导航:首页 > 研究方法 > 红外吸收定量分析的方法

红外吸收定量分析的方法

发布时间:2023-01-01 04:52:22

‘壹’ 红外光谱进行定量分析

红外光谱用于定量分析远远不如紫外-可见光谱法。其原因是:
1、红外谱图复杂,相邻峰重叠多,难以找到合适的检测峰。
2、红外谱图峰形窄,光源强度低,检测器灵敏度低,因而必须使用较宽的狭缝。这些因素导致对比尔定律的偏离。
3、红外测定时吸收池厚度不易确定,参比池难以消除吸收池、溶剂的影响。
定量分析依据是比尔定律:ecl=logI0/I或A=ecl。如果有标准样品,并且标准样品的吸收峰与其它成分的吸收峰重叠少时,可以采用作出标准曲线的方法进行分析,即配制一系列不同含量的标准样品,测定数据点,作出曲线。相关步骤可参考紫外-可见光谱的定量分析方法

朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有。

‘贰’ 红外光谱的应用

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。
红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。
红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。
红外光谱具有高度的特征性,所以采用与标准化合物的红外光谱对比的方法来做分析鉴定已很普遍,并已有几种标准红外光谱汇集成册出版,如《萨特勒标准红外光栅光谱集》收集了十万多个化合物的红外光谱图。近年来又将些这图谱贮存在计算机中,用来对比和检索。
分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,例如,
经常出现在1600~1750厘米,称为羰基的特征波数。许多化学键都有特征波数,它可以用来鉴别化合物的类型,还可用于定量测定。由于分子中邻近基团的相互作用(如氢键的生成、配位作用、共轭效应等),使同一基团在不同分子中所处的化学环境产生差别,以致它们的特征波数有一定变化范围(见下表)。 红外光谱是物质定性的重要的方法之一。它的解析能够提供许多关于官能团的信息,可以帮助确定部分乃至全部分子类型及结构。其定性分析有特征性高、分析时间短、需要的试样量少、不破坏试样、测定方便等优点。
传统的利用红外光谱法鉴定物质通常采用比较法,即与标准物质对照和查阅标准谱图的方法,但是该方法对于样品的要求较高并且依赖于谱图库的大小。如果在谱图库中无法检索到一致的谱图,则可以用人工解谱的方法进行分析,这就需要有大量的红外知识及经验积累。大多数化合物的红外谱图是复杂的,即便是有经验的专家,也不能保证从一张孤立的红外谱图上得到全部分子结构信息,如果需要确定分子结构信息,就要借助其他的分析测试手段,如核磁、质谱、紫外光谱等。尽管如此,红外谱图仍是提供官能团信息最方便快捷的方法。
近年来,利用计算机方法解析红外光谱,在国内外已有了比较广泛的研究,新的成果不断涌现,不仅提高了解谱的速度,而且成功率也很高。随着计算机技术的不断进步和解谱思路的不断完善,计算机辅助红外解谱必将对教学、科研的工作效率产生更加积极的影响。 红外光谱定量分析法的依据是朗伯——比尔定律。红外光谱定量分析法与其它定量分析方法相比,存在一些缺点,因此只在特殊的情况下使用。它要求所选择的定量分析峰应有足够的强度,即摩尔吸光系数大的峰,且不与其它峰相重叠。红外光谱的定量方法主要有直接计算法、工作曲线法、吸收度比法和内标法等,常常用于异构体的分析。
随着化学计量学以及计算机技术等的发展,利用各种方法对红外光谱进行定量分析也取得了较好的结果,如最小二乘回归,相关分析,因子分析,遗传算法,人工神经网络等的引入,使得红外光谱对于复杂多组分体系的定量分析成为可能。
量子力学研究表明,分子振动和转动的能量不是连续的,而是量子化的,即限定在一些分立的、特定的能量状态或能级上。以最简单的双原子为例,如果认为原子间振动符合简谐振动规律,则其振动能量Ev可近似地表示为:
式中h为普朗克常数;v为振动量子数(取正整数);v0为简谐振动频率。当v=0时,分子的能量最低,称为基态。处于基态的分子受到频率为v0的红外射线照射时,分子吸收了能量为hv0的光量子,跃迁到第一激发态,得到了频率为v0的红外吸收带。反之,处于该激发态的分子也可发射频率为v0的红外射线而恢复到基态。v0的数值决定于分子的约化质量μ和力常数k。k决定于原子的核间距离、原子在周期表中的位置和化学键的键级等。
分子越大,红外谱带也越多,例如含12个原子的分子,它的简正振动应有30种,它的基频也应有30条谱带,还可能有强度较弱的倍频、合频、差频谱带以及振动能级间的微扰作用,使相应的红外光谱更为复杂。如果假定分子为刚性转子,则其转动能量Er为:
式中j为转动量子数(取正整数);i为刚性转子的转动惯量。在某些转动能级间也可以发生跃迁,产生转动光谱。在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。
辅助解析
