⑴ 数据分析的基本方法有哪些
数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,今天小编就来和大家说说如何对数据进行分析?为此小编对大数据分析方法进行的归纳整理,一起来看看吧!
画像分群
画像分群是聚合契合某种特定行为的用户,进行特定的优化和剖析。
比方在考虑注册转化率的时候,需求差异移动端和Web端,以及美国用户和我国用户等不同场景。这样可以在途径战略和运营战略上,有针对性地进行优化。
趋势维度
树立趋势图表可以活络了解商场,用户或产品特征的根柢体现,便于进行活络迭代;还可以把方针依据不同维度进行切分,定位优化点,有助于挑选方案的实时性。
趋势维度
漏斗查询
经过漏斗剖析可以从先到后的次序恢复某一用户的途径,剖析每一个转化节点的转化数据。
悉数互联网产品、数据分析都离不开漏斗,不论是注册转化漏斗,仍是电商下单的漏斗,需求注重的有两点。首先是注重哪一步丢掉最多,第二是注重丢掉的人都有哪些行为。
注重注册流程的每一进程,可以有用定位高损耗节点。
漏斗查询
行为轨道
行为轨道是进行全量用户行为的恢复,只看PV、UV这类数据,无法全面了解用户怎样运用你的产品。了解用户的行为轨道,有助于运营团队注重具体的用户领会,发现具体问题,依据用户运用习气规划产品、投进内容。
行为轨道
留存剖析
留存是了解行为或行为组与回访之间的相关,留存老用户的本钱要远远低于获取新用户,所以剖析中的留存是十分重要的方针之一。
除了需求注重全体用户的留存情况之外,商场团队可以注重各个途径获取用户的留存度,或各类内容招引来的注册用户回访率,产品团队注重每一个新功用用户的回访影响等。
留存剖析
A/B查验
A/B查验是比照不同产品规划/算法对效果的影响。
产品在上线进程中常常会运用A/B查验来查验产品效果,商场可以经过A/B查验来完毕不同构思的查验。
要进行A/B查验有两个必备要素:
1)有满意的时刻进行查验
2)数据量和数据密度较高
由于当产品流量不行大的时候,做A/B查验得到核算经果是很难的。
A/B查验
优化建模
当一个商业方针与多种行为、画像等信息有相关时,咱们一般会运用数据挖掘的办法进行建模,猜测该商业效果的产生。
优化建模
例如:作为一家SaaS企业,当咱们需求猜测判别客户的付费自愿时,可以经过用户的行为数据,公司信息,用户画像等数据树立付费温度模型。用更科学的办法进行一些组合和权重,得知用户满意哪些行为之后,付费的或许性会更高。
以上就是小编今天给大家整理分享关于“如何对数据进行分析
大数据分析方法整理”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。
⑶ 在我们生活中,都可以用那些方法收集和整理数据呢
抽样调查法。
抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。
在数据分析前期,要做到充分沟通、理解业务规则、业务痛点、了解用户需求、换位思考,明确为什么要做数据分析,要达到一个什么目标。这样才能保证后续的收集数据、确定分析主题、分析数据、分析结果应用等工作都能够围绕分析目标开展,保证最终能够从整体目标的角度去总结分析成果。
以解决业务问题为目标,以数据现状为基础,确定分析主题。前期要做好充分的准备,以业务问题为导向,以业务梳理为重点,进行多轮讨论,分析主题避免过大,针对业务痛点,实现知现状、明原因、可预测、有价值。另外,分析数据的范围除了重点的业务指标数据,还要尽量考虑扩展外延数据;
比如经济指标数据、气象数据、财务数据等。确定分析主题之前,要进行数据支撑情况的初步判断,避免中途发现数据质量或者数据范围不能支撑分析工作的情况发生。确定分析主题之后,详细论证分析可行性,保证分析过程的清晰性,才能开始分析工作。
⑷ 如何做数据分析
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
⑸ 常用数据分析处理方法有哪些
1、漏斗分析法
漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中。
2、留存分析法
留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。
3、分组分析法
分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。
4、矩阵分析法
矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。
⑹ 常用的数据分析方法有哪些
常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。
⑺ 数据分析最为基本的三种方法
数据分析最为基本的三种方法
数据分析重要的是模型,说白点就是知道要什么数据,了解数据走势,懂得如何分析。在数据分析呈现后,要根据分析得出结论,结论中需要用简单明了的语言表明出现的问题,导致问题的原因,最后就是针对问题的解决方法。
数据分析体系可分为数据整理、数据分析、数据呈现。
数据整理包含对源数据的获取、筛选、清洗、整理和统计,数据整理是对源数据的初加工,是数据分析工作的前置。数据预处理是最为重要的,保证数据的完整性和准确性,如果前期的数据加工过程中得到的数据是错误,后面再怎么分析都是不对的。
数据分析是运用数据分析的工具,根据自己的目的,对数据进行深层次的挖掘和分析,找出内在的联系和变化;在这个阶段更重要的注重对于数据的解读,数据反映出来的规则是怎么样的?目前业务碰到什么样的问题?希望通过数据解决什么问题。
数据呈现是对分析的结果进行呈现,大部分是通过专业图表来展示,是数据分析报告的重要组成部分,也即是数据分析的终极形式。对很多公司来说,数据整理不是难事,难就难在业务数据如何解读?如何呈现才能说明问题?从中能发现什么业务问题?有没有改善的机会?
其实,以上的业务问题,可以转换为从三个方面去分析。首先数据整理后,需要三看:看趋势,看分布,看对比。
看趋势即是看目标数据的时间走向趋势,是波动大还是较平缓?哪个阶段变化较大?异常点落在哪个时间段?看趋势的目的是把握整体的走向。可选工具有:趋势图、多列堆积柱形图。
看分布目标数据段整体分布是发散的还是集中的?集中在哪个频率段?中位数集中在哪个区间段?占80%的数据集中在什么数据区间段?看分布的目的就是了解业务数据是否稳定,以及数据的集中度。可选工具有:直方图、箱线图、正态分布、点图、柏拉图。
看对比更多时候,环比和同比看不出什么问题,更不能说明问题,尤其是环比和同比结果相差不大的时候。这时候,可以与上月对比看看,稳定性如何?集中度有变化吗?变量之间有关系吗?相关关系是多大?可选工具有:堆积柱形图、方差分析、相关分析、回归分析等。
看趋势、看分布、看对比,就是数据分析的三看。需要注意的是,数据就是数据,问题还是要通过具体的业务措施去解决,数据分析只是告诉你,出问题的地方在哪里,要从哪些方面去改善。因此,数据分析三板斧的解读结果,只是提供解决问题的方向,并不能代替具体的业务解决方案。
以上是小编为大家分享的关于数据分析最为基本的三种方法的相关内容,更多信息可以关注环球青藤分享更多干货
⑻ 数据整理的好方法有哪些
1、归纳法: 可应用直方图、分组法、层别法及统计解析法。
2、演绎法: 可应用要因分析图、散布图及相关回归分析。
3、预防法: 通称管制图法,包括Pn管制图、P管制图、C管制图、U管制图、管制图、X-Rs管制图。
数据整理是对调查、观察、实验等研究活动中所搜集到的资料进行检验、归类编码和数字编码的过程。它是数据统计分析的基础。