导航:首页 > 研究方法 > 一题多解是什么教学方法

一题多解是什么教学方法

发布时间:2023-01-04 07:55:12

如何在数学教学中采用一题多解与多变

在新课改中,如何真正做到减轻学生负担,提高教学质量呢?不妨灵活采用一题多变,从精练与善思入手。这样可以以一变应万变,触类旁通,既提高了学习效益,又培养了良好的学习习惯与思维品质,让同学们终身受益。
一题之“多”是指:一题多解、一题多变等方法,有目的、有重点地设计基本训练,有助于开拓思路,活跃思维,培养学生的创新能力。现就一题多变题的教学,谈谈自己的想法。
1.一题多解,利于激发学习兴趣
一题多解的题目要具有代表性,能包容大部分所学知识点,不能过于繁难,但也不能流于简单。过难挫伤学生研究学习的积极性,过于简单学生没有兴趣,这一步对激发学生学习、探究的兴趣很重要。
例如,有这样一道题目:甲、乙、丙三位同学合乘一辆出租车同往一个方向,事先约定三人分摊车资,甲在全程的1/3处下车,乙在全程的2/3处下车,丙坐完全程下车,车费共54元。问甲、乙、丙三位同学各付多少车费比较合理?
学生对此车资问题很感兴趣,甲、乙、丙三位同学各付多少车费比较合理,意见很不一致。经过尝试设计了3种方案:第一种方案由甲、乙、丙三人均分,即每人各付18元;第二种方案按路程分摊:甲、乙、丙所乘路程的比为1∶2∶3分别付费9元、18元、27元;第三种方案分段结算:车费共54元,如果按前1/3路程,中间1/3路程和最后1/3路程分别计算车费,则各为18元,开始的1/3路程需付18元,甲、乙、丙各付6元,中间的1/3路程需付18元,则乙、丙各付9元,最后的1/3路程需付18元,由丙承担,这样甲应付6元,乙应付15元,丙应付33元;从上例可以看出,同学们对此题很感兴趣,思维活跃,勇于探究,学习效果很明显。
2.一题多变,利于培养创新与探究能力
2.1 变换题设或结论,即通过对习题的题设或结论进行变换,从多个角度来探究同一个问题,这不仅可以让学生综合运用所学知识点解题,增强学生解题的应变能力,还培养了数学思维的深刻性和广阔性,从而培养创新思维的良好学习品质。
比如,同样对上述问题,我还对该题进行了多种角度的变式讨论,拓宽了学生的思路,活跃了学生的思维。
变换(一):在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD中点,求证:CE⊥BE.
变换(二):在梯形ABCD中,AB∥CD,CE⊥BE.,E是AD中点.求证:BC=AB+CD.
变换(三):在梯形ABCD中,AB∥CD,BC=AB+CD,CE⊥BE.判断E是AD中点吗?为什么
2.2 变换题型,即将原题改装成新的题型,改变单调枯燥的习题模式,学生解各种类型题的综合能力得以训练,又培养了学生思维的灵活性,有利于学生合作探究与创新能力的培养。例如:一道初三月考题:如图5(略),已知△ADE中,∠DAE=120°,B、C分别是DE上的两点,且△ABC是正三角形,求证;BC是BD、CE的比例中项。
分析:本题是有探索性的证明题,可引导学生从结论出发找到需证明△ABD∽△ECA的条件,从而使问题迎刃而解。将此题作为原形进行题型变换如下:
变换(一):改为填空题,如图5,已知△ADE中,B、C分别是DE上两点,∠DAE=120°,且△ABC是正三角形,则线段BC、BD、CE满足的数量关系是。
本题从表面上看,是对原题的简单形式变换,而实质上有探究的思想,即需要将BC分别代换为AB、AC,从而归结为找△ABD与△ECA的关系问题。
变换(二):改为选择题,如图5(略),已知△ADE中,B、C分别是DE上两点,∠DAE=120°,且△ABC是正三角形,则下列关系式错误的是( )
名为选择题,实为要探究得出图中共有三对相似三角形,从而得知A、B、C选项均正确,选D.
变换(三):改为计算题,如图5(略),已知△ADE中,B、C分别是DE上两点,∠DAE=120°,且△ABC是边长为4的正三角形,且BD=2,求CE的长.
仍然要探究出线段BC、BD、CE满足的数量关系,从而转化为“知二求一”的问题。
变换(四):改为判断题,如图6(略),若图中∠DAE=135°,△ABC是以A为直角顶点的等腰直角三角形,则结论还成立吗?
把问题条件改变,用同样的思想方法探究得出同样的结论,进一步引申了原例的思想方法,拓展了学生的思维空间。
变换(五):改为开放性试题,如图5(略),已知△ADE中,∠DAE=120°,B、C分别是DE上两点,且△ABC是正三角形,则图中有哪些线段是另外两条线段的比例中项?
结论的开放,给学生更多的思考空间,极大地锻炼了学生开放型的数学创新思维能力。
变换(六):改为综合性试题,如图7(略),在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC的度数为α,∠DAE的度数为β,当α、β满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,并说明理由。
如此变换将相似与函数知识相结合,培养了学生综合探究的能力。
由上述六种题型的变换,把同样的数学思想方法渗透到不同的题型中,既锻炼了学生适应不同题型的能力,又加深了对数学思想方法的理解与运用;不仅激活了学生的思维,还活跃了课堂气氛;看似浪费了时间与精力,实质上触及到了思维与探究的灵魂,能收到事半功倍的效果。
(4)n边形共有多少条对角线?
通过这一系列问题,都可以通过建立同一数学模型来解决,不仅培养了学生归纳整理的能力,而且深化了学生建模思想和应用数学模型的意识,激发了学生学习数学的兴趣。
总之,在教学实践中,有目的、有计划、适量地进行一题多变训练,有利于活跃思路,锻炼学生思维的灵活性,能够卓有成效地开拓学生的创新思维空间,使学生把所学过的知识融会贯通,使知识系统化,更灵活地运用知识,有利于提高归纳、综合、创新与探究等能力,提升综合素质和综合运用能力。

