❶ 电磁学的物理简介
电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称
电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。
导线所载有的电流,会在四周产生磁场,其磁场线是以同心圆图案环绕着导线的四周。
使用电流表可以直接地测量电流。但这方法的缺点是必须切断电路,将电流表置入电路中间。间接地测量伴电流四周的磁场,也可以测量出电流强度。优点是,不需要切断电路。应用这方法来测量电流的仪器有霍尔效应感测器、电流钳(current clamp) ,变流器(current transformer) 、 Rogowski coil 等等。
电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。
电磁学是物理学的一个分支。电学与磁学领域有着紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。
❷ 电磁场的研究过程
(一)电磁感应定律
继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即дD/дt)为位移电流密度。它在安 培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即着名的麦克斯韦方程组,描述了电磁场的分布变化规律。
(二)麦克斯韦方程
电磁辐射麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些 分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。似稳电磁场时变场中不同于静态场的上述一些现象,其显着程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。
(三)交变电磁场与瞬变电磁场
时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或 时序展开等方法进行分析。
❸ 电磁学研究什么
电磁学是研究电磁现象的规律和应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波、电磁场以及有关电荷、带电物体的动力学等等。
❹ 论文 小学科学课题研究--电磁学 具体该怎么用大学物理的电磁学和小学科学的电磁学联系呢
我给点意见:
首先小学科学课题研究肯定不能很深地进入研究,我建议采用类似科普介绍的方式逐步将话题引入大学电磁学,从而发现其中的科学之美。然后就可以紧接着针对大学物理中的一些相对较为简单的定理或者概念再联系小学生日常生活实际做出自己所认为可以做的一些实验,进而来验证。
其实我认为这个过程一点都不会涉及到很多高深的知识,如果真的要很透彻的深入解释,那是真的需要很高的功力。
因此我认为理论上不会造成空洞。
那么我简单讲一下可以怎么着手写这篇课题研究:
1.介绍麦克斯韦方程式,四个方程式的对称以及简练那是一种无法言语的美,它揭示了电与磁的联系,构建了经典电磁学的框架。然后可以分别从这四个方程组入手,诠释每个方程的前身和来历。
例如第一个方程讲的是高斯定理,说明了电场是有源场,是可以不连续的;
第二个方程讲的是涡旋电流的环路定理,是由麦克斯韦提出来的,说明了磁生电的现象;
第三个方程讲的是磁场的高斯定理,说明了磁场是个涡旋场(没有始和终),阐述了磁场的连续性;
第四个方程讲的是麦克斯韦添加了位移电流的概念之后的磁场环路定理,描述了电生磁的特点。
你可以分别了解一下各个定理;
2.每个定理背后都有大量的实验模型:
例如了解电的特性时可以做一些简单的安全的小实验定量描述电荷,可以玩玩电量计等;
了解磁的特性时也可以采用磁铁之间的相互作用关系,或者讨论磁单极存不存在;
研究磁生电时,可以采用定性和定量同步的实验来研究,比如可以通过切割磁感线观察能否产生电流,研究发电厂发电效率和发电机转子转动速度的关系等等;
研究电生磁时也可以采用定性和定量实验同步的方法实现,比如将通电导线放在小磁针上方观察摆动,再比如高级一点采用法拉第电磁感应定量设计实验探究电流与磁场的关系。
最后忠告:要将课题研究深入到实验,切勿空谈!实验的话尽量做到定量。(可以找辅导老师帮助)
❺ 电磁学基本原理
电磁学中有三大实验定律:库仑定律,安培定律及法拉第电磁感应定律;并在此基础上,麦克斯韦进行归纳总结,得出了描述宏观电磁学规律的麦克斯韦方程组。
1 电荷守恒与库伦定律
1.1 电荷守恒定律
摩擦起电和静电感应实验表明,起电过程是电荷从某一物体转移到另一物体的过程。
电荷守恒定律 电荷不能被创造,也不能被凭空消失,只能从一个物体转移到另外的物体,或者是从物体的一部分转移到另一部分。也就是说,在任何物理过程中,电荷代数式守恒的。
在1897年,英国科学家汤姆逊在实验中发现了电子;1907-1913年,美国科学家密立根通过油滴实验,精确测定除了电荷的量值:e = 1.602 177 33×10^-19 C。这表明电子式量子化的。
1.2 库伦定律
库伦定律 两个静止电荷q1和q2之间的相互作用力大小和与q1与q2的乘积呈正比,和它们之间的距离r的平方呈反比;作用力的方向沿着它们的联线,同号电荷相斥,异号电荷相吸,即:
其中,ε0为真空介电常数。ε0 ≈8. 854187817×10-12 C2 / (N•m2)。
在MKSA单位制中,1库伦定义为:如果导线中有1A的恒定电流,在1s内通过导线横截面的电量为1C,即:1 C = 1 A•s。
1.3 电场强度
电场强度E 这是一个矢量,表示置于该点的点位电荷所受到的力,是描述电场分布的物理量,即:
场强叠加原理 由于电场是矢量,服从矢量叠加原理,因此我们可以得出:电荷组所产生的电场在某点的场强等于各点电荷单独存在时所产生的电场为该点场强的矢量叠加。
电场线 形象描述电场分布,我们可以引入电场线的概念,利用电场线可以得出较为直观的图像。
1.4 电荷分布
为了对概念有更清晰的认识,我们介绍实际带电系统中电荷分布的4种形式:体分布电荷;面分布电荷;线分布电荷及点电荷。
电荷体密度:电荷连续分布于体积V 内,用电荷体密度来描述其分布,即:
电荷面密度:若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的电荷可用电荷面密度表示:
电荷线密度:若电荷分布在细线上,当仅考虑细线外、距细线的距离要比细线的直径大得多处的电场,而不分析和计算线内的电场时,可将线的直径忽略,认为电荷是线分布。线分布的电荷可用电荷线密度表示。
点电荷:对于总电荷为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电荷为 q 的点电荷。
2 电势、环路定理及电势的梯度
2.1 电势
单个电荷产生的电场是有心力场。有心力场中,做功与路径无关,与F(r)的具体形式无关,只由于起始点位置有关。
假设在电场中把一试探电荷从P点移动到Q点,静电场力对其做功为:
上式表明电势能变化量与试探电荷q0呈正比,电势能与试探电荷带电量q0的比值WPQ / q0与试探电荷无关,只与电场在P, Q两点有关,这个量可以定义为P, Q两点的电势差,用UPQ表示:
连续分布电荷的电势可以表示为:
若要定义某点电势大小,需要定义电势零点。电势相等的点所组成的面叫做等势面。等势面有以下性质:
等势面与电场正交
等势面较密集的地方场强较大;较为稀疏的地方等势面较小。
从定义式中我们知道:电势差和电势的单位为J / C,单位名称为伏特,简称伏,用V表示。