Ⅰ 数列常用方法
方法一:公式法。
方法二:累加法
方法三:累乘法
方法四:转换法
通过递推关系,转换为等差.等比数列通项公式求解。
方法五:待定系数法
通过待定系数来确定递推关系的另一种变形方式。
方法六:常见的数列求通项公式。
按照这一关系方式进行通项换之,列入辅助数列。
拓展资料:
数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
着名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
Ⅱ 数列各种方法的使用条件
具体条件如下:
求这个数列的前n项和,可用倒序相加法。
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
Ⅲ 数列求和在什么情况下用什么样的方法(最好给我一个公式)
1.公式法:
等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)
(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式
{
an
}、{
bn
}分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn
例如:an=a1+(n-1)d
bn=a1·q^(n-1)
Cn=anbn
Tn=a1b1+a2b2+a3b3+a4b4.+anbn
qTn=
a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn=
a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)
Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn
=a1+
a2+
a3+.+an
Sn
=an+
a(n-1)+a(n-3).+a1
上下相加
得到2Sn
即
Sn=
(a1+an)n/2
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项.常用公式:(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n![例]
求数列an=1/n(n+1)
的前n项和.an=1/n(n+1)=1/n-1/(n+1)
(裂项)
则
Sn
=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
=
1-1/(n+1)
=
n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点
1余下的项前后的位置前后是对称的.2余下的项前后的正负性是相反的.
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立.例:求证:1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
n(n+1)(n+2)(n+3)
=
[n(n+1)(n+2)(n+3)(n+4)]/5
证明:当n=1时,有:1×2×3×4
+
2×3×4×5
=
2×3×4×5×(1/5
+1)
=
2×3×4×5×6/5
假设命题在n=k时成立,于是:1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
(k+1)(k+2)(k+3)(k+4)
=
1×2×3×4
+
2×3×4*5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
+
(k+1)(k+2)(k+3)(k+4)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
+
(k+1)(k+2)(k+3)(k+4)
=
(k+1)(k+2)(k+3)(k+4)*(k/5
+1)
=
[(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和.如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和.此时先将an求出,再利用分组等方法求和.
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减.方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
Ⅳ 数列解题方法有哪些
以下纯属个人观点.如有雷同,不甚荣幸
1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使原来的规律明显化或转化为简单规律,如等差等比这些有法可依的规律,最后通过学过知识解答.
2,对于那些等差等比数列,不要先考虑捷径,最实际的方法是通过现有的最基本的公式写出数列内部关系,一步步化简,一步步代入题目给出的条件,往往答案会自然而然的出来.
3,作为经历过高考的过来人,我觉得,数列往往会和那些指数对数的东东有点联系,题目往往有这样的倾向,所以对代数公式的熟记对解数列题还是小有帮助的.
4,差不多就这么点了,当然,最重要的一点,多做题,高考这种东西——无他,为手熟耳
Ⅳ 高中数学,数列的这一章节,做数列的题目有多少种方法,比如裂项相消法,叠加法(累加法)等,请一一列举
分组求和法;
倒序相加法;
裂项法。
倒序相加法:当前面的项和最后的项加起来是常数或有规律的数。
错位相减法:单项数列的表达式是由等比数列和等差数列相乘得到。如:an=n*a^(n+1)
裂项法:用于分数的数列。
分组求和法:数列的项可以拆分成其他典型数列。
识;
直接利用公式求和;
倒序相加法;
错位相减法;
分解转化(拆项)法;
裂项相消法;
并项法。
函数思想:将数列上升为特殊的函数来认识;数形结合思想方法:函数的图象能直接反映数列的本质;
方程(组)思想:等差、等比数列中在求时,知三求二,所用的就是方程思想。
观察分析法:求通项公式时常用;
分类讨论法:求等比数列的前n项和公式时要考虑公比是否为1,公比是字母时要进行讨论
Ⅵ 数列有什么技巧
以下观点,由本人纯手工打造,希望对你有帮助。
个人认为:
1、你要对各种基本数列模型熟练掌握,比如等差数列的特性有某项的前一项后一项之和是这一项的2倍,同样等比数列也是。还有一点常数数列也是特殊的存在,这个是很容易被遗忘的。
2、多做多想,在做题的过程中熟练掌握数列的特性,同时在熟练掌握的前提下更好的做题(不要认为我俗,只是目前的中国教育模式决定了这种情况,我是过来人,题海战术有时很有用)。
3、在你掌握了基本数列的情况下,要学会触类旁通。比如某数列是两个数列的和、差、乘积等等。在这种情况下,我们可以先将这个数列分成2部分,先求一个再求另一个,最后合成。。。
当然,这是我的经验,没有具体例子提供,我很抱歉,如果有什么具体类型的题目不会,可以给我留言。。。
本人已是大四的老人了。。
Ⅶ 做数列题的方法
公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。
类型一
归纳—猜想—证明
由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明.
