导航:首页 > 研究方法 > 配方法第一步是什么

配方法第一步是什么

发布时间:2023-01-10 18:44:23

❶ 用配方法解方程的详细步骤是什么

配方法解方程的一般步骤

(1)化二次项系数为1,即方程两边同时除以二次项系数.

(2)移项,使方程左边为二次项和一次项,右边为常数项.

(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)

(4)方程变形为

配方法

❷ 配方法解一元二次方程的一般步骤是什么

用配方法解一元二次方程的步骤:

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(2)配方法第一步是什么扩展阅读:

配方法的其他运用:求最值。示例说明如下:

已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²。

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。

❸ 用配方法解一元二次方程的步骤是什么

用配方法解一元二次方程的一般步骤:

1、把原方程化为的形式;

2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;

3、方程两边同时加上一次项系数一半的平方;

4、再把方程左边配成一个完全平方式,右边化为一个常数;

5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。

(3)配方法第一步是什么扩展阅读:

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y²= (b/2a)²。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12

=(x-2)²-16

=(x -6)(x+2)

求抛物线的顶点坐标

【例】求抛物线y=3x²+6x-3的顶点坐标。

解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6

所以这条抛物线的顶点坐标为(-1,-6)

❹ 配方法解一元二次方程步骤是什么

配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(4)配方法第一步是什么扩展阅读:

一元二次方程成立必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

❺ 数学配方法的基本步骤是什么

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。

等式两边加上y2 = (b/2a)2,可得:这个表达式称为二次方程的求根公式。

解方程:在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

求最值

【例】已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。

❻ 配方法的基本步骤

1、第一步:把原方程化为一般式

把原方程化为一般形式,也就是aX²+bX+c=0(a≠0)的形式。

2、第二步:系数化为1

把方程的两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。

3、第三步:把方程两边平方

将方程两边同时加上一次项系数一半的平方,把左边配成一个完全平方式,右边化为一个常数项。

4、第四步:开平方求解

进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。


概述

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

阅读全文

与配方法第一步是什么相关的资料

热点内容
怎么选择筹资决策的评价方法 浏览:660
挂钟制作方法简单 浏览:923
电脑版全然不信下载方法 浏览:250
家庭教育有哪些教育方法 浏览:825
起诉离婚的方法有哪些 浏览:431
用简便方法怎么算乘法 浏览:52
雪碧是怎么做的简单方法 浏览:464
如何快速找到野生蜜蜂巢方法 浏览:981
人文思辨类文章有哪些研究方法 浏览:55
笋壳斑去除的最佳方法 浏览:287
经络锻炼的好方法 浏览:888
黑面膜使用方法 浏览:432
视觉思维模式的创新的研究方法 浏览:888
用什么方法不腐烂 浏览:317
多元醇酯类化合物液相分析方法 浏览:304
举手之劳解决的方法 浏览:932
武汉石膏线安装方法 浏览:658
治疗手机卡顿闪退的方法 浏览:572
周岁的计算方法法律 浏览:669
投影仪安装方法图 浏览:524