需要正确地掌握带电状况,考虑此时所具有的诸条件,找出排除故障的适当方法。后者要求能准确地控制实验条件,得到有再现性的实验结果。为此,必须充分理解测量的方法,进而预先研究分析产生静电的因素,也是完全必要的.
1.1感应起电
感应起电通常是对导体来说的。这里介绍的是电介质在静电场中由极化而使其带电的方法,也把它称为感应起电。在电场中,电介发生极化,极化后的电介质,其电场将周围介质中的某种自由电荷吸向自身和电介质上与之符号相反的束缚电荷中和。外电场撤走后,电介质上的两种电荷已无法恢复中性,因而带有一定量的电荷,这就是感应起电.
1.2放电衰减
物体带电后,内部电荷的逸散符合指数衰减规律。
Q=Q0e-t/ε0εrρr (1)
将电量衰减的时间常数τ=ε0εrρr代入(1)式得:Q=Q0e-t/τ (2)
电量衰减时间常数τ可用静电衰减测量仪来测量,而在实际的纤维和织物的静电测试中,人们直接取电量衰减至原测试值的一半(Q=1/2Q0)时所用的时间,也就是静电半衰期t1/2表征静电荷的逸散能力。它是衡量纤维消除静电荷性能的一个重要指示,将式(2)加以变换得
τ=t/lnQ0/Q (3)
以Q=Q0/2代入式(3)得到静电半衰期t1/2与电量衰减时间常数τ之间的关系:
t1/2= 1/1.44·τ=0.69τ
2.试验方法
使被测试样起电的方法有很多种。在试验当中,需要一种能够提供稳定的并能够穿透一定空间(空气)的电源,以及在检测中受环境的影响比较小的条件下进行。这种办法就是电晕放电和比较电极法检测。.
2.1电晕放电
需要说明的是场带电和扩散带电需要高浓度的单极性离子。由于它们相互排斥和高的迁移率,这种离子寿命很短。因此要用这些带电方法,必须要连续不断地产生离子。放射性的放电、紫外线照射、火焰及电晕放电能在空气中产生离子。只有最后一种方法——电晕放电能产生高浓度的单极离子以使试样保持稳定带电状态。
为产生电晕放电,必须建立一个不均匀的电场。像针与平板之间、空气和其它通常是良好的绝缘体,但在电场强度足够高的区域中空气受到电离并成为可导电的。根据场的几何形状不同,这种电荷可能是电弧放电或电晕放电。
在电晕区域,电子被加速到相当高的速度,可以在撞击一个空气分子时把一个电子撞出来,于是产生一个正离子和一个电子。在电晕区域内是以自维持雪崩的形式发生这个过程,从而在导线周围产生了浓密的自由电子云和正离子云,这叫电晕放电。.
2.2非接触式的测量方法
静电电位的测量分为接触式和感应式两种。
由于物体所带的静电大都有静电压高,而电流小,且一次性损耗后不易再补上的特点。所以接触性仪表大都采用了光反射法,不仅体积较大,量度不精确,使用范围也受到了限制。
直接感应仪表测量法是用电容分压原理。它的精度取决于电压表固有电容和测试板对地的分布电容,且感应电荷会通过表内电阻而逐步泄漏。因此,电压表上读出的电压将随时间逐渐衰减。
比较法是一种非接触的静电测试方法。它利用试样在旋转时出现的带电荷与不带电荷的交替变换,给探头一个交变信号
3.峰值、半衰期的测量
3.1放电电压和电晕放电时间
如果放电针是正极性的,电子将迅速朝放电针运动,同时正离子将从放电针被推向试样形成一个单极性的离子风,在连续放电30秒钟后,试样上所获得的电压就是被测织物所带的静电峰值电压(试验表明只有使用功率足够的高压变压器,才能在30秒时间内提供稳定1万伏放电电压)。
前面已经阐明,仪器的高压尖端放电情况处于电晕放电阶段,空气中原始电离情况对仪器工作状况有一定的影响。在电晕放电阶段,要求外电场有一定程度,小于一定值,放电空间的这种电子增值过程不可能维持。我们在对各种试样(棉、毛、丝、麻、涤纶、锦纶及人造棉)进行实例的情况下,0.5kN/mm场强比较合适,如16mm放电距离,要达到0.5kN/mm场强,加于放电头上的电压达到8000V即可。而选20mm放电距离,要达到上述同样的场强,就须加10 000伏电压。
电介质在静电场中任何形式极化过程建立具有一定极化强度和稳定情况都是需要一定驰豫时间的。由于装置上的电场是周期性地加给试样的,因此,延长了极化终了时达到放电状态所需要的时间,再加上高压装置中滤波电容器的充电时间,因此必须有足够的放电时间使试样带电稳定。
一般来说,放电电场越强,建立稳定静电测试值所需的时间越短(离子云浓度大)。静电效应显着的蛋白质纤维和合成纤维比静电效应小的纤维素纤维,建立稳定静电测试值所需的时间短些。
我们对不同品种的纤维、纱线、织物进行了实测。其结果是:为满足不同的试样要求,将测定的放电时间选定为30秒是可行的。.
