A. 创建于20 世纪的主要数学分支有哪些请阐述它们各自的主要思想方法!
基础数学:
数论:古典数论 解析数论,代数数论,超越数论, 模型式与模函数论
代数学:线性代数 群论, 群表示论, 李群, 李代数, 代数群, 典型群, 同调代数, 代数K理论, Kac-Moody代数, 环论, 代数, 体, 格, 序结构. 域论和多项式 拓扑群 矩阵论 向量代数 张量代数
几何学:(整体,局部)微分几何, 代数几何, 流形上的分析, 黎曼流形与洛仑兹流形, 齐性空间与对称空间, 调和映照, 子流形理论, 杨--米尔斯场与纤维丛理论, 辛流形. 凸几何与离散几何 欧氏几何 非欧几何 解析几何
拓扑学:微分拓扑, 代数拓扑, 低维流形, 同伦论, 奇点与突变理论, 点集拓扑. 流形和胞腔复形 大范围分析,微分拓扑 同调论复流形
函数论: 函数逼近论.
泛函分析:(非)线性泛函分析, 算子理论, 算子代数, 差分与泛函方程, 广义函数. 变分法,积分变换 积分方程
微分方程:泛函微分方程, 特征与谱理论及其反问题, 定性理论, 稳定性理论、分支理论,混沌理论, 奇摄动理论,动力系统, 常微分方程非线性椭圆(和抛物)方程,偏微分方程, 微局部分析与一般偏微分算子理论, 调混合型及其它带奇性的方程, 非线性发展方程和无穷维动力系统.
在泛函分析方面,包括象Kasparov在内的许多人的工作将连续的K-理论推广到非交换
的C*-代数情形.一个空间上的连续函数在函数乘积意义下形成一个交换代数.但是在其
他情形下,自然地产生了类似的关于非交换情形的讨论,这时,泛函分析也就自然而然地
成为了这些问题的温床.
因此,K-理论是另外一个能够将相当广泛的数学的许多不同方面都能用这种比较简单
的公式来处理的领域,尽管在每一个情形下,都有很多特定于该方面且能够连接其他部分
的非常困难的,技巧性很强的问题.K-理论不是一个统一的工具,它更象是一个统一的框
架,在不同部分之间具有类比和相似.
这个工作的许多内容已经被Alain Connes推广到“非交换微分几何”.
非常有趣的是,也就是在最近,Witten通过他在弦理论方面(基础物理学的最新思想
)的工作发现许多很有趣的方法都与K-理论有关,并且K-理论看起来为那些所谓的“守恒
量”提供了一个很自然的“家”.虽然在过去同调论被认为是这些理论的自然框架,但是
现在看起来K一理论能提供更好的答案.
李群
另一个不单单是一项技术、而且是具有统一性的概念是李群.现在说起李群,我们基
本上就是指正交群,酉群,辛群以及一些例外群,它们在二十世纪数学历史中起了非常重
要的作用.它们同样起源于十九世纪.SophusLie是一位十九世纪的挪威数学家.正如很
多人所讲的那样,他和Fleix Klein,还有其他人一起推动了“连续群理论”的发展.对
Klein而言,一开始,这是一种试图统一处理Euclid几何和非欧几何这两种不同类型几何
的方法.虽然这个课题源于十九世纪,但真正起步却是在二十世纪,作为一种能够将许多
不同问题归并于其中来研究的统一性框架,李群理论深深地影响了二十世纪.
我现在来谈谈Klein思想在几何方面的重要性.对于Klein而言,几何就是齐性空间,
在那里,物体可以随意移动而保持形状不变,因此,它们是由一个相关的对称群来控制的
.Euclid群给出Euclid几何而双曲几何源于另一个李群.于是每一个齐性几何对应一个不
同的李群.但是到了后来,随着对Riemann的几何学工作的进一步发展,人们更关心那些
不是齐性的几何,此时曲率随着位置的变化而变化,并且空间不再有整体对称性,然而,
李群仍然起着重要的作用,这是因为在切空间中我们有Euclid坐标,以至于李群可以出现
在一种无穷小的层面上.于是在切空间中,从无穷小的角度来看,李群又出现了,只不过
由于要区分不同位置的不同点,我们需要用某种可以处理不同李群的方式来移动物体.这
个理论是被Eile Cartan真正发展起来的,成为现代微分几何的基石,该理论框架对于Ei
nstein的相对论也起着基本的作用.当然Einstein的理论极大地推动了微分几何的全面发
展.
进入二十世纪,我前面提到的整体性质涉及到了在整体层面上的李群和微分几何.一
个主要的发展是给出所谓的“示性类”的信息,这方面标志性的工作是由Borel和Hirzeb
ruch给出的,示性类是拓扑不变量并且融合三个关键部分:李群,微分几何和拓扑,当然
也包含与群本身有关的代数.
