导航:首页 > 研究方法 > 描述性分析方法

描述性分析方法

发布时间:2023-01-16 19:32:25

A. 数据分析之描述性分析

SPSS的模块按功能可以分为三部分:描述性分析、推断性分析、探索性分析。 1.描述性分析主要是对所收集的数据进行分析,得出反映客观现象的各种数量特征的一种分析方法,它包括数据的集中趋势分析、数据离散程度分析、数据的频数分布分析等,描述性分析是对数据进一步分析的基础。 2.推断性分析是研究如何根据样本数据来推断总体样本数量特征,它是在对样本数据进行描述统计分析的基础上,对研究总体的数量特征做出推断。常见的分析方法有假设检验、相关分析、回归分析、时间序列分析等方法。 3.探索性分析主要是通过一些分析方法从大量的数据中发现未知且有价值信息的过程,它不受研究假设和分析模型的限制,尽可能地寻找变量之间的关联性。常见的分析方法有聚类分析、因子分析、对应分析等方法。频率分析主要通过频数分布表、条形图和直方图,以及集中趋势和离散趋势的各种统计量来描述数据的分布特征,以便我们队数据的分布特征形成初步的认识,才能发现隐含在数据背后的信息,为后续数据分析提供方向和依据。 频率分析包括分类变量的频率分析和连续变量的频率分析。在SPSS里都采用频率表来做频率分析。对于连续变量数据的分析,描述的统计量包括百分位值、集中趋势、离散趋势和数据分布特征。 1.百分位值 百分位值主要用于对连续变量数据离散程度的测量,常用的百分位值是四分位数。它是将变量中的数据从小到大排序后,用三个数据点将数据分为四等份,与这三个点相对应的数值称为四分位数。由于是等分整个数据,这三个数据点分别位于数据的25%(第一四分位数)、50%(第二四分位数,也就是常用的中位数)和75%(第三四分位数)的位置。 2.集中趋势 集中趋势反映了数据向其中心值聚集的程度,是对数据一般水平的概括性度量,主要通过平均值、中位数和众数来表示。 3.离散趋势 离散趋势反映了数据远离中心值的程度,是衡量集中趋势值对整个数据的代表程度。数据的离散度越大,说明集中趋势值的代表性越低;反之,数据的离散程度越接近于0,说明集中趋势值的代表性越高。数据的离散程度主要通过范围、标准差和方差来表示。 4.分布特征 对于连续变量,在样本量较大的情况下,研究若你有会提出假设,认为数据应当服从某种分布,每种分布都可以采用一系列的指标来描述数据离散分布的程度。在图形的显示上,对于分类数据,如果需要了解数据分布,则可以选择条形图;如果需要了解数据结构,则选择饼图;而对于连续数据,选择直方图。 条形图和直方图的区别: (1)条形图用于展示分类数据,直方图用于展示连续数据; (2)条形图是用条形的长度表示各类别频数的多少,直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度表示各组的组距; (3)直方图分组数据具有连续性,所以直方图的各矩形通常是连续排列的,而条形图表示分类数据,则是分开排列; 描述分析与频率分析的不同之处在于: (1)描述分析提供的统计量仅适用于连续变量,频率分析既可用于分析连续变量,也可用于分析分类变量; (2)描述分析无相应统计图绘制输出,并且提供计算的统计量也相对较少。 但在描述性分析里可以进行Z标准化。 交叉表示一种行列交叉的分类汇总表格,行和列上至少各有一个分类变量,行和列的交叉处可以对数据进行多种汇总计算,如求和、平均值、计数等。交叉表分析是用于分析两个或两个以上分类变量之间的关联关系,以交叉表格的形式进行分类变量间关系的对比分析。它的原理是从数据的不同角度综合进行分组细分,以进一步了解数据的构成、分布特征,它是描述分析常用方法之一。类似于EXcel的数据透视表。 频率分析、描述分析都是对单个变量进行分析,交叉表可以对多个变量在不同取值情况下的数据分布情况进行分析。从而进一步分析变量之间的相互影响和关系。 在SPSS里,多选题也称为多重响应集,意为使用多个变量记录答案,其中每个个案可以给出多个答案。 多选题数据录入的方式有两种:二分法和多重分类法。 (1)二分法:把每一个相应选项定义为一个变量,每一个变量值均做这样的定义——“0”代表未选,“1”代表选中,即对于被调查者选中的选项录入1,对未选的选项录入0。 (2)多重分类法:事先定义录入的数值,比如1,2,3,4,5分别代表选项A、B、C、D、E,并且根据多选题限选的项数确定应录入的变量个数。例如限选3项,那么需要设立3个变量,如果调查者在该题选ACD,则在3个变量下分别录入1、3、4。 在通常情况下,如果多选题没有限定选项个数,并且选项个数不多时,可以采用二分法录入。如果对选项的个数加以限定,则改用多重分类法进行录入。 常见的表格类型有叠加表、交叉表和嵌套表。 (1)叠加表 同一张表中有多个同类变量的描述分析结果,可以简单地理解为对每个变量分别做同样的分析,然后将结果拼接在一起。 (2)交叉表 它是一种行列交叉的分类汇总表格,行和列上至少各有一个分类变量,行和列的交叉处可以对数据进行多种汇总计算,如计数、百分比、求和、平均值等。 (3)嵌套表 它是指多个变量放置在同一个表格维度中,也就是说,分析维度是由两个及以上变量的各种类别组合而成的。嵌套表主要应用在需要展现较多的统计指标时,能够使结果更为美观和紧凑。 我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=16uhfxjtsalsw

