1. 层次分析法和模糊综合评价法优缺点
层次分析法优缺点:
(一)优点
1. 系统性的分析方法:
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
2. 简洁实用的决策方法:
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来。
3. 所需定量数据信息较少:
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
(二)缺点
1. 不能为决策提供新方案:
层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
2. 定量数据较少,定性成分多,不易令人信服:
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。
3. 指标过多时数据统计量大,且权重难以确定:
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。
4. 特征值和特征向量的精确求法比较复杂:
在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。
模糊综合评价法优缺点:
1、模糊综合评价法的优点:
模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价;
评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。
2、模糊综合评价法的缺点:
计算复杂,对指标权重矢量的确定主观性较强;
当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改进。
(1)层次分析法与其他方法对比扩展阅读:
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
在运用层次分析法时,如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。为保证递阶层次结构的合理性,需把握以下原则:
1 分解简化问题时把握主要因素,不漏不多;
2 注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
层次分析法主要应用在安全科学和环境科学领域。在安全生产科学技术方面主要应用包括煤矿安全研究、危险化学品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等;在环境保护研究中的应用主要包括:
水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。
除此之外,层次分析法更多的可以用于指导和解决个人生活中遇到的问题,比如说专业的选择、工作的选择以及买房的选择等,可以通过建立层次结构以及衡量指标,来理清工作思路和思考问题的层面。
为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:
1.评价因素(F):是指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。第二级评价因素可以设置下属的第三级评价因素(F3)。依此类推。
2.评价因素值(Fv):是指评价因素的具体值。例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):是指评价因素的优劣程度。评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):是指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数
5.权重(W):是指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
6.加权平均评价值(Epw):是指加权后的平均评价值。
加权平均评价值(Epw)=平均评价值(Ep)×权重(W)。
7.综合评价值(Ez):是指同一级评价因素的加权平均评价值(Epw)之和。综合评价值也是对应的上一级评价。
2. 成分分析法和层次分析法的不同
成分分析法是用特定的符号表示句子成分的分析方法,其特点是表示的句子成分比较直观,缺点是不能很好的表示构成句子的成分之间的层次关系;层次分析法是用框图表示构成句子的词语之间的结构层次和结构关系的分析方法,起特点是能很好地表现句子的结构层次,但缺点也很明显,就死一个句子的分析,表达出来要较大的篇幅.
3. 层次分析法和模糊层次分析法有什么不同这个模糊主要运用在何处
二者区别如下:
1、建立的判断矩阵不同:
在AHP中是通过元素的两两比较建立判断一致矩阵;而在FAHP中通过元素两两比较建立模糊一致判断矩阵。
2、求矩阵中各元素的相对重要性的权重的方法不同:
在模糊层次分析中,作因素间的两两比较判断时,如果不用三角模糊数来定量化,而是采用一个因素比另一个因素的重要程度定量表示,则得到模糊判断矩阵。
3、优缺点不同:
AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显着差异。
将模糊法与层次分析法的优势结合起来形成的模糊层次分析法(FAHP),将能很好地解决,层次评价指标很多时(如四个以上)导致的其思维不能一致性。
4. 网格管理法与层次分析法的区别
网格管理法与层次分析法的区别:一、层次分析法和模糊层次分析法有3点不同:
1、两者的基本原理不同:
(1)层次分析法的基本原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合。形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
(2)模糊层次分析法的基本原理:在模糊层次分析中,作因素间的两两比较判断时,如果不用三角模糊数来定量化,而是采用一个因素比另一个因素的重要程度定量表示,则得到模糊判断矩阵。模糊层次分析法是定性与定量相结合的系统分析方法。
5. 层次分析法的优缺点
层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法
6. 主成分分析和层次分析法的区别是什么
层次分析法:
主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。
主成分分析
(1)方法原理及适用场景
主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。
(2)操作步骤
使用SPSSAU【进阶方法-主成分分析】。
如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。
比如本例中,5个指标共提取了2个主成分:
主成分1的权重:45.135%/69.390%=65.05%
主成分2的权重:24.254%/69.390%=34.95%
如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:
第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;
第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;
第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。