3.2半值时间测量
所谓半值时间是带电体电电位衰减为初始值Vo的一半所需时间(见图3),用符号t1/2表示。由式u=Voet/τ并代入条件t= 1/2t,u= Vo/2 则有: Vo/2=Voet1/2/τ (5)
整理后得:
t1/2=τln2 (6)
根据规定〔1〕,时间常数的5倍时间称为松驰时间,即:
ts=5τ (7)
可以算出,经过时间t后,电压衰减为原数值的0.67%,可以认为电压已经消失。
其测试方法是:旋转试样盘的上方除了放电针外,还有一个测试探头(距离试样上方15mm),可以一边施加高压,一边观察试样上感应电压的情况。当高压放电针结束放电后,立即记录下此时电压,即峰值电压Vo(见图3)。可在示波器上显示出一组脉冲电压波形。而自动记录仪进入的信号,因经整流滤波,记下的是包络线。从图形中可以量出半值时间t1/2的大小,再应用式(6)和(7)求出τ和t,也可以利用数字显示仪表在半峰值电压时自动记录下此时电位和半值时间。这种仪器自动化程度高,操作更加简便一些。
还有一种仪器是在试样旋转园盘的上方只有一个放电探头,待放完电后把放电探头移走,再移入一个测试探头。这种仪器具有体积小,封闭性好的特点。但它不能反映图(3)中曲线的上升部份对应测量的开始阶段(即每当试样经过电晕针下面时,由于电晕针对试样不断放电,使电压逐渐上升,直到某个饱和值Vo)。由于被测试样的峰值电压开始衰减成指数曲线形式,而特别是换测量探头的时间又不可能在瞬间完成,这个时间差使峰值电压的测量大大降低了,是不够准确的。其测试的图形开始阶段也是不连续的。因此半值时间的测量也受到影响
5更换探头测试仪图器的半值时间
4.试验环境温湿度对测量的影响
空气相对湿度及纤维、纱线、织物本身的回潮率,对静电值影响很大,必须加以控制。这是因为一方面试验环境的温湿度影响电晕放电的强弱,另一方面纤维的导电性能吸湿回潮后影响纤维的静电性能,对亲水性纤维及其制成品必须要注意。
试样
相对湿度
33%
64%
70%
棉
1700
790
250
人造棉
900
390
120
麻
1500
240
120
丝
1100
700
500
毛
4300
3000
2900
涤纶
2900
2600
2100
锦纶
3700
3400
3000
注:测试温度19℃,放电电压8000伏
试验时的温湿度问题。对合纤疏水性纤维来说影响要小一些。
以上试验表明:环境相对湿度高时,带电材料周围的离子化比较容易,电荷向外界的放失速度变快。同时,相对温湿度高,使纤维的吸湿率增高,导致纤维本身的比电阻降底。羊毛在50%R.H以下,棉花在30%R.H以下,有可能发生有危害性的静电效应。
在相对湿度相同的条件下,一般来说静电值随温度的下降略有增加,这是因为温度的降低,分子的热骚动有所减弱之故。目前的研究主要是在室温附近。在常温条件下,这种减弱对测试值的影响远不及湿度影响明显,可以不做重点因素考虑。
参考资料:网络知道
❺ 基于有限元方法的三维静电场分析
现代电磁研究已深入到各个领域。近几年随着5G,新能源汽车,IoT等新技术的快速发展,电磁场分析的作用也显得越来越重要。电磁场仿真已经广泛地、成功地应用于电磁性能预测、设计的多个方面。在合理设置仿真模型和求解参数的前提下,电磁场仿真已经可以在很多方面替代实验,为电磁器件的快速研发提供巨大的帮助。
静电场虽然是电磁场分析中较为简单的一类,但其应用广泛,并且是其他电磁类型的分析基础。静电场作为电磁学的重要组成部分,与磁场一样具有抽象性,不容易理解的特点,特别是处于静电场中的导体所表现出的静电感应现象,也使得静电场分析变得更加复杂。
