导航:首页 > 研究方法 > 数据分析方法应用

数据分析方法应用

发布时间:2022-01-18 06:36:06

1. 什么是应用数据分析及理论的方法

应用数据分析及应用的方法是比较多的,可以在分析的时候,不同的理论都不一样。

2. 做数据分析时的常用方法哪些

数据分析的三个常用方法有数据趋势分析、数据对比分析及数据细分分析。


1、数据趋势分析


趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。


2、数据对比分析


对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。


3、数据细分分析


在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

3. 数据分析在企业中的应用有哪些

1、管理工作简单化


复杂的运营管理过程用科学思维分析,聚焦数据的主要矛盾点,配以简洁的数据呈现,且尽可能地简化概念来解决,不仅加速了决策效率,也往往还会收到柳暗花明的效果。一个简要的汇总不亚于面面俱到陈列,一组KPI呈现也比数十页的PPT效果要强很多。


2、优化运营管理流程


通过对经营数据分析,我们了解企业运营资源如何合理分配,流程哪里需要优化。比如,通过对销售额波动分析,我们确认是销售单价的影响还是成交数量的变化;是访问流量的变化还是转换率的变化。通过对库存周转率分析,我们可以推断是采购流程有待完善还是备货策略需要变更。


3、创造更大的价值效益


商业价值的创新来源于数据价值的有效转换,价值可以通过数据呈现。生产中,当NPI导入量产后,每多久需对ERP系统损耗系数进行调整?哪些制程、哪些料号需要调整?需要通过对生产过程数据进行分析来决定。通过月度或季度生产损耗或不良品的分析,找到降低物料的损耗系数的关键才能提升直通率,降低物料成本的同时才能创造更大的收益。


4、拓展新业务新商机


数据分析可以避免思维的盲点。有人把数据分析过程是比喻成医生把脉看病的过程。除了不仅要提供体检数据,更得要提供疾病医治与预防的方案。一份新备货方案,一条新的流水线的布局,一个新的客户导入或一个新业务模式的开发,均离不开数据预测、分析与推演。


关于数据分析在企业中的应用有哪些,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

4. 常用的数据分析方法有哪些

①对比分析法

通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。常见的对比有横向对比和纵向对比。


②分组分析法


分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。


③预测分析法


预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。


⑤AB测试分析法


AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

5. 常用的数据分析方法有哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

6. 大数据分析:方法与应用的介绍

《大数据分析:方法与应用》是2013年清华大学出版社出版的图书,作者是王星。本书介绍数据挖掘、统计学习和模式识别中与大数据分析相关的理论、方法及工具。

7. 数据分析的分析方法有哪些

数据分析的分析方法有:

1、列表法

将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

2、作图法

作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。

图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。

(7)数据分析方法应用扩展阅读:

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

8. 常用数据分析与处理方法

一、漏斗分析法:漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中
二、留存分析法:留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。
三、分组分析法:分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。
四、矩阵分析法:矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。

阅读全文

与数据分析方法应用相关的资料

热点内容
肺部结节的11种鉴别诊断方法 浏览:494
吲哚乙酸在植物上的使用方法 浏览:231
袁大头签字版鉴别方法 浏览:153
军人向右转的正确方法 浏览:340
碧云泉免安装净水器使用方法 浏览:691
四芯连接器插头接线方法图 浏览:492
11选5任选一计算方法 浏览:621
植物提取矿最佳方法 浏览:402
水稻考种方法研究 浏览:404
少林寺72绝技训练方法 浏览:609
蒸发器供液控制的方法有哪些 浏览:118
下面哪个不是常用的产品测试方法 浏览:430
北松电热水器使用方法 浏览:35
千美黛使用方法 浏览:805
护色剂的使用方法 浏览:381
蜂蜜敷脸的正确方法图片 浏览:868
专业文学主要研究方法 浏览:707
总能找到解决的方法英语 浏览:806
原味发糕的制作方法和步骤 浏览:832
癌症状治疗方法 浏览:920