B. 描述性分析法量化描述是什么意思

食品感官分析中用于了解产品之间的差异所在,采用描述分析型检验可以获得关于产品完整的感官描述。它可以为产品提供量化描述,可获得所有可感知的感觉,包括视觉、听觉、嗅觉、味觉和动觉等,当然评估也可以只针对某个方面进行。常用的描述性分析方法有剖面法、定量描述分析法、质地描述分析等。

描述性分析的步骤:

(1)建立感官特性描述词

(2)确定感官特性顺序

(3)确定参比性

(4)评价感官特性强度

(5)分析样品的协调性和整体性

质地描述分析风味剖析法
由 4 ~ 6 人组成的品评小组对一个产品能够被感知到的所有气味和风味,它们的强度、出现的顺序以及余味进行描述、讨论,达成一致意见之后,由品评小组组长进行总结,并形成书面报告。该方法属于定性描述分析方法,不能进行统计分析。其特点是灵敏性高,但参评人数少,个别人影响

C. 到底什么是描述性统计分析定义是怎样

所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所代表的总体的特征。描述性统计分析的项目很多,常用的如平均数、标准差、中位数、频数分布、正态或偏态程度等等。这些分析是复杂统计分析的基础。
例如:对我国城镇军民的医疗保健消费情况进行统计分析,数据如下:
588.8
407.75
376.71
300.81
287.03
252.2
336
341.85
500.86
294.39
541.06
181.23
266
148.8
322.6
280.78
208.78
208.96
270.24
346.56
228.01
247.31
293.23
266.07
233.27
291.76
264.8
336.24
272.44
307.24
327.05
330.54
进行描述性统计分析结果为:
平均数
308.1053125
标准差
95.06485331
中位数
292.495
最小值
148.8
最大值
588.8
峰度
2.375103692
偏度
1.347690777

D. 什么是描述性分析

描述性分析是社会调查统计分析的第一个步骤,对调查所得的大量数据资料进行初步的整理和归纳,以找出这些资料的内在规律——集中趋势和分散趋势。主要借助各种数据所表示的统计量,如均数、百分比等,进行单因素分析。

事实证明,仅靠百分比或平均差是不能完全反映客观事物的本质的,仅仅对一个样本进行分析也是不够的。这个样本是否能够反映其总体的特征,还需要进行推断性分析。

描述性分析的目的

1、描述某个有关群体的特征;

2、估计某个群体中某种行为方式的发生比率;

