导航:首页 > 研究方法 > 热学的研究方法分为两种

热学的研究方法分为两种

发布时间:2023-01-14 01:16:06

‘壹’ 热力学研究问题的方法

归纳法.通过收集大量的实验结果归纳出来的结论.

‘贰’ 热学的简介

热学(Thermology)是研究物质处于热状态时的有关性质和规律的物理学分支,它起源于人类对冷热现象的探索。
对中国山西芮城西侯度旧石器时代遗址的考古研究,说明大约180万年前人类已开始使用火;约在公元前二千年中国已有气温反常的记载;在公元前,东西方都出现了热学领域的早期学说。中国战国时代的邹衍创立了五行学说,他把水、火、木、金、土称为五行,认为这是万事万物的根本。古希腊时期,赫拉克利特提出:火、水、土、气是自然界的四种独立元素。这些都是人们对自然界的早期认识。

. . 1714年,华伦海特改良水银温度计,定出华氏温标,建立了温度测量的一个共同的标准,使热学走上了实验科学的道路。经过许多科学家两百年的努力,到1912年,能斯脱提出热力学第三定律后,人们对热的本质才有了正确的认识,并逐步建立起热学的科学理论。
历史上对热的认识,出现过两种对立的观点。18世纪出现过热质说,把热看成是一种不生不灭的流质,一个物体含有的热质多,就具有较高的温度。与此相对立的是把热看成物质的一种运动的形式的观点,俄国科学家罗蒙诺索夫指出热是分子运动的表现。
针对热质说不能解释摩擦生热的困难,许多科学家进行了各种摩擦生热的实验,特

别是朗福德的实验,他用钝钻头钻炮筒,因钻头与炮筒内壁摩擦,在几乎没产生碎屑的情况下使水沸腾;1840年以后,焦耳做了一系列的实验,证明热是同大量分子的无规则运动相联系的。
焦耳的实验以精确的数据证实了迈尔热功当量概念的正确性,使人们摈弃了热质说,并为能量守恒定律奠定了实验基础。与此同时,热学的两类实验技术——测温术和量热术也得到了发展。
热学主要研究热现象及其规律,它有两种不同描述方法——热力学和统计物理。热力学是其宏观理论,是实验规律。统计物理学是其微观描述方法,它通过物理简化模型,运用统计方法找出微观量与宏观量之间的关系。

‘叁’ 热力学与热学的区别是什么

热力学的目的
热力学是研究热、功和其它能量之间的转换关系,它包含当体系变化时所引起的这些物理量的变化,或者反之。

广义地说,热力学是研究体系宏观性质变化之间的关系。

把热力学中的最基本原理用来研究化学现象以及和化学有关的物理现象,就称为化学热力学(chemical thermodynamics)。

热力学的内容
化学热力学的主要内容是利用热力学第一定律来计算变化中的热效应。

利用热力学第二定律来解决变化的方向和限度问题,以及相平衡和化学平衡中的有关问题。

热力学第三定律是一个关于低温现象的定律,主要是阐明了规定熵的数值。

‘肆’ 与力学相比,热学研究对象,研究的方法有哪些主要区分

力学研究的是少体问题,主要集中于单体和两体问题,经典力学基于牛顿运动学方程,研究物体的动力学演化过程,量子力学基于薛定谔方程,研究微观粒子的动力学演化过程,相对论量子力学基于迪拉克方程,研究具有相对论效应粒子的动力学演化过程;热学研究的是多粒子系统的统计热力学性质,主要手段是统计的方法,得到的是多粒子的体系的平均性质;举例而言,力学可以弄清楚两个原子之间的相互作用,可以区分不同种类的原子,而热学研究的是整个原子系统的平均性质,难以区分是哪类原子,因为统计不可能具体到某个原子,二是集体行为,所以研究对象和研究方法有很大差别

‘伍’ 与力学相比,热学研究对象,研究的方法有哪些主要区分

1、研究对象不一样。力学研究的是少体问题,主要集中于单体和两体问题。热学研究的是多粒子系统的统计热力学性质。

2、研究理论不一样。经典力学基于牛顿运动学方程,研究物体的动力学演化过程,量子力学基于薛定谔方程,研究微观粒子的动力学演化过程,相对论量子力学基于迪拉克方程,研究具有相对论效应粒子的动力学演化过程;热力学主要手段是统计的方法,得到的是多粒子的体系的平均性质。