在更带分析味的方向上,我们得到了现在被称为非交换调和分析的理论.这是Fouri
er理论的推广,对于后者,Fourier级数或者是Fourier积分本质上对应于圆周和直线的交
换李群,当我们用更为复杂的李群代替它们时,我们就可以得到一个非常漂亮、非常精巧
并且将李群表示理论和分析融为一体的理论.这本质上是Harish-Chandra一生的工作.
在数论方面,整个“Lang1ands纲领”,现在许多人都这样称呼它,紧密联系于Haris
h-Chandra理论,产生于李群理论之中.对于每一个李群,我们都可以给出相应的数论和
在某种程度实施Langlands纲领.在本世纪后半叶,代数数论的一大批工作深受其影响.
模形式的研究就是其中一个很好的例证,这还包括Andrew Wiles在Fermat大定理方面的工
作.
也许有人认为李群只不过在几何范畴内特别重要而已,因为这是出于连续变量的需要
.然而事实并非如此,有限域上的李群的类似讨论可以给出有限群,并且大多数有限群都
是通过这种方式产生的.因此李群理论的一些技巧甚至可以被应用到有限域或者是局部域
等一些离散情形中.这方面有许多纯代数的工作,例如与George Lusztig名字联系在一起
的工作.在这些工作中,有限群的表示理论被加以讨论,并且我已经提到的许多技术在这
里也可以找到它们的用武之地.
有限群
上述讨论已把我们带到有限群的话题,这也提醒了我:有限单群的分类是我必须承认
的一项工作.许多年以前,也就是在有限单群分类恰要完成之时,我接受了一次采访,并
且我还被问道我对有限单群分类的看法,我当时很轻率地说我并不认为它有那么重要.我
的理由是有限单群分类的结果告诉我们,大多数单群都是我们已知的,还有就是一张有关
若干例外情形的表.在某种意义下,这只不过是结束了一个领域.而并没有开创什么新东
西,当事物用结束代替开始时,我不会感到很兴奋.但是我的许多在这一领域工作的朋友
听到我这么讲,理所当然地会感到非常非常不高兴,我从那时起就不得不穿起“防弹衣”
了.
在这项研究中,有一个可以弥补缺点的优点.我在这里实际上指的是在所有的所谓“
散在群”(sporadic groups)中,最大的被赋予了“魔群”名字的那一个.我认为魔群的
发现这件事本身就是有限单群分类中最叫人兴奋的结果了.可以看出魔群是一个极其有意
思的动物而且现在还处于被了解之中.它与数学的许多分支的很大一部分有着意想不到的
联系,如与椭圆模函数的联系,甚至与理论物理和量子场论都有联系.这是分类工作的一
个有趣的副产品.正如我所说的,有限单群分类本身关上了大门,但是魔群又开启了一扇
大门.
物理的影响
现在让我把话题转到一个不同的主题,即谈谈物理的影响.在整个历史中,物理与数
学有着非常悠久的联系,并且大部分数学,例如微积分,就是为了解决物理中出现的问题
而发展起来的.在二十世纪中叶,随着大多数纯数学在独立于物理学时仍取得了很好的发
展,这种影响或联系也许变得不太明显.但是在本世纪最后四分之一的时间里,事情发生
了戏剧性的变化,让我试着简单地评述一下物理学和数学,尤其是和几何的相互影响.
在十九世纪,Hamilton发展了经典力学,引入了现在称为Hamilton量的形式化.经典
力学导出现在所谓的“辛几何”.这是几何的一个分支,虽然很早已经有人研究了,但是
实际上直到最近二十年,这个课题才得到真正的研究.这已经是几何学非常丰富的一部分
.几何学,我在这里使用这个词的意思是指,它有三个分支:Riemann几何,复几何和辛
几何,并且分别对应三个不同类型的李群.辛几何是它们之中最新发展起来的,并且在某
种意义下也许是最有趣的,当然也是与物理有极其紧密联系的一个,这主要因为它的历史
起源与Hamilton力学有关以及近些年来它与量子力学的联系.现在,我前面提到过的、作
为电磁学基本线性方程的Maxwell方程,是Hodge在调和形式方面工作和在代数几何中应用方面工作的源动力.这是一个非常富有成果的理论,并且自从本世纪三十年代以来已经成为几何学中的许多工作的基础.
我已经提到过广义相对论和Einstein的工作.量子力学当然更是提供了一个重要的实
例.这不仅仅体现在对易关系上,而且更显着地体现在对Hilbert空间和谱理论的强调上
.
以一种更具体和明显的方式,结晶学的古典形式是与晶体结构的对称性有关的.第一
个被研究的实例是发生在点周围的有限对称群,这是鉴于它们在结晶学中的应用.在本世
纪中,群论更深刻的应用已经转向与物理的关系,被假设用来构成物质的基本粒子看起来
在最小的层面上有隐藏的对称性,在这个层面上,有某些李群在此出没,对此我们看不见
,但是当我们研究粒子的实际行为时,它们的对称性就显现无遗了.所以我们假定了一个
模型,在这个模型当中,对称性是一个本质性的要素,而且目前那些很普遍的不同理论都
有一些象SU(2)和SU(3)那样的基本李群融入其中并构成基础的对称群,因此这些李群看起
来象是建设物质大厦的砖石.
