A. 主成分分析的主要步骤包括
主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
主成分分析的主要作用
1.主成分分析能降低所研究的数据空间的维数。
2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3.多维数据的一种图形表示方法。
4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。
5.用主成分分析筛选回归变量。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
B. spss主成分分析步骤是什么
spss主成分分析法详细步骤:
1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。如图1所示:
(2)主成分分析前处理方法扩展阅读:
SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。
用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。
其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口。
C. spss中主成分分析
主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。
第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6.
第二步:主成分与分析项对应关系判断.
第三步:在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.
spssau主成分分析操作共有三步:
①选择【进阶方法】--【主成分分析】
②将分析项拖拽到右侧分析框
③点击开始分析
默认提供主成分得分和综合得分,分析前勾选“成分得分”、“综合得分”即可。
D. 如何进行主成分分析
主成分分析法的基本思想
主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠.采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
具体的实际操作我也在学习,主要是在实验室分析,用minitab
网上有很多这方面的资料,你可以自己去详细地看
希望对你有用
E. 主成分分析法
在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。
(一)主成分分析的基本原理
主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:
灾害损毁土地复垦
如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:
灾害损毁土地复垦
系数lij由下列原则来决定:
(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;
(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。
依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。
(二)主成分分析法的步骤
(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。
(2)计算标准化的相关数据矩阵:
灾害损毁土地复垦
(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。
(4)选择重要的主成分,并写出其表达式。
主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:
灾害损毁土地复垦
这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。
另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。
(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:
灾害损毁土地复垦
(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。
(三)主成分分析法的评价
通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。
需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。
F. 主成分分析法(PCA)
3.2.2.1 技术原理
主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。
主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:
地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例
计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。
3.2.2.2 方法流程
1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法
图3.3 方法流程图
2)根据标准化数据求出方差矩阵;
3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;
4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。
3.2.2.3 适用范围
主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。
G. 主成分分析(PCA)