② 一题多解是要培养学生的什么思维

一题多解是要培养学生的发散思维。

发散思维,又称辐射思维、放射思维、扩散思维或求异思维,是指大脑在思维时呈现的一种扩散状态的思维模式。它表现为思维视野广阔,思维呈现出多维发散状。

如“一题多解”、“一事多写”、“一物多用”等方式,培养发散思维能力。 不少心理学家认为,发散思维是创造性思维的最主要的特点,是测定创造力的主要标志之一。

(2)一题多解是什么教学方法扩展阅读:

发散思维的特点:

1、流畅性

流畅性就是观念的自由发挥。指在尽可能短的时间内生成并表达出尽可能多的思维观念以及较快地适应、消化新的思想概念。机智与流畅性密切相关。

流畅性反映的是发散思维的速度和数量特征。

2、变通性

变通性就是克服人们头脑中某种自己设置的僵化的思维框架,按照某一新的方向来思索问题的过程。

变通性需要借助横向类比、跨域转化、触类旁通,使发散思维沿着不同的方面和方向扩散,表现出极其丰富的多样性和多面性。

3、独特性

独特性指人们在发散思维中做出不同寻常的异于他人的新奇反应的能力。独特性是发散思维的最高目标。

③ 解数学题时能做到一题多解表现了学生思维的灵活性吗

在小学数学教学中,教师要注重培养学生的数学思维能力,让他们在分析问题时能从多角度、多层次出发,深刻理解和领悟所学内容,能用多种方法解决问题,促进他们数学思维的深入发展。在进行一题多解的教学中,教师要把学生放到学习主体的位置上,发挥学生的学习主动性,让他们在教师的引导下进行深入思考,通过联想和比较找出解决问题的方法,促进他们数学发散思维的发展,实现高效的课堂教学。
一、 一题多解拓宽学生的思维面
在小学数学教学中让学生运用一题多解的方式进行学习,教师要引导学生从不同的角度对问题进行分析和思考,摆脱定势思维的影响和束缚,找出不同的解决方法。在一题多解教学中,激发学生的好胜心,让他们利用已有知识进行充分探究,找到不同的解决方法。在解题过程中,学生的思维不断深入,让他们从已有的知识中选择有用的信息,顺利解决问题。在数学教学中,教师要加强对学生思维能力的训练,提高学生的思维灵敏性,拓宽他们的思维面,促进数学综合能力的发展。
二、一题多解培养学生的创设思维能力
随着素质教育的进行,小学生成为了课堂学习的主体,在教学过程中,教师要根据他们的学习情况进行教学设计,发挥学生的学习主动性,让他们通过积极的思考和分析掌握所学知识,并能用掌握的知识分析和解决问题。在教学改革的进程中,教师要实现高效的课堂教学效率,在激发学生学习兴趣的同时,还要培养他们的创新思维能力。因此,在教学过程中,教师可以采用一题多解的方式来对学生进行思维训练,让他们在用知识的过程中提高思维的灵敏性,加深对知识的理解,能够灵活运用知识分析问题,从多个角度探究问题,找到解决问题的多种方法。在一题多解过程中,学生的创造力得到了充分发挥,他们在学习中能够举一反三,有效提高数学学习能力,促使他们的数学综合素质获得发展,实现高效的课堂教学。
三、一题多解促进学生的发散思维
在小学数学教学中进行一题多解的思维训练,有助于促进学生发散思维的发展,让他们对题目进行全面分析,从题干中找出有用信息,提高他们的审题能力和解题能力,大大提高学习效率。在进行一题多解的训练时,教师要给学生充足的思考和探究时间,让他们能对问题进行深入分析,从不同的角度找到解决问题的切入点,用多种方法解决问题,促进他们发散思维的发展。在数学教学过程中,教师在引导学生分析问题时,要让他们从各个角度进行大胆尝试,利用知识之间的联系进行分析和思考,通过联想、比较找到解决问题的方法。在培养学生的发散思维时,运用一题多解的方式能够让学生的思维变通性得到发展,让他们的数学思维摆脱定势思维的束缚,促进思维灵活性的发展。
四、一题多解发展学生的思维灵活性
在一题多解的思维训练中,教师可以组织学生进行比赛,给出学生数学题目后,让他们发挥自己的思维创造性和灵活性,尽可能多的找出解决问题的方法。在比赛过程中,充分激发了学生的好胜心,使他们对学到的知识进行梳理,从中找出解决问题所需的知识,让他们顺利解决题目。在进行比赛时,学生会从多个角度对问题进行分析,在找出的解决方法中,有一些简便方法,还有一些较为复杂的方法。在对这些方法进行评价时,教师要对学生想出来的所有方法进行表扬和鼓励,让他们在感受学习成就感的同时,促进思维的灵活性。在一题多解的训练中,学生想出的方法越多,他们的思维越开阔,越有利于促进其思维灵活性的发展。因此,比赛过程中,只要学生的解题方法正确,教师都要给予表扬,尤其是对学生独特的解题方法进行表扬,激发他们的思维活跃性,让他们能深入分析数学题目,根据题干信息进行解决,促进他们分析问题、解决问题能力的有效提高。在比赛过程中完成一题多解的训练,能让课堂教学摆脱枯燥的教学方式,充分激发学生的参与兴趣,让他们在比赛中向自我挑战,在积极思考的过程中获得不断提高,实现高效的课堂教学效率。
总之,在小学数学教学中,教师要注重培养学生的创新思维能力和发散思维能力,让他们通过一题多解的方式进行探究,促进他们数学思维的深入发展,让他们能灵活运用所学知识解决问题,通过分析、比较、思考找出多种解决问题的方法,提高他们运用知识解决问题的能力,让学生的数学思维获得发展,实现高效的学习效率。