3、作用不一样。力学可以弄清楚两个原子之间的相互作用,可以区分不同种类的原子,而热学研究的是整个原子系统的平均性质,难以区分是哪类原子,因为统计不可能具体到某个原子,是集体行为,所以研究对象和研究方法有很大差别。

(5)热学的研究方法分为两种扩展阅读:

力学主要理论

1、物体运动三定律。

2、达朗贝尔原理。

3、分析力学理论。

4、连续介质力学理论。

5、弹性固体力学基本理论。

6、粘性流体力学基本理论。

‘陆’ 热力学研究的经典方法和统计方法有什么区别

用统计方法研究的叫统计力学,和传统的热力学不一样,所谓热力学就是指从热力学四大定律出发,纯粹依靠数学推导而得出整个理论系统。虽然从实际应用上来讲,二者应用的领域大致相同,但从理论上来讲却是完全不一样的,统计力学从微观的分子、原子出发研究热现象,因而要依赖实验的精度,而热力学是一种纯粹的惟像的理论,因而只要四大定律不违背事实,热力学理论所推导出的一切结果就都没有问题。这正是热力学独有的优越性,因此爱因斯坦对热力学理论的优美性大为欣赏,实践也证明,到今天为止,物理学所有相关理论都被量子力学渗透了,像什么量子电动力学,相对论量子力学。唯有热力学仍然自成体系。

‘柒’ 化工过程热力学分析方法有哪几种

热力学是物理学的一个组成部分,它是在蒸汽机发展的推动下,于19世纪中叶开始形成的。最初只涉及热能与机械能之间的转换,之后逐渐扩展到研究与热现象有关的各种状态变化和能量转换的规律。在热力学的基本定律中,热力学第一定律表述能量守恒关系,热力学第二定律从能量转换的特点论证过程进行的方向。这两个定律具有普遍性,在化学、生物学、机械工程、化学工程等领域得到了广泛的应用。热力学基本定律应用于化学领域,形成了化学热力学,其主要内容有热化学、相平衡和化学平衡的理论;热力学基本定律应用于热能动力装置,如蒸汽动力装置、内燃机、燃气轮机、冷冻机等,形成了工程热力学,其主要内容是研究工质的基本热力学性质以及各种装置的工作过程,探讨提高能量转换效率的途径。化工热力学是以化学热力学和工程热力学为基础,在化学工业的发展中逐步形成的。化工生产的发展,出现了蒸馏、吸收、萃取、结晶、蒸发、干燥等许多单元操作,以及各种不同类型的化学反应过程,生产的规模也愈来愈大,由此提出了一系列的研究课题。例如在传质分离设备的设计中,要求提供多组分系统的温度、压力和各相组成间的相互关系的数学模型。一般化学热力学很少涉及多组分系统,它不仅需要热力学,还需要应用一些统计力学和经验方法。在能量的有效利用方面,化工生产所涉及的工作介质比工程热力学研究的工作介质(空气、蒸汽、燃料气等)要复杂得多,且能量的消耗常在生产费用中占有很高比例,因此更需要研究能量的合理利用和低温位能量的利用,并建立适合于化工过程的热力学分析方法。1939年,美国麻省理工学院教授H.C.韦伯写出了《化学工程师用热力学》一书。1944年,美国耶鲁大学教授 B.F.道奇写出了名为《化工热力学》的教科书。这样,化工热力学就逐步形成为一门学科。随着化学工业规模的扩大,新过程的开发,以及大型电子计算机的应用,化工热力学的研究有了较大的发展。世界各国化工热力学专家在1977年举行了首届流体性质和相平衡的国际会议,1980和1983年分别举行了第二届和第三届会议,还出版了期刊《流体相平衡》。化工热力学已列为大学化学工程专业的必修课程。