并不是只有紧李群才出现在物理中,一些非紧李群也出现在物理中,例如Lorentz群.
正是由物理学家第一个开始研究非紧李群的表示理论的.它们是那些能够发生在Hilbert
空间的表示,这是因为,对于紧群而言,所有不可约表示都是有限维的,而非紧群需要的
是无穷维表示,这也是首先由物理学家意识到的.
在二十世纪的最后25年里,正如我刚刚完成阐述的,有一种巨大的从物理学的新思想
到数学的渗透,这也许是整个世纪最引人注目的事件之一,就这个问题本身,也许就需要
一个完整的报告,但是,基本上来讲,量子场论和弦理论已经以引人注目的方式影响了数
学的许多分支,得到了众多的新结果、新思想和新技术.这里,我的意思是指物理学家通
过对物理理论的理解已经能够预言某些在数学上是对的事情了.当然,这不是一个精确的
证明,但是确有非常强有力的直觉、一些特例和类比所支持.数学家们经常来检验这些由
物理学家预言的结果,并且发现它们基本上是正确的,尽管给出证明是很困难的而且它们
中的许多还没有被完全证明.
所以说沿着这个方向,在过去的25年里取得了巨大的成果.这些结果是极其细致的.
这并不象物理学家所讲的“这是一种应该是对的东西”.他们说:“这里有明确的公式,
还有头十个实例(涉及超过12位的数字)”.他们会给出关于复杂问题的准确答案,这些
决不是那种靠猜测就能得到的,而是需要用机器计算的东西,量子场论提供了一个重要的
工具,虽然从数学上来理解很困难,但是站在应用的角度,它有意想不到的回报.这是最
近25年中真正令人兴奋的事件. 在这里我列一些重要的成果:SimonDona1dson在四维流形方面的工作;Vaughan-Jon es在扭结不变量方面的工作;镜面对称,量子群;再加上我刚才提到的“魔群” 这个主题到底讲的是什么呢?正如我在前面提到过的一样,二十世纪见证了维数的一种转换并且以转换为无穷维而告终,物理学家超越了这些,在量子场论方面,他们真正试图对广泛的无穷维空间进行细致的研究,他们处理的无穷维空间是各类典型的函数空间,它们非常复杂,不仅是因为它们是无穷维的,而且它们有复杂的代数、几何以及拓扑,还有围绕其中的很大的李群,即无穷维的李群,因此正如二十世纪数学的大部分涉及的是几何、拓扑、代数以及有限维李群和流形上分析的发展,这部分物理涉及了在无穷维情形下的类似处理.当然,这是一件非常不同的事情,但确有巨大的成功.
让我更详尽地解释一下,量子场论存在于空间和时间中.空间的真正的意义是三维的
,但是有简化的模型使我们将空间取成一维.在一维空间和一维时间里,物理学家遇到的
典型事物,用数学语言来讲,就是由圆周的微分同胚构成的群或者是由从圆周到一个紧李
群的微分映射构成的群.它们是出现在这些维数里的量子场论中的两个非常基本的无穷维
李群的例子,它们也是理所当然的数学事物并且已经被数学家们研究了一段时间.
在这样一个1+1维理论中,我们将时空取成一个Riemann曲面并且由此可以得到很多
新的结果.例如,研究一个给定亏格数的Riemann曲面的模空间是个可以追溯到上个世纪
的古典课题.而由量子场论已经得到了很多关于这些模空间的上同调的新结果.另一个非
常类似的模空间是一个具有亏格数g的Riemann曲面上的平坦G-丛的模空间.这些空间都是非常有趣的并且量子场论给出关于它们的一些精确结果.特别地,可以得到一些关于体积的很漂亮的公式,这其中涉及到Zeta函数的取值.
另一个应用与计数曲线(counting curve)有关.如果我们来看给定次数和类型的平面
代数曲线,我们想要知道的是,例如,经过那么多点究竟有多少曲线,这样我们就要面临
代数几何的计数问题,这些问题在上个世纪一直是很经典的.而且也是非常困难的.现在
它们已经通过被称为“量子上同调”的现代技术解决了,这完全是从量子场论中得到的.
或者我们也可以接触那些关于不在平面上而在弯曲族上的曲线的更加困难的问题,这样我
们得到了另一个具有明确结果的被称为镜面对称的美妙理论,所有这些都产生于1+1维量
子场论.
如果我们升高一个维数,也就是2-维空间和1-维时间,就可以得到Vaughan-Jones的
扭结不变量理论.这个理论已经用量子场论的术语给予了很美妙的解释和分析.