有机化合物的结构鉴定在有机化学、生物化学、药物学、环境科学等许多领域越来越显示出它的重要性,而在各种鉴定手段中红外光谱以其方便灵敏的特性成为有机物结构鉴定的重要手段,除了它对分析结构特征反应灵敏这一特点外,红外光谱仪与计算机直接联机,也为引进一些与计算机科学有关的智能手段创造了条件。
各种现代化的分析仪器的出现和广泛应用,使得在短时间内获得物质体系大量信息成为可能,这为化学计量学的数据挖掘研究提供了机遇。由光谱仪器记录下来的谱图中包含大量的结构信息,但是目前还不能实现复杂分子光谱谱图的直接计算,其解析主要还凭借经验,对一个不是长期从事结构鉴定的人来说,解析一张光谱谱图是一项很困难的工作。实际上,即使对不太复杂的分子,也难于指定所有杂原子所处的官能团和峰的归属,而依靠各种计算机检索系统也会受到各种限制,诸如谱图库中数据有限,或测定条件(仪器的类型、具体的实验条件等)与标准图谱所用的条件不同而造成各吸收峰位置的改变等。另外由于红外谱图极其复杂,构成化合物的原子质量不同,化学键的性质不同,原子的连接次序和空间位置的不同都会造成红外光谱的差别。这些都使红外光谱的解析复杂化。如果能由计算机学习和存储红外光谱知识,用计算机辅助完成解析谱图的工作,自然是一件很有意义的事。
几十年以来,人们一直在探索将红外图谱的解析智能化。随着商品化红外光谱仪的计算机化,出现了许多计算机辅助红外光谱识别方法,这些方法大致可以分为三类:谱图检索系统、专家系统、模式识别方法。 谱图检索的主要优点是能够收集大量的光谱,只要根据未知物的光谱谱图就能识别化合物而无需其他数据(例如分子式等),它的程序也比较简单。但是它也有一些不可克服的缺点:
首先,检索系统的能力与谱图库存储的化合物的数量成正比,我们不可能把自然界所有的化合物收集其中,谱图库的发展总是滞后于有机化学的发展。其次,光谱仪器随着技术的发展不断改进:波谱范围不断扩大,分辨率不断提高,低温技术得到应用,一些新仪器的出现,这就要求原有的谱图库要不断修改,而庞大的谱图库在短时间内是办不到的。由于检索方法的这些特点,决定了它不能作为结构鉴定的一种完整的手段。
专家系统
计算机辅助结构解析的另一种方法是专家系统。它所研究的领域包括:数学证明,程序编写,行为科学与心理学,生命科学与医学等。
目前设计的专家系统解析谱图的一般方法是:在计算机里预先存储化学结构形成光谱的一些规律;由未知物谱图的一些光谱特征推测出未知物的一些假想结构式;根据存储规律推导出这些假想结构式的理论谱图,再将理论谱图与实验谱图进行对照,不断对假想结构式进行修正,最后得到正确的结构式。但是,目前分子中各种基团的吸收规律,主要还是通过经验或者人工获得。人工比较大量的已知化合物的红外谱图,从中总结出各种基团的吸收规律,其结果虽比较真实地反映了红外光谱与分子结构的对应关系,却不够准确,特别是这些经验式的知识难以用计算机处理,使计算机专家解析系统难以实用化。
模式识别
模式识别的发展是从五十年代开始的,就是用机器代替人对模式进行分类和描述,从而实现对事物的识别。随着计算机技术的普遍应用,处理大量信息的条件已经具备,模式识别在六十年代得到了蓬勃发展,并在七十年代初奠定了理论基础,从而建立了它自己独特的学科体系。模式识别已经应用到分析化学领域的有关方面,其中涉及最多的是分子光谱的谱图解析,在一些分类问题上获得了成功。
Munk等于1990年首次将线性神经网络应用于红外光谱的子结构解析,把红外光谱的解析带入了一个全新的领域,从此引起红外光谱的计算机解析热潮。随后各种方法,如各种人工神经网络,偏最小二乘,信号处理方法如小波变换等逐步引入到红外光谱的计算机解析中,使模式识别在红外光谱的应用中得到很好的发展。
Cabrol-Bass等使用了一个分等级的神经网络系统识别红外光谱的子结构。首先把10000个化合物光谱分为含苯环、含羟基、含羰基、含C-NH以及含C=C等5大类,随后把这几个类进行进一步分类,总共33个子结构。每一个下级网络使用上一级网络输出的结果。以3596~500 cm-1波段每12 cm-1取259个点作为神经网络的输入,输出为“1”和“0”,分别代表子结构存在和不存在。使用了含有一个隐含层30个节点的反向传播神经网络对每个子结构进行识别,对化合物作了全面但较为粗略的分类,涉及了数据库中一些常见化合物。
这些研究中大部分利用神经网络对子结构进行识别,而对特定类别的化合物没有做深入研究,对化合物的特征吸收峰也没有深入的讨论。另外,其中应用最多的人工神经网络在识别子结构时,对结构碎片的预测准确度不是很高,且神经网络存在不稳定、容易陷入局部极小和收敛速度慢等问题。
因此,近年来,人们一直在寻找一种更好的模式识别方法来进行红外光谱的结构解析。Vapnik等人于1995年在统计学习理论(Statistical Learning Theory, SLT)的基础上提出了支持向量机(Support vector machine, SVM),它根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的泛化能力。SVM目前在化学中得到了一些较成功的应用,SVM可以较好的对红外光谱的子结构进行识别,与ANN相比,SVM还具有稳定以及训练速度快等优点,是一种很好的辅助红外光谱解析的工具。