④ 什么是小学数学的一题多解

很简单的字面意思,就是一道题有多种解法,一般这种题多是应用题。只要买份参考书多做几道这种题自然就会了

⑤ 语文教学中的一题多解和多题归一的思维

教学的过程中,免不了要做题。但是怎么做,做到何种程度,就得深入研究。在课堂教学中,如何从题海中上升到理论、思维的高度,就值得深入研究。

一题多解,就是要求对一道题深入研究。从不同角度,不同层次,不同方法,不同思维去思考,去作答。体现了教师对知识体系的把握程度和理解程度。

多题归一,就是要求归纳总结,做一道题,会一类型题。这样做起来省时省力。否则,题是永远做不完的,但答题思维,答题步骤还是有一定的格式规律可循。

说起来容易,做起来难。要有积淀,要有准备,还得常思考,不要让自己停下来。

⑥ 一题多解是什么意思

一题多解的意思是,一道题一个问题可以有多种的解答方式和方法,不局限于一种解答。人对人或事物的看法不同,对问题的理解,欣赏程度也不同,任何事情都有很多种结果。

⑦ 如何培养小学数学一题多解思维的

一题多解,就是启发和引导学生从不同角度、不同思路,不同的方位,运用不同的方法和不同的运算过程,解答同一道数学问题。教学中适当的一题多解,可以激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。
一题多解对于五、六年级学生来说尤为重要,我们每位小学教师必须引为重视,搞好训练。
下面仅就多步应用题教学过程中的一题多解,初略地介绍一下基本做法:
一、进行一题多解的实际练习。
在实际教学中,一般采用以下两种方法:
1.一般的一题多解的练习。题目是由浅入深,由易到难。解法、时间、速度等要求逐步提高。
题1南北两城的铁路长 357公里,一列快车从北城开出,同时有一列慢车从南城开出,两车相向而行,经过3小时相遇,快车平均每小时行79公里,慢车平均每小时比快车少行多少公里?
解法1 、[357-(79×3)]÷3
=[357-237]÷3
=120÷3
=40(公里)
即慢车平均每小时行40公里,
已知快车平均每小时行79公里,
∴慢车平均每小时比快车少行多少公里就是
79-40=39(公里)
答:慢车平均每小时比快车少行39公里。
解法2、 79-(357÷3-79)
=79-(119-79)
=79-40
=39(公里)
答:(同上)
解法3 、设慢车平均每小时行x公里
79×3+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
……
2.看谁的解法多。我们知道,一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。所以,在实际训练中,我们不能满足于学生会用几种一般的方法来分析解答应用题。如果只以一般的几种解法为满足,对学生通过多向思维求得的其他解法特别是一些较为复杂的解法不提倡,不鼓励,这样就会挫伤学生思维的积极性,影响学生的学习兴趣,不利于培养学生的创造能力。实践证明,学生的解法越多,表明学生的思维越灵活,思路越开阔。学生能够根据题意和数量关系,运用所学习和掌握的知识不拘泥、不守旧,乐于打破一般的框框去进行广阔的思维,十分用心地去探求各种解题方法,就越有利于促进其思维的发展,提高创造能力。我们就越应当给予肯定和鼓励。对于学生“别出心裁”、“独辟蹊径”的解题方法,要给以表扬和鼓励。这对激发学生的学习兴趣,调动一题多解的积极性是很有好处的。
例如:上面的题1,除了那三种解法之外,学生还想出以下十几种解法:
解法4、 设慢车平均每小时行x公里
(79+x)×3=357
237+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
解法5 、设慢车平均每小时行x公里
3x=357-79×3
解法6 、设慢车平均每小时行x公里