3、测量有关产品的知识、偏好与满意度;

4、确定不同营销变量之间的关系;

5、进行预测。

E. 统计分析方法有哪些


统计分析方法有以下:
1、描述性统计分析方法。描述性统计分析方法是指运用制表和分类和图形概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
2、相关分析方法。相关分析方法是研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
3、方差分析方法。方差分析是用来分析一项实验的影响因素与相应变量的关系,同时考虑多个影响因素之间的关系。
4、列联表分析方法。列联表分析是用于分析离散变量或定型变量之间是否存在相关。
5、主成分分析方法。主成分分析方法是将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。

F. 怎么进行描述性分析

描述性分析是一种常见的项目调研分析方法,是指对所面临的不同因素、不同方面现状的调查研究,其资料数据的采集和记录,着重于客观事实的静态描述
描述性分析,正如其名,处理的是总体的描述性特征。描述性分析寻求对“谁”、“什么”、“什么时候”、“哪里”和“怎样”这样一些问题的回答。不像探索性分析,描述性分析基于对调研问题性质的一些预先理解。尽管分析人员对问题已经有了一定理解,但对决定行动方案必需的事实性问题作出回答的结论性证据,仍需要收集。

目的如下:

1、描述某个有关群体的特征;

2、估计某个群体中某种行为方式的发生比率;

3、测量有关产品的知识、偏好与满意度;

4、确定不同营销变量之间的关系;

5、进行预测。

G. 最常用的四种大数据分析方法有哪些

1.描述型分析:发生了什么?

这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

2.诊断型分析:为什么会发生?

描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

3.预测型分析:可能发生什么?

预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

4.指令型分析:需要做什么?

数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

H. 如何进行描述性统计分析

所谓描述性统计分析,就是在表示数量的中心位置的同时,还能表示数量的变异程度(即离散程度)。描述性统计分析一般有二种方法可以进行:1、频数分布分析,2、列联表分析。
------------------------转自热心网友

I. 描述性统计分析怎么写

描述统计是将研究中所得的数据加以整理、归类、简化或绘制成图表,以此描述和归纳数据的特征及变量之间的关系的一种最基本的统计方法。描述统计主要涉及数据的集中趋势、离散程度和相关强度,最常用的指标有平均数()、标准差(σx)、相关系数(r)等。

所谓描述性统计分析,就是在表示数量的中心位置的同时,还能表示数量的变异程度(即离散程度)。描述性统计分析一般有二种方法可以进行:

1、频数分布分析

2、列联表分析

综述

描述性研究利用常规检测记录或通过专门调查获得的数据资料(包括实验室检查结果),按不同地区、不同时间及不同人群特征进行分组,描述人群中有关疾病或健康状态以及有关特征和暴露因素的分布状况,在此基础上进行比较分析,获得疾病三间(人群、地区、时间)分布的特征,进而获得病因线索,提出病因假设和线索。是流行病研究工作的起点。

以上内容参考:网络-描述性统计

阅读全文

与描述性分析方法相关的资料

热点内容
小米5开关机时间设置在哪里设置方法 浏览:757
怎么让腿变快的方法 浏览:170
易企秀手机版使用方法怎么保存 浏览:692
戒烟自由的最佳方法 浏览:432
70迈停车监控线连接方法 浏览:902
常用螺纹联接防松方法及应用 浏览:744
课堂研究设计方法分析 浏览:813
面粉做豆沙包子的方法与步骤 浏览:194
东北酸菜怎么快速腌制方法 浏览:187
野钓的正确方法图片 浏览:728
做深蹲的正确呼吸方法是什么 浏览:841
烧鸭使用方法 浏览:137
调查对象的最佳方法 浏览:321
拾音器的安装方法 浏览:972
a型法兰承插式柔性连接方法 浏览:281
税后工资计算方法 浏览:386
韩国玫瑰面膜使用方法 浏览:906
有框地簧门安装方法图解 浏览:676
想要读公办学校有哪些方法 浏览:169
概率密度估计方法有哪些 浏览:82