1. 常用数据分析处理方法有哪些
1、漏斗分析法
漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中。
2、留存分析法
留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。
3、分组分析法
分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。
4、矩阵分析法
矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。
2. 数据分析的六种基本分析方法
数据分析的六种基本分析方法:
1、对比分析法:常用于对纵向的、横向的、最为突出的、计划与实际的等各种相关数据的。例如:今年与去年同期工资收入的增长情况、3月CPI环比增长情况等。
2、趋势分析法:常用于在一段时间周期内,通过分析数据运行的变化趋势(上升或下降),为未来的发展方向提供帮助。例如:用电量的季节性波动、股市的涨跌趋势等。
3、相关分析法:常用于分析两个或多个变量之间的性质以及相关程度。例如:气温与用电量的相关性、运动量大小与体重的相关性等。
4、回归分析法:常用于分析一个或多个自变量的变化对一个特定因变量的影响程度,从而确定其关系。例如:气温、用电设备、用电时长等因素对用电量数值大小的影响程度、工资收入的高低对生活消费支出大小的影响程度等。
5、描述性分析法:常用于对一组数据样本的各种特征进行分析,以便于描述样本的各种及其所代表的总体的特征。例如:本月日平均用电量、上海市工资收入中位数等。
6、结构分析法:常用于分析数据总体的内部特征、性质和变化规律等。例如:各部分用电量占总用电的比重、生活消费支出构成情况等。
3. 数据分析的分析方法有哪些
数据分析的分析方法有:
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。
图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。
(3)数据分析方法问题扩展阅读:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
4. 数据分析模型和方法有哪些
1、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。
2、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。
3、相关分析数据分析法
相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
4、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
5. 数据分析方法有哪些
常用方法:
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
一、分类:
1.分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。
2.它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
②回归分析:
1.回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。
2.它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
③聚类:聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。
④关联规则:
1.关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。
2.在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
6. 数据分析的基本方法有哪些
数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
7. 数据分析的几种常用方法21-10-27
几种常见的数据分析分析方法:
1.周期性分析(基础分析)
What :主要是从日常杂乱的数据中,发现周期性出现的现象,而从避免或改善问题的发生。常见的两种周期:自然周期和生命周期。
需要注意的点:虽然周期性分析主要针对时间序列,但不全是,例如公众号的文章阅读走势不仅和日期(工作日或周末)相关,也和文章类型相关。
例如:销售中3,6,9,12月,由于绩效考核出现的峰值
重点节假日对和交付的影响
产品销售的季节性影响(例如北方下半年的采暖产品,入夏空调的销售旺季等)