使用有限元仿真技术,可以快速准确的计算出很多特定场合或工况下的静电场分布。比如计算电子元器件如电容电感分析,各种类型电缆的设计,电磁遮蔽,电磁兼容,雷电防护装置设计等都有很多应用。尤其是随着电器设备容量和工作电压的提高,电场仿真的则显得更为必要,电场仿真能够预测设备的绝缘性、放电和击穿的可能性等性能指标。
三维静电场的数值计算
所有的电磁场计算都是基于Maxwell控制方程组的,而此方程组的全角式对于计算静电场显得过于庞大,经过一系列的简化过后,静电场的控制方程可以描述为基于电势的泊松方程:
其中,\phi是电势,在国际单位制下的单位是伏特,\epsilon是介电常数,\rho是电荷源,P为极化矢量。
电磁场数值计算方法中,常用的有时域有限差分法(FDTD),矩量法(MoM),有限元法(FEM)以及非连续伽辽金法(DG)等等。对于静电场问题,从控制方程可以看出其本质上一种椭圆形问题,因此有限元方法是其求解的最好的方法之一。目前市面已经有一些通用和专用的有限元计算软件支持了电磁计算。WELSIM也已经支持了3D线性静电场的计算。
静电场分析中常用的材料参数是介电常数,真空中的介电常数为 8.854e-12 F/m。实际工程也常会使用相对介电常数来表示材料的介电性能。
常用的边界条件与电源激励有:
1)电压
边界的电压值,也是电势值,是电磁分析中常见的边界条件。属于第一类边界条件。
2)法向电位移
法向电位移的数值等于表面电荷密度。实际工程中,由于很少知道表面电荷密度量,除非已知为零,因此很少使用。如果表面电荷密度为零,则不需要设置,因为属于自然边界条件。
3)电荷或电荷密度
一种电场源,为场提供电势激励,可以是正电荷,也可以是负电荷。一般为点或者球形电荷。
4)电极化矢量
极化矢量函数可以做为电场源。通过给定的电压堆而产生极化。一般需要给定位置和大小以及极化量的大小。
在WELSIM中进行3D静电场有限元分析
在WELSIM中进行静电场分析非常简单便捷,只需要一些简单的操作就可以快速的得到电场分布结果。
1)创建物理环境
新建一个工程,并在有限元工程(FEM Project)的属性窗口中,设置物理类型为电磁场,分析类型保持默认的静电场不变。
2)定义材料
静电场分析中,主要的材料参数是介电常数,这里我们可以打开系统自带的默认空气材料设置,其中已经将相对介电常数设置为1,直接使用即可。
3)建立模型
建立一个10x10x10 cm3 大小的立方体场域,用来模拟电场分布。并设置立方体材料为空气。
4)划分网格
设置最大单元为0.5cm,点击网格划分。由于WelSim的电磁场求解器会根据计算类型自动使用高阶单元,所以这里无需设置高阶单元,Tet4单元即可。划分完毕后,一共生成9484个节点和54119个Tet4单元。
5) 施加边界条件或激励
当前版本的WELSIM对于静电场分析已经支持了电压,零电势(接地),和表面电荷密度边界条件,以及点电荷,球形电荷,和极化矢量源。
这里我们设置
1)外围零电势模拟场无穷远处。
2)在场内部添加两个点电荷和一个圆柱体电极化体。
点电荷大小分别为 0.1mC 和 -0.1mC,电极化的大小为 0.1mC/mm2。点电荷和极化矢量圆柱体的位置如图所示:
6)求解
点击求解按钮即可进行计算。
7)评价计算结果。
添加一个电压结果,可以快速查看电势分布结果。配合剖分面等后处理工具,可以直观查看内部切面的电势分布情况。这里所得到的的最大和最小电压值分别为2.76e9和-2.723e9 mV。电势的分布也和点电荷与极化矢量设置吻合。
除了电势以外,WELSIM还支持电场和电位移等结果。
最后给出软件实际操作视频,以供参考。
❻ 如何测试静电
使用静电测试仪进行测试。
静电测试仪适用于测量带电物体的静电电压(电位),如导体、绝缘体、及人体等的静电电位。还可测量液面电位及检测防静电产品性能等... 是一非接触式手提静电场测试仪,内置微控处理器,测量精确,但体积轻巧和使用简便。