量子场论另一个结果是所谓的“量子群”.现在关于量子群的最好的东西是它们的名
字.明确地讲它们不是群!如果有人要问我一个量子群的定义,我也许需要用半个小时来
解释,它们是复杂的事物,但毫无疑问它们与量子理论有着很深的联系它们源于物理,而
且现在的应用者是那些脚踏实地的代数学家们,他们实际上用它们进行确定的计算.
如果我们将维数升得更高一些,到一个全四维理论(三加一维),这就是Donaldson
的四维流形理论,在这里量子场论产生了重大影响.特别地,这还导致Seiberg和Witten
建立了他们相应的理论,该理论建立在物理直觉之上并且也给出许多非同寻常的数学结果
.所有这些都是些突出的例子.其实还有更多的例子.
接下来是弦理论并且这已经是过时的了!我们现在所谈论的是M一理论,这是一个内
容丰富的理论,其中同样有大量的数学,从关于它的研究中得到的结果仍有待于进一步消
化并且足可以让数学家们忙上相当长的时间.
历史的总结
我现在作一个简短的总结.让我概括地谈谈历史:数学究竟发生了什么?我相当随意
地把十八世纪和十九世纪放在了一起,把它们当做我们称为古典数学的时代,这个时代是
与Euler和Gauss这样的人联系在一起的,所有伟大的古典数学结果也都是在这个时代被发
现和发展的.有人也许认为那几乎就是数学的终结了,但是相反地,二十世纪实际上非常
富有成果,这也是我一直在谈论的.
二十世纪大致可以一分为二地分成两部分.我认为二十世纪前半叶是被我称为“专门
化的时代”,这是一个Hilbert的处理办法大行其道的时代,即努力进行形式化,仔细地
定义各种事物,并在每一个领域中贯彻始终.正如我说到过的,Bourbaki的名字是与这种
趋势联系在一起的.在这种趋势下,人们把注意力都集中于在特定的时期从特定的代数系
统或者其它系统能获得什么.二十世纪后半叶更多地被我称为“统一的时代”,在这个时
代,各个领域的界限被打破了,各种技术可以从一个领域应用到另外一个领域,并且事物
在很大程度上变得越来越有交叉性.我想这是一种过于简单的说法,但是我认为这简单总
结了我们所看到的二十世纪数学的一些方面.
二十一世纪会是什么呢?我已经说过,二十一世纪是量子数学的时代,或者,如果大
家喜欢,可称为是无穷维数学的时代.这意味着什么呢?量子数学的含义是指我们能够恰
当地理解分析、几何、拓扑和各式各样的非线性函数空间的代数,在这里,“恰当地理解
”,我是指能够以某种方式对那些物理学家们已经推断出来的美妙事物给出较精确的证明
. 有人要说,如果用天真幼稚的方式(naive way)来研究无穷维并问一些天真幼稚的问
题,通常来讲,只能得到错误的答案或者答案是无意义的,物理的应用、洞察力和动机使
得物理学家能够问一些关于无穷维的明智的问题,并且可以在有合乎情理的答案时作一些
非常细致的工作,因此用这种方式分析无穷维决不是一件轻而易举的事情.我们必须沿着
这条正确的道路走下去.我们已经得到了许多线索,地图已经摊开了:我们的目标已经有
了,只不过还有很长的路要走.
还有什么会发生在二十一世纪?我想强调一下Connes的非交换微分几何.Alain Con
nes拥有这个相当宏伟的统一理论.同样,它融合了一切.它融合了分析、代数、几何、
拓扑、物理、数论,所有这一切都是它的一部分.这是一个框架性理论,它能够让我们在
非交换分析的范畴里从事微分几何学家通常所做的工作,这当中包括与拓扑的关系.要求
这样做是有很好的理由的,因为它在数论、几何、离散群等等以及在物理中都有(潜力巨
大的或者特别的)应用.一个与物理有趣的联系也刚刚被发现.这个理论能够走多远,能
够得到什么结果,还有待进一步观察.它理所当然地是我所期望的至少在下个世纪头十年
能够得到显着发展的课题,而且找到它与尚不成熟的(精确)量子场论之间的联系是完全
有可能的.
我们转到另一个方面,也就是所谓的“算术几何”或者是Arakelov几何,其试图尽可
能多地将代数几何和数论的部分内容统一起来.这是一个非常成功的理论.它已经有了一
个美好的开端,但仍有很长的路要走.这又有谁知道呢?当然,所有这些都有一些共同点.我期待物理学能够将它的影响遍及所有地方,甚至是数论:Andrew Wiles不同意我这样说,只有时间会说明一切.
这些是我所能看到的在下个十年里出现的几个方面,但也有一些难以捉摸的东西:返
回至低维几何.与所有无穷维的富有想象的事物在一起,低维几何的处境有些尴尬.从很
多方面来看,我们开始时讨论的维数,或我们祖先开始时的维数,仍留下某些未解之谜.