类型二
“逐差法”和“积商法”
(1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”.
(2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”.
类型三
构造法
递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解.
类型四
可转化为类型三求通项
(1)“对数法”转化为类型三.
递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三.
(2)“倒数法”转化为类型三.
递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb).
若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三.
若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况.
类型五
递推式为an+1/an=qn/n+k(q≠0,k∈N)
可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)… (n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1= (n+k)(n+k-1)(n+k-2)…(n+1)an+1.
从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an.
总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.
类型一�归纳—猜想—证明
由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明.
�例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题)
解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.
��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.
��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略.
类型二�“逐差法”和“积商法”
(1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”.
例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2.
(2003年全国数学卷文科第19题)
证明:由已知得an-an-1=3n-1,故
an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2.
所以得证.
(2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”.
例3�(同例1)(2000年全国数学卷第15题)
另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即
an+1/an=n/(n+1).�
故an=an/an-1�6�1an-1/an-2�6�1an-2/an-3�6�1…�6�1a2/a1�=n-1/n�6�1n-2/n-1�6�1n-3/n-2�6�1 … �6�11/2�=1/n.
类型三�构造法
递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解.
例4�(同例2)(2003年全国数学卷文科第19题)
另解:由an=3n-1+an-1得3�6�1an/3n=an-1/3n-1+1.
令bn=an/3n,则有
bn=1/3bn-1+1/3. (*)
设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1 /2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6�6�1(1/3)n-1,即 an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2.
例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.�
解:令an+1+(n+1)x+y=4(an+nx+y),则
an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得
3x=3, 所以
x=1,
3y-x=1, y=(2/3).
故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)�6�14n-1,即
an=(8/3)�6�14n-1-n-(2/3).
另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1- an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法” 求得其通项an=(8/3)�6�14n-1-n-(2/3).
类型四�可转化为
类型三求通项
(1)“对数法”转化为
类型三.
递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为
类型三.
例6�已知数列{an}中,a1=2,an+1=an2,求an.
解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1.
(2)“倒数法”转化为
类型三.
递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb).
若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为
类型三.
若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况.
例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an.
解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得
y-x=3, 所以
x=1,
y-3=1, y=4,
则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2�6�11/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2).
因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列.