How: 自然后期的时间维度,根据分析的需求,可从年(同环比,业绩达成、和行业趋势对比),月(淡旺季、销售进度、生产预测),周(一般较少),日(工作日,非工作日的差异分析),时(时间分布,工作时段,上下班高峰,晚上,主要和大众消费行为分析相关)进行展开
生命周期一种常见的分析就“商品生命周期”,商品销量随上市时间的变化,通过时间轴+指标走势组合出来的。这种分析对快消品或者产品迭代速度很快的商品(典型如手机)是比较重要的,可以用于监控产品的市场表现,对照市场活动可以量化活动效果以及产品线的经营情况,如持续跟进,则可针对性的提出产品上市的建议。
2.矩阵分析(重要分析方法)
矩阵分析是数据分析中非常重要的分析方法。主要解决分析领域的一个非常致命的核心问题:“到底指标是多少,才算好”。
平均数是一个非常常用的数据维度,但是单一维度,并不能充分评价好坏。例如考核销售,如果只考核业务销售业绩,那么业务人员一定会倾向卖利润低的引流产品。那种利润高,价格高,不容易卖的利润型产品就没人卖了,最后销售越多,公司的利润反而下降了。这个时候通过两个维度:销售规模和销售利润,构建交叉矩阵,就能将业务业绩进行更有效的区分。
举个简单的例子,一个销售团队,10名销售一个月内开发的客户数量,产生的总业绩用矩阵分析法进行分析(具体数据略):
第一步:先对客户数量、业绩求平均值
第二步:利用平均值,对每个销售人员的客户数量、业绩进行分类
第三步:区分出多客户+高业绩,少客户+高业绩,多客户+低业绩,少客户+低业绩四类
矩阵分析把关键业务目标拆分为两个维度,每个维度进行高低分类,进而可以对目标进行更加立体的描述。维度高低分类多采用 平均值作为参考 值。
注意:有两个场景,是不适合用矩阵分析法:
一:有极大/极小值影响了平均值的时候,一般出现极大/极小值的时候,可以用: 分层分析法 。
二:两个指标高度相关的时候,例如用户消费金额与消费频次,两个指标天生高度相关,此时数据分布会集中在某一个或两个区域,矩阵分析法的业务解读能力接近0,可采用 相关分析法
3.结构分析
What: 结构分析是将分析的目标,向下分解,主要用于发现问题。
例如销售分析,可以按照区域—省—市 一级级的分解,分解之后可以更好的看出影响销售业绩的影响因素在哪个位置。
结构分析可以有多个维度,取决于我们需要分析的方向。例如还是销售分析,可以从产品构成进行拆解,也可用从业务形态拆解
How:如何进行结构分析?
第一步:定出要分析的关键指标(一般是业绩、用户量、DAU、利润等等)
第二步:了解关键指标的构成方式(比如业绩,由哪些用户、哪些商品、哪些渠道组成)
第三步:跟踪关键指标的走势,了解指标结构变化情况
第四步:在关键指标出现明显上升/下降的时候,找到变化最大的结构分类,分析问题
注意:结构分析的不足
结构分析法是一种:知其然,不知其所以然的方法。只适用于发现问题,不能解答问题
4.分层分析
What: 分层分析,是为了应对 平均值失效 的场景。典型的平均值失效例如平均工资,很多人都被“代表”。这个时候需要把收入群体分成几类,例如土豪,普通百姓,穷光蛋等,后面进行分析时就比较清楚了。业内也有一些不同的叫法,比如应用于商品的,叫ABC分类,应用于用户的,叫用户分层,应用于业务的,叫二八法则。本质都是一回事。
How:如何进行分层分析
1.明确分层对象和分层指标
例如:想区分用户消费力,分层对象就是:用户,分层指标就是:消费金额
想区分商品销售额,分层对象就是:商品,分层指标就是:销售金额
想区分部销售额,分层对象就是:分部,分层指标就是:销售收入
2.查看数据,确认是否需要分层。分层是应对平均值失效的情况的,存在极值影响的情况,则适合分层。
3.设定分层的层级。最好的解决办法是老板拍板,其次可以用“二八原则”,以上述销售业绩分层为例,可以先从高到低排序,然后把累积业绩占80%的人选出来,作为“第1层级(优等)”,其他的归为“第2层级(次等)”。有时如果颗粒度不够,也可以用“二四六八十”法则”。
如何应用分层
分层的最大作用是帮我们看清楚:到底谁是主力 ,谁是吊车尾。从而指导业务,从人海战术向精兵简政思考。
根据分层的结果找出差距,进而提出(假设)差异背后可能的原因,通过其它方式进行
应用 :客户分析,目前系统中客户超5000个,为了更好的了解客户结构,可以通过分层分析的方法对这5000个客户进行分层,分层的方式通过年销售规模,可以按照累计规模排序,一般采用4-6个层级,每个层级可以给一个标签。例如王者客户,腰部客户,mini客户等。分层后,便可以针对性的进行分析,例如客户层级的销售占比,变动,各层级客户的销售构成,结合其它方法就可以有较全面的分析
5.漏斗分析(待补充)
6.指标拆解(待补充)
7.相关性分析(待补充)
What :两个(或多个)因素之间的关系。例如员工人数与销售额,市场推广与销售业绩,天气和销售表现等
很多因素我们直观的感觉到之间有联系,相互影响,但具体的关系是什么,如何产品影响的,可以通相关性分析来量化。
例如,客户开拓中拜访客户的次数和客户成交是否有关系?