维数为2,3和4的对象被我们称为“低”维的.例如Thurston在三维几何的工作,目标就
是能够给出一个三维流形上的几何分类,这比二维理论要深刻得多.Thurston纲领还远远
没有完成,完成这个纲领当然将是一个重要的挑战. 在三维中另外一个引人注目的事件是Vaughan-Jones那些思想本质上来源于物理的工作.这给了我们更多的关于三维的信息,并且它们几乎完全不在Thurston纲领包含的信息之内.如何将这两个方面联系起来仍然是一个巨大的挑战,但是最近得到的结果暗示两者之间可能有一座桥,因此,整个低维的领域都与物理有关,但是其中实在有太多让人琢磨 不透的东西.
最后,我要提一下的是在物理学中出现的非常重要的“对偶”.这些对偶,泛泛地来
讲,产生于一个量子理论被看成一个经典理论时有两种不同的实现.一个简单的例子是经
典力学中的位置和动量的对偶.这样由对偶空间代替了原空间,并且在线性理论中,对偶
就是Fourier变换.但是在非线性理论中,如何来代替Fourier变换是巨大的挑战之一.数
学的大部分都与如何在非线性情形下推广对偶有关.物理学家看起来能够在他们的弦理论
和M一理论中以一种非同寻常的方式做到了这一点.他们构造了一个又一个令人叹为观止
的对偶实例,在某种广义的意义下,它们是Fourier变换的无穷维非线性体现,并且看起
来它们能解决问题,然而理解这些非线性对偶性看起来也是下个世纪的巨大挑战之一.
我想我就谈到这里.这里还有大量的工作,并且我觉得象我这样的一个老人可以和你
们这么多的年轻人谈谈是一件非常好的事情;而且我也可以对你们说:在下个世纪,有大
量的工作在等着你们去完成.
数学物理:规范场论, 引力场论的经典理论与量子理论, 孤立子理论.
概率论:马氏过程, 随机过程, 随机分析, 随机场, 鞅论, 极限理论, 平稳过程, 概率论 统计学;
数理逻辑与数学基础:递归论, 模型论, 证明论, 公理集合证, 数理逻辑 范畴论
组合数学:组合计数, 图论.
分析学:序列、级数、可求和性 微积分 实变函数 抽象测度论 逼近与展开 特殊函数(单,多)复变函数论,调和分析, Fourier分析
B. 重奖!!!!!!!!急!同伦算法的简介!大概1000字左右!
根据最优化问题的极值条件,将模量反算转化为非线性映射求零点的问题,结合数值微分计算弯沉对模量的一阶和二阶偏导数,建立了基于同伦方法反算路面模量的数学模型;并采用LIYORKE算法求解微分方程初值问题跟踪同伦曲线,获得模量的反算结果,在此基础上编制了相应的模量反算程序。通过对3种路面结构的落锤式弯沉仪(FWD)的实测弯沉盆进行模量反算,并与国内外其它反算程序比较,验证了同伦方法反算结果的精度和可靠性。同时,通过选取不同初始值进行反算比较,验证了同伦方法的大范围收敛性和反算结果的稳定性。结果表明,采用同伦方法进行路面模量反算有效地解决了常规最优化算法的初始值和局部收敛的问题,是一种精度好、速度快、效率高、结果稳定且大范围收敛的模量反算方法。
以上内容没有1000字,自己再展开下吧
C. 拓扑的数学术语
设X是一个非空集合,X的幂集的子集(即是X的某些子集组成的集族)T称为X的一个拓扑。当且仅当:
1.X和空集{}都属于T;
2.T中任意多个成员的并集仍在T中;
3.T中有限多个成员的交集仍在T中。
称集合X连同它的拓扑τ为一个拓扑空间,记作(X,T)。
称T中的成员为这个拓扑空间的开集。
定义中的三个条件称为拓扑公理。(条件(3)可以等价的换为τ中两个成员的交集仍在τ中。)
从定义上看,给出某集合的一个拓扑就是规定它的哪些子集是开集。这些规定不是任意的,必须满足三条拓扑公理。
一般说来,一个集合上可以规定许多不相同的拓扑,因此说到一个拓扑空间时,要同时指明集合及所规定的拓扑。在不引起误解的情况下,也常用集合来代指一个拓扑空间,如拓扑空间X,拓扑空间Y等。
同时,在拓扑范畴中,我们讨论连续映射。定义为:f: (X,T_1) ------> (Y,T_2) (T_1,T_2是上述定义的拓扑)是连续的当且仅当开集的原像是开集。两个拓扑空间同胚当且仅当存在双向互逆的连续映射。同时,映射同伦和空间同伦等价也是很有用的定义。 1.欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。
2.设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。
3.设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。
4.一个具体的例子。设X={1,2}。则{X,{},{1}}是X的一个拓扑,{X,{},{2}}也是拓扑,{X,{},{1},{2}}是拓扑(由定义可知). 1.哥尼斯堡七桥问题
在数学上,关于哥尼斯堡七桥问题、多面体欧拉定理、四色问题等都是拓扑学发展史的重要问题。哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。
1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。
2.多面体的欧拉定理
在拓扑学的发展历史中,还有一个着名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。
根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。
它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。
3.四色猜想
着名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。
上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。中国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。 拓扑的中心任务是研究拓扑性质中的不变性。
拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。
在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变换,就存在拓扑等价。
应该指出,环面不具有这个性质。设想,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。
直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。
我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 公元1858年,莫比乌斯发现:把一个扭转180°后再两头粘接起来的纸条具有魔术般的性质。因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。
拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同右图那样粘成一个莫比乌斯带。像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!