‘叁’ 如何进行红外吸收光谱定性分析

光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种。

按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。

相关信息:

当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。

分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。

‘肆’ 油气污染监测的红外吸收光谱法

1800年英国天文学家赫谢尔(Hershl)用温度计测量太阳光可见光区内外温度时,发现红色光以外黑暗部分的温度比可见光部分高,这种人类视觉看不见的红外光,称为红外辐射或红外线。

图9.2.1 地下污染区的探地雷达检测剖面图

红外线被发现后,逐渐被应用到各个方面,在化学上,利用不同物质对不同波长红外辐射的吸收程度不同,用来推断物质分子的组成和结构。这种方法称之为红外分子吸收光谱法,简称红外吸收光谱法或红外光谱法。常以IR(Infrared)为缩写。例如1892年就发现凡是含有甲基的物质,都会强烈地吸收3.4 μm波长的红外光。当不同波长(波数)的红外辐射依次照射到样品时。某些波长的辐射能被样品选择吸收而减弱,于是形成红外吸收光谱。一般纵坐标以百分透过率标度,定性分析多用这种标度,定量分析多用吸光度(A)标度。横坐标以波数ν(cm-1)标度。波数是指每cm长度上波的数目,它与波长成倒数关系,见如下关系式

环境地球物理学概论

由于不同物质具有不同的分子结构,就会吸收不同的红外辐射能量而产生相应的红外吸收光谱,用仪器测量物质的红外吸收光谱,然后根据这种物质的红外特征吸收峰位置、数目、相对强度和形状(峰宽)等参数,就可推断样品中有哪些基团,并确定其分子结构,这就是红外光谱的定性和结构分析的依据。同一物质不同浓度时,在同一吸收峰位置具有不同的吸收峰强度,在一定条件下,试样物质的浓度与吸收峰的强度成正比关系,这就是红外吸收光谱定量分析的依据。

红外光谱的范围很广,为0.75~1000 μm(13 300~10 cm-1)。按应用波段不同,红外光谱划分为三个区域,括号内数字为波数范围。

近红外(NIR)区:0.75~2.5 μm(13 300~4000 cm-1);

中红外(MIR)区:2.5~25 μm(4000~400 cm-1);

远红外(FIR)区:25~1000 μm(400~10 cm-1)。

近红外区是可见光红色末端的一段,只有X-H或多键振动的倍频和合频出现在该区,其应用有限,仅在研究含氢原子的官能团,如O-H,N-H和C-H的化合物,特别是醇、酚、胺和碳氢化合物上,以及研究末端亚甲基、环氧基和顺反双键等时比较重要。在研究化合物的氢键方面也很有用。

中红外区是红外光谱中应用最早和最广的一个区。波数范围在4000~1000 cm-1区内的吸收峰为化合物中各个键的伸缩和弯曲振动,故为双原子构成的官能团的特征吸收。伸缩和弯曲振动都是基团内部原子间化学键的振动。波数范围1400~650 cm-1区的吸收峰大多是整个分子中多个原子间键的复杂振动,可以得到官能团周围环境的信息,用于化合物的鉴定。

远红外区应是200~10 cm-1。由于一般红外仪的中红外范围是5000~650 cm-1或5000~400 cm-1,所以,650~200 cm-1也包括在远红外区。含重原子的化学键伸缩振动和弯曲振动的基频在远红外光区,如C-X键的伸缩振动频率为650~450 cm-1,弯曲振动频率为350~250 cm-1,均是强峰。