357-3x=79×3
解法7 、设慢车平均每小时行x公里
79+x=357÷3
解法8 、设慢车平均每小时行x公里
357÷3-x=79
解法9、 设慢车平均每小时比快车少行x公里
(79-x)×3+79×3=357
解法10 、设慢车平均每小时比快车少行x公里
(79-x+79)×3=357
解法11、 设慢车平均每小时比快车少行x公里
(79-x)×3=357-79×3
解法12、 设慢车平均每小时比快车少行x公里
357-(79-x)×3=79×3
解法13 、设慢车平均每小时比快车少行x公里
79+(79-x)=357÷3
解法14、 设慢车平均每小时比快车少行x公里
357÷3-(79-x)=79
解法15、 设慢车平均每小时比快车少行x公里
79-x=357÷3-79
一道应用题,学生能够想出这么多的解法,表明学生的思路很开阔,思维很灵活。智力发达的同学争先恐后,智力较差的同学也积极动脑。全班同学都进入积极的思维状态,互相启发,不甘落后,课堂气氛很活跃,学生的学习积极性都可以调动起来。
二、口述不同的解题思路和解题方法。
口述不同的解题思路和解题方法,就是只要求学生说出不同的(或叫新的)解题思路和解题方法,不用具体解答。它是进行一题多解实际练习的另一种形式。这种练习和前一种练习所不同的地方是:前一种练习偏重于学生动脑动手,进行一题多解的实际练习;这种练习偏重于学生动脑动口,寻求新的解题思路和不同的解题方法。简言之,前者是动脑动手,后者是动脑动口。进行这种训练,主要是为了使学生在单位时间内更多地、更好地认识和掌握应用题的多种解法,提高一题多解训练的课堂教学效率。
在实际教学中,这种练习一般是采取全班和分组两种形式交错进行。开始,全班同学一起,分别对某一道应用题口述不同的解题思路和解题方法,一人一次口述一种。然后分组进行,便于增加学生口述的机会,达到人人动脑,人人口述。这种练习的基本过程是:先全班后小组再全班。这样交错进行。好、差学生都有口述机会,达到共同提高的目的。
例: 两地相距383公里,甲乙两人从两地相向而行,甲先走1天,一共走5天才和乙相遇,已知每天甲比乙多走10公里,问甲乙两人每天各走多少公里?
口述1:甲走5天,乙仅走5-1=4(天)。假如甲每天比原来少行10公里,则与乙的速度相等。那么甲行5天,乙行4天,就相当于乙行5+4=9(天),这时两人还相距10×5=50(公里)。乙9天共行383-50=333(公里),乙每天走的就可以求出来了。乙每天走多少公里知道了,甲每天走的也就可以知道了。
口述2:甲行5天,乙行4天,假如乙每天比原来多行10公里,则与甲的速度相等。那么甲行5天,乙行4天,就相当于甲行5+4=9(天),这样两人所走的路程的和就要多出10×4=40(公里)。即甲9天共行383+40=423(公里),所以甲每天走的就可以求出来了。甲每天走的知道了,乙每天走的也就可以知道了。
口述3:除上述两种方法外,本题还可以用列方程来解。设甲每天行x公里,那么乙每天行的就是(x-10)公里,已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
5x+4×(x-10)=383
解方程,就可以求出甲每天行多少公里,甲每天行的求出来了,乙每天行的也就可以求出来了。
本题也可以设乙每天行x公里,则甲每天行的就是(x+10)公里。已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
(x+10)×5+4x=383
解方程,就可以求出乙每天行多少公里,乙每天行的求出来了,甲每天行的也就可以求出来了。
实践证明,口述不同的解题思路和解题方法,不仅可以促使学生积极动脑,努力探求应用题的多种解法,培养和锻炼学生的逻辑思维能力和语言表达能力,而且可以帮助学生在较短的时间内把应用题的多种不同解法都挖掘出来,这对学生更好地认识和掌握应用题的各种解法,提高分析解答应用题的能力和效率等都有重要作用。