故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 求数列的前n项和是高中数学《数列》一章的教学重点之一,而对于一些非等差数列,又非等比数列的某些数列求和,是教材的难点。不过,只要认真去探求这些数列的特点。和结构,也并非无规律可循。
典型示例:
1、 用通项公式法:
规律:能用通项公式写出数列各项,从而将其和重新组合为可求数列和。
例1:求5,55,555,…,的前n项和。
解:∵an= 5 9(10n-1)
∴Sn = 5 9(10-1)+ 5 9(102-1) + 5 9(103-1) + … + 5 9(10n-1)
= 5 9[(10+102+103+…+10n)-n]
= (10n+1-9n-10)
2、 错位相减法:
一般地形如{an�6�1bn}的数列,{ an }为等差数列, { bn }为等比数列,均可用错位相减法求和。
例2:求:Sn=1+5x+9x2+�6�1�6�1�6�1�6�1+(4n-3)xn-1
解:Sn=1+5x+9x2+�6�1�6�1�6�1�6�1+(4n-3)xn-1 ①
①两边同乘以x,得
x Sn=x+5 x2+9x3+�6�1�6�1�6�1�6�1+(4n-3)xn ②
①-②得,(1-x)Sn=1+4(x+ x2+x3+�6�1�6�1�6�1�6�1+ )-(4n-3)xn
当x=1时,Sn=1+5+9+�6�1�6�1�6�1�6�1+(4n-3)=2n2-n
当x≠1时,Sn= 1 1-x [ 4x(1-xn) 1-x +1-(4n-3)xn ]
3、 裂项抵消法:
这一类数列的特征是:数列各项是等差数列某相邻两项或几项的积,
一般地,{an}是公差为d的等差数列,则:
即裂项抵消法, 多用于分母为等差数列的某相邻k项之积,而分子为常量的分式型数列的求和,对裂项抵消法求和,其裂项可采用待定系数法确定。
例3:求 1 3, 1 1 5, 1 3 5, 1 63之和。
解:
4、 分组法:
某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,从而可利用等差数列或等比数列的求和公式分别求和,从而得出原数列之和。
例4:求数列 的前n项和。
解:
5、 聚合法:
有的数列表示形式较复杂,每一项是若干个数的和,这时常采用聚合法,
先对其第n项求和,然后将通项化简,从而改变原数列的形式,有利于找出解题办法。
例5:求数列2,2+4,2+4+6,2+4+6+8,…,2+4+6+…+2n,…的前n项和
解:∵an=2+4+6+…+2n= n(n+1)=n2+n
∴Sn=(12+1)+(22+2)+(32+3) +……+( n2+n)
=(12+22+32+…+ n2)+(+2+3+…+n)
= n(n+1)(2n+1)+ n(n+1)
= 1 3n(n+1)(n+2)
6、 反序相加法:
等差数列前n项和公式的推导,是先将和式中各项反序编排得出另一个和式,然后再与原来的和式对应相加,从而解得等差数列的前n项和公式,利用这种方法也可以求出某些数列的前n项和。
例6:已知lg(xy)=a,求S,其中
S=
解: 将和式S中各项反序排列,得
将此和式与原和式两边对应相加,得
2S= + + �6�1 �6�1 �6�1 +
(n+1)项
=n(n+1)lg(xy)
∵ lg(xy)=a ∴ S= n(n+1)a
以上一个6种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。
Ⅷ 高中数学解数列问题有哪些常用方法
数列问题解题方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: http://www.90house.cn/shuxue/shi/288.html
Ⅸ 做数列类的题型都有些什么方法该注意些什么
这只是我自己的方法,可以借鉴的,很好用的。一般求an她回给你sn,俗称知sn求an,当n=1时,a1=s1当n>=2时,an=Sn-Sn-1,然后带入数,算就行了,最后别忘了检验,a1如果符合上式,最后写一起行了,不符合就分两种情况写。还有几个类型是求sn的,错位相减(用于ap*gp),其中等比数列公比不等于1.公式法(分组求和法)。裂项相消法。并项求和法。倒序相加法。只要把握住这些主要题型,形成一个思维定式,背准公式。其实数列很简单的,在高考中也很好拿分,不过一定要学扎实哦!祝你成功
Ⅹ 数列求和什么时候用累加法,又什么时候用裂项求和法
解答:
累加法不是用来求和的,是用来求通项公式的
如果 已知 an-a(n-1)= f(n)的形式,求an,可以考虑累加法
裂项求和一般是将an写成两项的差
比如 1/n(n+1)=1/n-1/(n+1), 然后每一项的后面的数与后一项前面的数抵消
再如1/[√(n+1)+√n]=√(n+1)-√n