⑴ 什么叫点估计和区间估计
点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。
区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。与点估计不同,进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。
常见形式
简介
区间估计,区间估计的区间上、下界通常形式为:“点估计±误差”
“总体均值”的区间估计
符号假设
总体均值:μ
总体方差:σ
样本均值:x* =(1/n)×Σ(Xi)
样本方差:s* =(1/(n-1))×Σ(Xi-x*)^2
置信水平:1-α
⑵ 参数估计的点估计
点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。
⑶ 点估计的原理
点估计的原理,我们以矩估计方法为例,它是点估计中的一种,其原理就是构造样本和总体的矩,然后用样本的矩去估计总体的矩。
点估计是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。何为总体参数统计,当在研究中从样本获得一组数据后,如何通过这组信息,对总体特征进行估计,也就是如何从局部结果推论总体的情况,称为总体参数估计。
由样本数据估计总体分布所含未知参数的真值,所得到的值,称为估计值。点估计的精确程度用置信区间表示。当母群的性质不清楚时,我们须利用某一量数作为估计数,以帮助了解母数的性质。如:样本平均数乃是母群平均数μ的估计数。当我们只用一个特定的值,亦即数线上的一个点,作为估计值以估计母数时,就叫做点估计。
点估计理论是数理统计学得到较多和较深入发展的一个方面。在小样本方面,1955年C.提出了一个反例,证明当维数大于2时,多维正态分布均值向量的通常估计(样本均值)在平方损失下不可容许。这个简单的但出乎意料的反例启发了关于点估计的容许性的一系列研究。在大样本方面,值得提到的发展还有自适应估计、稳健估计及非参数估计方面许多深入的结果。
⑷ 数学概率常用的点估计方法有几种
最流行的两种:
K Pearson的 矩估计
矩估计法, 也称“矩法估计”,就是利用样本矩来估计总体中相应的参数. 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.
RA Fisher的 最大似然估计
最大似然法(Maximum Likelihood,ML)也称为最大概似估计,也叫极大似然估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。