测试静电的方法 :
1、防静电接地线全部使用6m㎡多股铜芯绝缘线,每楼层或适当区段用铜排或40A以上开关,闸刀与主干线相连,以利检查维修。
2、防静电接地线缆应与设备外壳,工作台铁架,工作灯架等良好绝缘,防止短路,搭连或破皮连接。
3、于分段铜排或开关的"干线端",另铺一条检查线.(1.5~2m㎡即可),每车间设2~3检查点,固定好,标识清楚。
4、测量:使用指针式万用表,电阻档。
各防静电测试点与防静电地线间电阻5~15Ω,理想应为0Ω.但实际测得为2m㎡,导线从测试点到总结点电阻+6m㎡,导线从总结点到被测点电阻之和,这一值约5-15Ω且基本不变,如测量结果趋于无穷大,是为防静电地线或测量线有一条断线,应及时修好。
防静电接地线与设备地间电阻,这一阻值为防静电地线本身线阻+设备地线本身线阻+两地线间地电阻组成.但两接地线间由于地面干湿程度,尤其地电流,每时每刻大小方向频率等都在变。
而且主要决定测量结果,故只能用指针表测量,且其值从十几欧到几百K都算正常,仅说明两地间未短路也未开路即可。
(6)电准静电场分析方法扩展阅读:
注意事项:
静电接地的检测,应在被检测对象不带电的条件下进行。被测对象包括设备中的接地系统、非金属材料、防静电产品等。
设备接地测量应符合下列规定:
设备的金属零部件之间、设备与专用接地极之间的接触电阻、跨接电阻,可用普通万用表测量。
设备接地极电阻,包括接地级与土壤的接触电阻以及土壤的流散电阻,可用ZC系列接地摇表测量。
接地板与电流电极间距应为40m,电压电极与电流电极间距应为20m。
设备中的非金属器件(如用于接地的非金属零件、绝缘法兰等)的电阻测量规定如下:
当电阻小于1MΩ时,可用普通万用表或高阻计测量;当电阻大于或等于1MΩ时,可用500V以上高阻计或兆欧表测量。
❼ 静电场怎样求电场强度
无限长均匀带电圆柱面的内部的电场强度为零,外部的电场强度强度计算如下图,可以取圆柱状的高斯面,只有侧面有电通量,代入高斯定律可得电场强度。
矢量分析的重要定理之一。穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。
如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。
它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。
对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。
❽ 静电场中电势有哪几种算法
有关电势的公式:φ=ε/q
❾ 模拟静电场测绘有哪两种方法,各有什么优缺点
模拟静电场测绘有哪两种方法,各有什么优缺点
检流计好,电压表要读数,相比之下误差比较大。
根据静电场的高斯定理:
静电场的电场线起于正电荷或无穷远,终止于负电荷或无穷远,故静电场是有源场.
从安培环路定理来说它是一个无旋场.
根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.
根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即=(/,其中、为两电荷的电荷量(不计正负性)、为静电力常量,约为9.0e+09(牛顿·米2)/(库伦2;),r为两电荷中心点连线的距离。注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。是实际带电体的理想化模型。当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。