三、引导学生自己找出最简便的解法。
引导学生自己找出最简便的解法,就是在上面两步练习的基础上,在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在分析比较,相互讨论、相互争论的过程中,找出最简便的解题方法。这一过程,就是一个继续思维的过程,也是一个对应用题的各种解法的再认识的过程。它是一题多解训练的一个不可忽视的环节。学生通过前面两步的训练,求得应用题的多种解法之后,解题思维不能到此完结,对各种解题方法的认识也不是非常深刻。学生求得的几种解题方法是否完全正确,分析解题的过程是否都很恰当,哪些是一般的解法,哪些是自己的创新,哪种解法简便等等,这些都要引导学生自己去进一步思维,进一步去认识。否则是对是错,是优是劣,是简是繁,学生都不知道,这样就不能达到提高学生解题能力的目的。只有通过引导学生自己对上述求得的各种解题方法进行逐一比较,展开热烈的讨论或争论,才能真正把握应用题的最简便的解题方法,才能进一步提高解答应用题的能力和效率。
例: 幸福小学原计划买12个篮球,每个72元,从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?
解法1 、(72×12--432)÷72
=432÷72
=6(个)
答:剩下的钱还可以买6个篮球。
解法2、 12-432÷72
=12-6
=6(个)
答:(同上)
解法3 、设剩下的钱还可以买x个篮球
72x=12×72-432
72x=432
x=6
答:(同上)
解法4、 设剩下的钱还可以买x个篮球
72x+432=72×12
72x+432=864
72x=864-432
72x=432
x=6
答:(同上)
本题上述多种解法,思维分析过程不同,解法和运算过程也不同。解法1是一般的思维和一般的算术解法;解法3,4……是列方程的解法。解法2也是算术解法,但解题思路新,解答方法、解题过程简便。
当一个学生说出这个解题思路:“把拿出432元买足球的钱看作是少买了几个篮球的钱,再用计划买的12个篮球数减掉少买的篮球数所得的差,就是所求的答案。” 列出:12-432÷72这个式子,可以看出这位同学的解题思路独特又有新意,解题方法简便,解题过程简单。
实践证明,进行这种训练,让学生在比较、讨论、争论中,找出最简便的解法和独特的富有新意的解题思路,有利于加深学生对多种解题方法的认识,从而更熟练地把握应用题的多种分析解题方法。
一题多解训练,应当注意以下几点:
(1)目的要明确。上这种课,不是单纯地追求一题多解,而是要通过这种练习活动,达到锻炼学生的思维,拓宽学生的思路,增长学生的知识,培养和提高学生创造性学习能力这个根本目的。所以,教学内容的安排,教学活动的组织,教学方法的选择等等,都要有利于实现这个根本目的。这是上这种课的总要求。
(2)要注意把握上这种课的时间。这种课必须要在学生对有关的知识和技能熟练掌握的基础上进行。如果学生对有关的知识和技能没有熟练掌握,就谈不上灵活运用,就谈不上纵向、横向联系,也就不能进行一题多解。所以,上这种课,一般是在学生对某一部分知识或某几部分知识熟练掌握的时候,在综合练习时进行。学生对基础知识掌握得越深刻,越透彻;基本技能越娴熟,越灵活,就越能够进行一题多解,上这种课就越能收到好的效果。
(3)选题要得当,方法要灵活。选题得当是学生一题多解的前提条件。它既要能够一题多解,又要顾及班上差生、好生的具体情况,使差生想想也能找出几种解法,使好生也有用武之地;一题多解训练的具体方式方法是很多的,不能死搬硬套,人云亦云。要从实际出发,不能千题一律,堂堂如此。要根据班上学生学习的具体情况和实际教学需要,灵活选择教学方法。只有这样,才能调动全班学生的学习积极性,取得好的教学效果。