‘捌’ 数值传热学的研究方法

数值传热学常用的数值方法
1.有限差分法
历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。
2.有限容积法
将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。通过将守恒型的控制方程对控制容积坐积分导出离散方程。在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。
3.有限元法
把计算区域划分为一系列原题(在二维情况下,元体多为三角形或四边形),由每个元体上去数个点作为节点,然后通过对控制方程做积分来获得离散方程。有限元法最大的优点是对不规则区域的适应性较好。但计算的工作量一般要比有限容积法大,而且在求解流动与换热问题是,对流项的离散处理方法及不可压缩流体原始变量法求解方面没有有限容积法成熟。
4.有限分析法
由陈景仁教授在1981年提出。在这种方法中,也像有限差分法那样,用一系列网格线将区域离散,所不同的是每一个节点与相邻4个网格(二维)问题组成计算单元,即一个计算单元由一个中心节点与8个l 邻点组成。在计算单元中把控制方程中的非线性项局部线性化,并对该单元上未知函数的变化型线作出假设,把所选定型线表达式中系数和常数项用单元边界节点上位置的变量值来表示,找出其分析解。然后利用其分析解,得到该单元中点及其边界上的位置值的代数方程,即单元中点的离散方程。

‘玖’ 热学是什么

分子运动论 认为物体是由大量永不停息地做无规则运动的分子
所组成,分子之间存在着引力和斥力等相互作用,并以大量分子的集体
行为来说明气体、液体和固体等物质状态的有关物理性质,特别是它们
各自的热力学特性的物质结构学说。
人类早在古希腊时代就出现了物质的微粒结构的思想。德谟克利特
等人曾想象物质是由不可再分割称之为“原子”的粒子组成,并认为不
同的物质由不同的“原子”构成。直到17、18世纪期间,随着热学的发
展,人们开始探讨热现象的本质,出现了分子运动论的学说。经伽桑迪、
胡克、伯努利等人的考察和不断发展这一学说,并用以说明物质的液体、
固体、气体三种状态的转变,设想气体的压力是气体分子与器壁碰撞的
结果,从而导出了玻意耳-马略特定律。 1744年罗蒙诺索夫明确提出热是
分子无规则运动的表现,把机械运动守恒定律推广到分子运动的热现象
中去。19世纪中叶建立了能的转化守恒定律,分子运动论得到迅速的发
展和完善。经克劳修斯、麦克斯韦和玻耳兹曼等人的大量工作,他们立
足于分子运动论以早期的统计观点导出了气体的压强公式,从而解释了
有关气体的实验定律;认识了分子速度的分布规律;并给出了分子运动
规律的定量方程。使分子运动论在经典物理学的范畴内达到了完善的程
度。
分子 物质中能够独立存在的相对稳定并保持该物质物理化学特性
的最小单元。分子由原子组成。有单原子分子、双原子分子和多原子分
子之分

‘拾’ 热学与热力学有什么区别

热学是物理学的五大分支的一个分支,比热力学研究范为广泛。
热力学:
热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。
热学:
热学主要研究热现象及其规律,它有两种不同描述方法--热力学和统计物理。热力学是其宏观理论,是实验规律。统计物理学是其微观描述方法,它通过物理简化模型,运用统计方法找出微观量与宏观量之间的关系。

阅读全文

与热学的研究方法分为两种相关的资料

热点内容
桂圆珍珠粉的食用方法 浏览:520
如何保护视力最有效的方法 浏览:342
避孕膜的使用方法视频 浏览:976
解读数学教材研讨教学方法 浏览:633
妄想性障碍的治疗方法 浏览:714
截屏的方法手机 浏览:303
面粉做蛋糕发酵方法与步骤 浏览:332
华为手机的悬浮窗的便捷方法 浏览:694
八年级上册昆虫记教学方法 浏览:37
直播管理的方法和技巧 浏览:49
敏感度比较高的hpv检测方法 浏览:123
太阳能路灯灯头的连接方法 浏览:414
结石用什么方法最快排出 浏览:560
中药人参的的作用及食用方法 浏览:21
三洋使用方法 浏览:178
小米5开关机时间设置在哪里设置方法 浏览:763
怎么让腿变快的方法 浏览:173
易企秀手机版使用方法怎么保存 浏览:696
戒烟自由的最佳方法 浏览:440
70迈停车监控线连接方法 浏览:910