有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。
莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早。
莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!
比如在普通空间无法实现的手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。
在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。
二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。
因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。二十世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究曲线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。
拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。
拓扑学在泛函分析、李群论、微分几何、微分方程和其他许多数学分支中都有广泛的应用。
D. 请教柯西积分公式和柯西积分定理在复变函数中有哪些应用求答案
复变函数论的奠基人
19世纪,复变函数论逐渐成为数学的一个独立分支,柯西为此作了奠基性的工作。
复函数与复幂级数
《分析教程》中有一半以上篇幅讨论复数与初等复函数,这表明柯西早就把建立复变函数论作为分析的一项重要工程。他以形式方法引进复数(“虚表示式”),定义其基本运算,得到这些运算的性质。他比照实的情形定义复无穷小与复函数的连续性。
复积分柯西写于1814年的关于定积分的论文是他创立复变函数论的第一步。文中给出了所谓柯西-黎曼方程;讨论了改变二重积分的次序问题,提出了被积函数有无穷型间断点时主值积分的观念并计算了许多广义积分。
柯西写于1825年的关于积分限为虚数的定积分的论文,是一篇力作。文中提出了作为单复变函数论基础的“柯西积分定理”。柯西本人用变分方法证明了这条定理,证明中曲线连续变形的思想,可以说是“同伦”观念的萌芽。文中还讨论了被积函数出现一阶与m阶极点时广义积分的计算。
残数演算术语“残数”首次出现于柯西在1826年写的一篇论文中。他认为残数演算已成为“一种类似于微积分的新型计算方法”,可以应用于大量问题。
复变函数论的建立
E. 什么是同伦方程
同余,是极具有思想方法意义的。这个需要反思运用体会的。可以做很深入的解释,及推广。
这是我以前的回答,希望对你有帮助。
对于一组整数Z,Z里的每一个数都除以同一个数m,得到的余数可以为0,1,2,...m-1,共m种。我们就以余数的大小作为标准将Z分为m类。每一类都有相同的余数。
在每一类下的任意两个数a,b都关于m同余。记为:
a=b(mod m)
用集合论的语言,严格地来说就是:
对于整数集的任意一个子集Z,对于任意一个属于Z的元素n,n都除以m,得到的余数的余数可以为0,1,2,...m-1,共m种。我们就以余数的大小作为标准,将Z分为m个互不相交的m个子集Z1,Z2,...Zm-1。
对于Zi的任意两个元素a,b,都关于m同余。记为
要停电了,我明天再给你解答吧。
a=b(mod m)
其实还可以用更数学化的语言来表达。
同余的运用
请问各位叔叔阿姨!若一个数除3余2,除5余3,除7余4,除11余5,求它的最小正整数?
悬赏分:0 - 解决时间:2006-2-21 21:45
最好有解题过程,谢谢!!
问题补充:368才对!!
提问者: rodger001 - 试用期 一级
最佳答案
368
详细解题过程不容易表达清晰。看来是刚注册的,怪不得没有悬赏分。
那就讲思路吧。依次满足下面四个条件:
1.先满足除11余5,易知为16
2.再满足除7余4,16最多再加6个11,最后为60
3.再满足除5余3,60最多再加4个11×7, 最后为368
4.再满足除3余2,最后为368。
判断条件是否满足时,用同余运算可简化。
如除5时,77与2同余,60再加4个2(或4个77),就能单独满足除5余3。这里60+4×77与60+4×2同余。但60+4×77是在满足前两个条件的前提下进行的。
回答者:林锦1983 - 见习魔法师 二级 2-20 23:15
--------------------------------------------------------------------------------
提问者对于答案的评价:
这是家教中遇到的,原来我读书的时候没有学这东西!谢谢,但上面错了一个字,再加6个11应该是再加4个11.