拜访次数多,表明客户也感兴趣,所以成功几率大
拜访这么多,客户还不成交,成功几率不大
客户成交和拜访关系不太大,主要看你是否能打动他
How :两种联系:直接关系,间接关系
直接关系 :整体指标与部分指标的关系——结构分析,例如销售业绩与各中心的业绩
主指标与子指标的关系——拆解分析,例如总销售规模和客户数量与客户销售规模
前后步骤间的关系——漏斗分析:例如销售目标和项目覆盖率,储备率,签约等因素间的关系
联系中,指标之间出现一致性的变化,基本是正常,如果出现相反的变动,则需要关注,这可能是问题所在
间接关系 :要素之间没有直接的联系,但存在逻辑上的连接。例如推广多了,知名度上市,进而销售额上升。
由于关系非显性,需要通过处理进行评价,常用的就是散点图和excel中的相关系数法
在明确相关性后,就可以通过改变其中一个变量来影响和控制另一个变量的发展。
注意:相关性分析也存在很大的局限。主要体现在相关性并不等同因果性。例如十年前你在院子里种了一颗树,你发现树每天的高度和中国近十年GDP的增速高度相关,然后这两者间并没有什么实质性的联系。此次相关性分析过程中一定注意要找到关联的逻辑自洽。
8.标签分析(待补充)
9.
8. 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
9. 数据分析方法
常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
10. 数据分析的6种常用方法
常见的6种数据分析的方法有: 直接判断法、对比分析法、结构分析法、平均分析法、漏斗分析法、因果分析法
无需经过任何的数据对比,根据经验直接进行判断。
这种方法对人的要求极高,要求个人对于数据和市场的理解都极其透彻,没有深度沉淀较长时间是做不到的,否则就成了武断。
把数据与过去N次进行对比,常见的对比类型有:竞争对手对比、时间同比与环比、类比对比、转化对比、特征和属性对比、前后变化对比的等等。
对比分析法在分析中使用频率是最高的,因为很多数据只有在对比中才能得出好坏、析出问题。
常见分析术语:
达成: 本月实际完成销售额与目标业绩的对比。达成是用于获取当前业绩的完成进度,评估业绩完成进度是否合理。业绩达成了,原因是什么?因为什么地方足够好?业绩不达成,原因又是什么?什么地方出现问题?
同比: 本月实际完成业绩与去年同月时期的对比。同比是用于看当前业绩和去年同期业绩相比有没有增长。这是做增长的运营者关注的重要指标。同比上升了,要看上升幅度有没有符合预期,同比下降了,要重点看下降的原因。
环比: 本月实际完成的业绩与上月实际完成业绩的对比。环比是用于看企业业绩前后变化,如试行新的运营策略一个月后与前一个月进行对比,看运营策略是否有效,但是这需要排除其他导致数据异常的原因。
差异: 自身完成业绩与竞争对手完成业绩的对比。差异是用于寻找企业与同行的产品不同之处,有时是为了避开直接竞争,有时候是为了学习同行优秀之处。
注: 对比分析法要注意控制变量,尽可能保持单一变量的对比,其他条件需要保持一致,这样的数据对比才有意义。
组内数据与总体数据之间进行对比。
常见如电商流量结构,自然搜索流量占总体的比例,付费流量占总体的比例,个性化推荐占总体的比例等等。
设置一个平均线,分析数据高于或者低于平均值的原因。
观察流程中每一步的转化和流失。常见如电商转化漏斗:展现——点击——访问——咨询——下单——支付等,每一步都设置数据埋点,观察用户行为数据,对跳失较高的步骤进行优化,提升产品功能、促销策略、服务体验等。
用枝状结构画出因果关系的图表,把影响因素一一列出,形成因果对应,有利于制定合理的方案。