不同物质对红外光谱的吸收,是基于分子受到红外光的辐射,产生振动能级跃迁,在振动时伴有偶极距改变者就吸收红外光子,形成红外吸收光谱,若用单色的可见光照射,入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。所以说,只有分子在振动时有偶极距(双键)改变时,才会产生明显的吸收峰。图9.2.2是水和二氧化碳的吸收光谱。分子吸收一定频率的红外光后,其振动能级由基态(υ=0)跃迁到第一激发态时产生的吸收峰称为基峰。而由基态跃迁到第二激发态、第三激发态所产生的吸收峰,称为二倍频峰、三倍频峰等。三倍频峰以上因其跃迁几率很小,一般都很弱而不能被检测。

图9.2.2 水和二氧化碳的吸收光谱

吸收峰的强度:分子吸收光谱的吸收峰强度,可用摩尔吸光系数ε表示。吸收峰的强弱取决于基团偶极距改变的难易程度。基团的极性越大,吸收峰越强。在红外光谱中,吸收峰的强度有以下4种表达式。

(1)透过率(percent transmission)

环境地球物理学概论

式中:T为透射比(transmittance);I0为入射光强度;I为透过光强度。

(2)吸收率(percent absorption)100-T

(3)吸光度(absorbance)

环境地球物理学概论

式中:A为吸光度;T0为波数υ处吸收峰基线的透射比;T为峰顶的透射比。

图9.2.3给出了甲苯的芳香烃吸收峰(3050 cm-1)强度的图。

图9.2.3 甲苯的芳香烃吸收峰(3050 cm-1)强度

(4)摩尔吸光系数(molar absorptivity)

根据比耳定律吸收强度与样品浓度和光穿透的距离成比例。

环境地球物理学概论

式中:c为溶液浓度,mol/L;l为吸收池厚度,cm;

lg(及lg(是在波数υ(cm-1)处的吸光度。

下面介绍一种非色散红外(NDIR)对大气中CO2的测量原理及方法

NDIR(Non-DispersiveInfraRed)非扩散红外气体分析方法是基于吸收光谱原理的一种分析方法。是一种先进的红外分析法,如图9.2.4所示为一般吸收光谱方法的基本原理图。

图9.2.4 一般吸收光谱法示意图

当激光发射一束光强为I0激光到吸收池,由于气体吸收使光强变小为I,探测器可以探测到这一变化。气体的吸收公式为

环境地球物理学概论

γ(ν)为吸收系数,C为吸收池内气体组分的浓度,L为吸收池长度。

γ(ν)当吸收池内的压力比较小的时候,γ(υ)近似为一洛仑兹线型(Lorentzian profile),严格来说为福依特线型(Voigt profile)。激光束到达探测器,探测器产生电信号,电信号可以被微机采集处理。经过对采集数据的Levenberg-Marquardt拟合,又由于L为已知量,可以求得吸收池内气体的浓度。非扩散红外气体分析方法正是基于上式来测量吸收池中气体组分浓度。

‘伍’ 红外吸收光谱法中样品制备有哪几种方法

紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如ne、he、o2、h2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。
紫外-可见吸收光谱法是根据溶液中物质的分子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法。也称作紫外和可见吸收光度法,它包括比色分析和紫外-可见分光光度法。这种吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,用于无机和有机物质的定性和定量分析。
望采纳

‘陆’ 红外光谱法

利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团[1],各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。
要求①试样纯度应大于98%②试样不应含水(结晶水或游离水)③试样浓度和厚度要适当
不能对混合物进行定性分析

‘柒’ 红外吸收光谱法和紫外可见分子吸收光谱法的区别是什么

红外吸收光谱法和紫外可见吸收光谱法都可以用于物质定性和定量的测定。只是所需要光谱不同。
紫外:180~380,可见380~750,红外,750~2000 nm , 所在的波段不同。

阅读全文

与红外吸收定量分析的方法相关的资料

热点内容
斑秃怎么治疗方法好 浏览:936
如何做香干好吃的方法 浏览:507
室外管道连接的方法 浏览:470
西红柿盆栽种植方法 浏览:794
绿植墙怎么制作方法 浏览:179
如何培养孩子认识字的方法 浏览:351
小天鹅冰箱门拆卸安装方法 浏览:495
在教学方法的运用过程中 浏览:917
松手刹的正确方法 浏览:774
芋头怎么煎好吃又简单的方法 浏览:362
计算用电器电功率的简便方法 浏览:657
幼儿舞蹈教学方法示范 浏览:452
用菜籽油炸薯片要用简便的方法 浏览:527
提鱼方法视频教程 浏览:850
记忆拼贴的训练方法 浏览:62
防冻害的最佳方法 浏览:597
练肩颈的最好方法视频 浏览:846
聚会用香水的正确方法 浏览:527
最简单的房子封顶方法 浏览:441
咳嗽灸温控贴使用方法 浏览:899