--------------------------------------------------------------------------------
评价已经被关闭 目前有 4 个人评价
好
75% (3) 不好
25% (1)
对最佳答案的评论
我说的是估算最大计算量,最多再加6个11,实际上只要加4个11就行了。 同余运算是数论的基础知识,一般初中奥赛教材就有了。其实“同余概念”的基础是抽象分类法。这里仅抽取“余数的大小”这一抽象特性,作为分类的标准。
F. 简单介绍一下拓扑学
拓扑学是几何学的一个分支,主要研究图形在连续变换下不变的性质。
可参看网络的“拓扑”或“拓扑学”条目。我下面引述的例子不多作解释,可以直接查到。
例如,Euler的七桥问题就是一个拓扑学的问题,因为把七桥连成路径,不论桥和路如何连续的变化,都不影响问题的结果,也就是说,这个问题研究的是一个连续变换下不变的性质。
又如,四色定理(地图可用四色着色)是一个拓扑学的问题,因为地图中的区域大小和具体形状在问题中并不重要,都可以连续的变化,不改变地图可以用四色着色这一性质。
所以,在拓扑学的观点下,圆和三角形的性质没有什么区别,轮胎和戒指的性质没有什么区别,因为它们都可以通过连续变换互相得到。
另一方面,研究图形面积的几何就不是拓扑学,因为在连续变换下,面积可以变化。同样的道理,图形的大小、平行、对称、垂直等等都不是拓扑学的研究领域。
可以看到,拓扑学研究的性质对图形的要求很低(一定程度变了形都没关系),所以它的应用范围也就十分广泛,因而成为现代数学的基础之一。以至于许多看起来跟几何图形没多大关系的地方,也可以应用拓扑学的知识。如分析学中就大量使用点集拓扑学的术语和手段。
拓扑学因研究的领域和方法的不同,有一些分支。如一般拓扑学,又称点集拓扑学,是研究一组抽象的“点”(可以是几何上的,也可以不是)的拓扑性质的;代数拓扑学,利用代数学的手段研究拓扑性质,如同伦论和同调论;微分拓扑学,利用分析学的手段(主要是微分)研究拓扑性质;几何拓扑学,研究几何意义明显的东西(成为流形),如扭结;等等。
注:以上的叙述只是介绍,语言都是在数学上不严谨的。实际的拓扑学研究中,像连续、变换、点等概念,都是需要严格定义的。
G. 金融数学毕业论文题目怎么定
1、倒向随机微分方程数值方法与非线性期望在金融中的应用:g-定价机制及风险度量
2、分形市场中两类衍生证券定价问题的研究
3、在机制转换金融市场中投资者的最优消费和投资行为分析
4、商业银行金融风险程度的模糊综合评价
5、金融保险中的若干模型与分析
6、金融印鉴真伪识别新方法研究
7、基于区间分析的金融市场风险管理VaR计算方法研究
8、分形理论及其在金融市场分析中的应用
9、离散时间随机区间值收益市场下的定价分析
10、金融学理论及其未来发展趋势--转向整合
11、微分方程数值解法及在数学建模中的应用
12、金融模糊模型与方法
13、模糊数学在储蓄机构设置中的应用
14、金融市场中的时间变换方法及其应用
15、从数学走进生活的创新教育
16、为何经济学无法预测金融危机
17、金融资产的离散过程动态风险度量研究
18、论金融衍生工具及在我国商业银行信贷风险管理中的应用
19、基于VAR模型的江苏省金融发展与经济增长关系研究
20、货币危机预警模型研究
21、在银行和金融业数据分析中应用数学规划模型
22、随机过程理论在期权定价中的应用
23、金融保险中的几类风险模型
24、数学金融学中的期权定价问题
25、金融资产收益相关性及持续性研究
26、同伦分析方法在非线性力学和数学生物学中的应用
27、存货质押融资的供应链金融服务研究
28、金融机构资产负债管理模型及在泉州银行的应用
29、社保基金投资资本市场:理论探讨、金融创新与投资运营
30、量子方案的金融资产投资最优组合选择
31、房价调控的数学模型分析
32、基于小波分析的金融数据频域分析
33、非线性数学期望下的随机微分方程及其应用
34、竞争性电力市场中的金融工程理论与实证研究
35、小波理论及其在经济金融数据处理中的应用
36、四种金融投资风险介绍
37、扩展的欧式期权定价模型研究
38、基于可疑金融交易识别的离群模式挖掘研究
39、华尔街的数学革命
40、辽宁城乡金融发展差异对城乡经济增长影响的实证研究
41、衍生金融工具风险监控问题探析
42、金融危机之信用失衡
43、基于西部金融中心建设目标的成都金融人才需求预测研究
44、基于小波变换的金融时间序列奇异点识别模型与研究
45、我国区域金融中心发展路径与模式研究
46、我国农村金融供给不足问题的探讨
47、金融发展对江西经济增长的影响
48、基于金融自由度的香港人民币离岸市场反洗钱研究
49、商业银行信贷市场的非对称信息博弈及基于Agent的SWARM仿真
50、金融危机背景下企业并购投资决策体系研究
H. 怎样用同伦不等式证明
比较法
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab2
分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)
基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1
分析:通过观察可直接套用: xy≤x2+y22
证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥3
综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥4
左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3
求证:2f(n)≤f(2n)
分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明: 即证 |a-c|<c2-ab
即证 (a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2
放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1
又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1
证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3
(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314
证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+2
把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤2
分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q3
将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾 ∴p+q≤2
练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.