主成分分析(PCA)是一种常用的无监督学习方法,这一方法利用正交变换把由现行相关变量表示的观测数据转化为少数几个由线性无关变量表示的数据,线性无关的变量称为主成分。主成分的个数通常小于原始变量的个数,所以主成分分析属于姜维方法。主成分分析主要用于发现数据中的基本结构,即数据中变量之间的关系,是数据分析的有力工具,也用于其他机器学习方法的前处理。
统计分析比中,数据的变量之间可能存在相关性,以致增加了分析的难度。于是,考虑由少数几个不相关的变量来代替相关的变量,用来表示数据,并且要求能够保留数据中的不部分信息。
主成分分析中,首先对给定数据进行规范化,使得数据每一变量的平均值为0,方差为1,。之后对数据进行正交变换,用来由线性相关表示的数据,通过正交变换变成若干个线性无关的新变量表示的数据。新变量是可能的正交变换中变量的方差和(信息保存)最大的,方差表示在新变量上信息的大小。将新变量一次成为第一主成分,第二主成分等。通过主成分分析,可以利用主成分近似地表示原始数据,这可理解为发现数据的“基本结构”;也可以把数据由少数主成分表示,这可理解为对数据降维。
方差最大的解释。假设有两个变量 ,三个样本点A,B,C。样本分布在由 轴组成的坐标系中,对坐标系进行旋转变换,得到新的坐标轴 ,表示新的变量 。坐标值的平方和 表示样本在变量 上的方差和。主成分分析旨在选取正交变换中方差最大的变量,作为第一主成分,也是是旋转变换中坐标值的平方和最大的轴。注意到旋转变换中变换中样本点到原点距离的平方和 不变,根据勾股定理,坐标值的平方和最大 等价于样本点到 轴的距离平方和 最小。所以,等价地,主成分分析在旋转变换中选取离样本点的距离的平方和最小的轴,作为第一主成分。第二主成分等的选取,在保证与已有坐标轴正交的条件下,类似地进行
假设 是m维随机变量,其均值是
,
协方差矩阵是
考虑到m维随机变量 到m维随机变量 的线性变换
其中
由随机变量的性质可知
总体主成分的定义 给定式(1)所示的线性变换,如果他们满足下列条件
设 是m维随机变量, 是 的协方差矩阵, 的特征值分别是 ,特征值对应的单位特征向量分别是 ,则 的第k主成分是
的第k主成分的方差是
即协方差矩阵 的第k个特征值
首先求 的第一主成分 ,即求系数向量 。第一主成分的 是在 的条件下, 的所有线性变换中使方差达到最大的
求第一主成分就是求解最优化问题
定义拉格朗日函数
其中 是拉格朗日乘子,将拉格朗日函数对 求导,并令其为0,得
因此 是 的特征值, 是对应的单位特征向量。于是目标函数
假设 是 的最大特征值 对应的单位特征向量,显然 与 是最优化问题的解,所以, 构成第一主成分,其方差等于协方差矩阵的最大特征值
接着求 的第二主成分 ,第二主成分的 是在 且 与 不相关条件下, 的所有线性变换中使达到最大
求第二主成分需参求解约束最优化问题
定义拉格朗日函数
其中 对应拉格朗日乘子。对 求偏导,并令其为0,得
将方程左则乘以 有
此式前两项为0,且 ,导出 ,因此式成为
由此, 是 的特征值, 是对应的特征向量,于是目标函数为
假设 是 的第二大特征值 的特征向量,显然 是以上最优化问题的解。于是 构成第二主成分,其方差等于协方差矩阵的第二大特征值,
按照上述方法可以求得第一、第二、直到第m个主成分,其系数向量 分别是 的第一、第二、直到m个单位特征向量, 分别是对应的特征值。并且,第k主成分的方差等于 的第k个特征值。
主成分分析的主要目的是降维,所以一般选择 个主成分(线性无观变量),使问题得以简化,并能保留原有变量的大部分信息。这里所说的信息是指原有信息的方差。
对任意正整数 ,考虑正交线性变换
其中 是q的维向量, 是q*m维矩阵,令 的协方差矩阵为
则 的迹 在 时取最大值,其中矩阵 是由正交矩阵A的前q列组成。
这表明,当 的线性变换 在 时,其协方差矩阵 的迹 取得最大值。也就是说,当A取前 的前q个主成分时,能够最大限度地保留原有变量方差的信息。
以上作为选择k个主成分的理论依据。具体选择k的方法,通常利用方差贡献率。
第k主成分 的方差贡献率定义为 的方差与所有方差之和的比记作
k个主成分 的累计方差贡献率定义为k个方差之和和所有方差之和的比
通常取k使得累计方差贡献率达到规定的百分比以上,例如70%~80%。累计方差贡献率反映了主成分保留信息的比例,但它不能反映对某个原有变量 保留信息的比例,这时通常利用k个主成分 对原有变量 的贡献率。
k个主成分 对原有变量 的贡献率为 , 的相关系数的平方,记作
计算公式如下:
其中, 是随机变量 的方差,即协方差矩阵 的对角元素。
在实际问题中,不同变量可能有不同的量纲,直接求主成分有时会产生不合理的结果,为了消除这个影响,常常对各个随机变量实施规范化,使其均值为0,方差为1
设 为随机变量, 为第i个随机变量, ,令
其中, 分布是随机变量 的均值和方差,这时 就是 的规范化随机变量。
在实际问题中,需要在观测数据上进行主成分分析,这就是样本主成分分析。样本主成分也和总体主成分具体相同的性质。
使用样本主成分时,一般假设样本数据是规范化的,即对样本矩阵如下操作:
其中
样本协方差矩阵S是中体协方差矩阵 的无偏估计,样本相关矩阵R是总体相关矩阵的无偏估计,S的特征值和特征向量 的特征值和特征向量的无偏估计。
传统的主成分分析通过数据的协方差矩阵或相关矩阵的特征值分解进行,现在常用的方法是通过数据矩阵的奇异值分解进行。下面介绍数据的协方差矩阵或相关矩阵的分解方法
给定样本矩阵 ,利用数据的样本的协方差矩阵或样本相关矩阵的特征值分解进行主成分分析
给定样本矩阵 ,利用数据矩阵奇异值分解进行主成分分析,这里没有假设k个主成分
对于 维实矩阵A,假设其秩为r, ,则可将矩阵A进行截断奇异值分解
式 是 矩阵, 是k阶对角矩阵, 分别由取A的完全奇异分解的矩阵U,V的前k列, 由完全奇异分解的矩阵 的前k个对角元素得到
定义一个新的 矩阵
的每一列均值为0,
即 等于X的协方差矩阵
主成分分析归结于求协方差矩阵 的特征值和对应的单位特征向量。
假设 的截断奇异值分解为 ,那么V 的列向量就是 的单位向量,因此V的列向量就是X的主成分。于是X求X的主成分可以通过 的奇异值来实现