⑧ “一题多解”是什么思维的一种表现形式

“一题多解”是发散性思维的一种表现形式。

发散思维(Divergent Thinking),又称辐射思维、放射思维、扩散思维或求异思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为思维视野广阔,思维呈现出多维发散状。

如“一题多解”、“一事多写”、“一物多用”等方式,培养发散思维能力。 不少心理学家认为,发散思维是创造性思维的最主要的特点,是测定创造力的主要标志之一。

(8)一题多解是什么教学方法扩展阅读:

一、作用

1、核心性作用

想象是人脑创新活动的源泉,联想使源泉汇合,而发散思维就为这个源泉的流淌提供了广阔的通道。

2、基础性作用

创新思维的技巧性方法中,有许多都是与发散思维有密切关系的。

3、保障性作用

发散思维的主要功能就是为随后的收敛思维提供尽可能多的解题方案。这些方案不可能每一个都十分正确、有价值,但是一定要在数量上有足够的保证。

二、一般方法

1、材料发散法——以某个物品尽可能多的“材料”,以其为发散点,设想它的多种用途。

2、功能发散法——从某事物的功能出发,构想出获得该功能的各种可能性。

3、结构发散法——以某事物的结构为发散点,设想出利用该结构的各种可能性。

4、形态发散法——以事物的形态为发散点,设想出利用某种形态的各种可能性。

5、组合发散法——以某事物为发散点,尽可能多地把它与别的事物进行组合成新事物。

6、方法发散法——以某种方法为发散点,设想出利用方法的各种可能性。

7、因果发散法——以某个事物发展的结果为发散点,推测出造成该结果的各种原因,或者由原因推测出可能产生的各种结果。

阅读全文

与一题多解是什么教学方法相关的资料

热点内容
清洗瓷砖方法有哪些 浏览:555
汽车漆面划痕有什么补救方法 浏览:759
快速洗纹身方法 浏览:977
女性夜尿多锻炼方法 浏览:442
福美钠的检测方法 浏览:465
红花生和红醋泡的食用方法 浏览:410
简述分析方法验证的效能指标 浏览:677
脑梗最好的治疗方法 浏览:557
贵州正宗酸汤的制作方法去哪里学 浏览:326
中药炮制清除杂质的方法有哪些 浏览:873
老君威更换电脑匹配方法 浏览:99
肺的早期腺癌怎么治疗方法 浏览:22
格力中央安装方法 浏览:469
编织镂空花的方法视频 浏览:54
行测策略制定方法和技巧 浏览:192
小米枪战解决方法 浏览:155
马达板的安装方法 浏览:356
外阴皮炎治疗的方法 浏览:832
汉堡制作方法哪里有 浏览:510
大腿丹毒怎么治疗方法 浏览:706