求证:a>0,b>0,c>0
数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12
那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边> 2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2> 2k+1·2k+3
〈二〉(2k+2)2> (2k+1)(2k+3)
〈二〉4k2+8k+4> 4k2+8k+3
〈二〉4>3 ③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324
构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2 (x≠0)
证明:设f(x)= x1-2x- x2 (x≠0)
∵f (-x)
=-x1-2-x+x2x-2x2x-1+x2
=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0 ,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于设A(1,a),B(1,b)则0A= 1+a2
I. 详细的数学分支介绍
1.. 数学史
2.. 数理逻辑与数学基础
a.. 演绎逻辑学 亦称符号逻辑学
b.. 证明论 亦称元数学
c.. 递归论
d.. 模型论
e.. 公理集合论
f.. 数学基础
g.. 数理逻辑与数学基础其他学科
3.. 数论
a.. 初等数论
b.. 解析数论
c.. 代数数论
d.. 超越数论
e.. 丢番图逼近
f.. 数的几何
g.. 概率数论
h.. 计算数论
i.. 数论其他学科
4.. 代数学
a.. 线性代数
b.. 群论
c.. 域论
d.. 李群
e.. 李代数
f.. Kac-Moody代数
g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结
合代数等
h.. 模论
i.. 格论
j.. 泛代数理论
k.. 范畴论
l.. 同调代数
m.. 代数K理论
n.. 微分代数
o.. 代数编码理论
p.. 代数学其他学科
5.. 代数几何学
6.. 几何学
a.. 几何学基础
b.. 欧氏几何学
c.. 非欧几何学 包括黎曼几何学等
d.. 球面几何学
e.. 向量和张量分析
f.. 仿射几何学
g.. 射影几何学
h.. 微分几何学
i.. 分数维几何
j.. 计算几何学
k.. 几何学其他学科
7.. 拓扑学
a.. 点集拓扑学
b.. 代数拓扑学
c.. 同伦论
d.. 低维拓扑学
e.. 同调论
f.. 维数论
g.. 格上拓扑学
h.. 纤维丛论
i.. 几何拓扑学
j.. 奇点理论
k.. 微分拓扑学
l.. 拓扑学其他学科
8.. 数学分析
a.. 微分学
b.. 积分学
c.. 级数论
d.. 数学分析其他学科
9.. 非标准分析
10.. 函数论
a.. 实变函数论
b.. 单复变函数论
c.. 多复变函数论
d.. 函数逼近论
e.. 调和分析
f.. 复流形
g.. 特殊函数论
h.. 函数论其他学科
11.. 常微分方程
a.. 定性理论
b.. 稳定性理论
c.. 解析理论
d.. 常微分方程其他学科
12.. 偏微分方程
a.. 椭圆型偏微分方程
b.. 双曲型偏微分方程
c.. 抛物型偏微分方程
d.. 非线性偏微分方程
e.. 偏微分方程其他学科
13.. 动力系统
a.. 微分动力系统
b.. 拓扑动力系统
c.. 复动力系统
d.. 动力系统其他学科
14.. 积分方程
15.. 泛函分析
a.. 线性算子理论
b.. 变分法
c.. 拓扑线性空间
d.. 希尔伯特空间
e.. 函数空间
f.. 巴拿赫空间
g.. 算子代数
h.. 测度与积分
i.. 广义函数论
j.. 非线性泛函分析
k.. 泛函分析其他学科
16.. 计算数学
a.. 插值法与逼近论
b.. 常微分方程数值解
c.. 偏微分方程数值解
d.. 积分方程数值解
e.. 数值代数
f.. 连续问题离散化方法
g.. 随机数值实验
h.. 误差分析
i.. 计算数学其他学科
17.. 概率论
a.. 几何概率
b.. 概率分布
c.. 极限理论
d.. 随机过程 包括正态过程与平稳过程、点过程等
e.. 马尔可夫过程
f.. 随机分析
g.. 鞅论
h.. 应用概率论 具体应用入有关学科
i.. 概率论其他学科
18.. 数理统计学
a.. 抽样理论 包括抽样分布、抽样调查等
b.. 假设检验
c.. 非参数统计
d.. 方差分析
e.. 相关回归分析
f.. 统计推断
g.. 贝叶斯统计 包括参数估计等
h.. 试验设计
i.. 多元分析
j.. 统计判决理论
k.. 时间序列分析
l.. 数理统计学其他学科
19.. 应用统计数学
a.. 统计质量控制
b.. 可靠性数学
c.. 保险数学
d.. 统计模拟
20.. 应用统计数学其他学科
21.. 运筹学
a.. 线性规划
b.. 非线性规划
c.. 动态规划
d.. 组合最优化
e.. 参数规划
f.. 整数规划
g.. 随机规划
h.. 排队论
i.. 对策论 亦称博弈论
j.. 库存论
k.. 决策论
l.. 搜索论
m.. 图论
n.. 统筹论
o.. 最优化
p.. 运筹学其他学科
22.. 组合数学
23.. 模糊数学
24.. 应用数学 具体应用入有关学科
25.. 数学其他学科