导航:首页 > 研究方法 > 图像质量分析方法

图像质量分析方法

发布时间:2022-12-23 00:13:37

① 遥感数字图像处理方法

1.直方图法

    对于每幅图像都可作出其灰度直方图。根据直方图的形态可大致推断图像的质量。由于图像包含有大量的像元,其像元灰度值的分布应符合概率统计分布规律。假定像元的灰度值是随机分布的,那么其直方图应该是正态分布。图像的灰度值是离散变量,因此直方图表示的是离散的概率分布。若以各灰度级的像元数占总像元数的比例值为纵坐标作出图像的直方图,将直方图中各条形的最高点连成一条外轮廓线,纵坐标的比例值即为某灰度级出现的概率密度,轮廓线可近似看成图像相应的连续函数的概率分布曲线。一般来说,如果图像的直方图轮廓线越接近正态分布,则说明图像的亮度接近随机分布,适合用统计方法处理,这样的图像一般反差适中;如果直方图峰值位置偏向灰度值大的一边,则图像偏亮;如果峰值位置偏向灰度值小的一边,则图像偏暗;峰值变化过陡、过窄,则说明图像的灰度值过于集中,后3种情况均存在反差小、质量差的问题。直方图分析是图像分析的基本方法,通过有目的地改变直方图形态可改善图像的质量。

2.邻域法

    对于图像中任一像元(i,j),把像元的集合{i+p,j+p}(j,p取任意整数)均称为像元的邻域,常用的邻域如图所示,分别表示中心像元的4-邻域和8-邻域。

    在图像处理过程中,某一像元处理后的值g(i,j)由处理前该像元f(i,i)的小邻域N(i,j)中的像元值确定,这种处理称为局部处理,或称为邻域处理。一般图像处理中,可根据计算目的差异,设计不同的邻域分析函数。

3.卷积法

    卷积运算是在空间域内对图像进行邻域检测的运算。选定一个卷积函数,又称为“模板”,实际上是一个M×N的小图像,例如3×3、5×7、7×7等。图像的卷积运算是运用模板来实现的。模板运算方法如图所示,选定运算模板φ(m,n),其大小为M×N,从图像的左上角开始,在图像上开一个与模板同样大小的活动窗口f(m,n),使图像窗口与模板像元的灰度值对应相乘再相加。计算结果g(m,n)作为窗口中心像元新的灰度值。模板运算的公式如下(若模板的和为0,则除以1):

4.频率域增强法

    在图像中,像元的灰度值随位置变化的频繁程度可用频率予以表示,这是一种随位置变化的空间频率。对于边缘、线条、噪声等特征,如河流、湖泊的边界,道路,差异较大的地表覆盖交界处等具有高的空间频率,即在较短的像元距离内灰度值变化的频率大;而均匀分布的地物或大面积的稳定结构,如植被类型一致的平原,大面积的沙漠、海面等具有低的空间频率,即在较长的像元距离内灰度值逐渐变化。例如,在频率域增强技术中,平滑主要是保留图像的低频部分抑制高频部分,锐化则是保留图像的高频部分而削弱低频部分。

5.图像运算法

    对于遥感多光谱图像和经过空间配准的两幅或多幅单波段遥感图像,可进行一系列的代数运算,以达到某种增强的目的。这与传统的空间叠置分析类似,具体运算包括加法运算、差值运算、比值运算、复合指数运算等。

6.非监督分类法

    是指人们事先对分类过程不做任何的先验知识,仅根据遥感影像地物的光谱特征的分布规律,随其自然地进行分类。其分类的结果,只是对不同类别进行区分,并不能确定类别属性,其类别属性是事后对各类的光谱曲线进行分析,以及与实地调查相比较后确定的。

    遥感图像上的同类地物在相同的表面结构特征、植被覆盖、光照等条件下,一般具有相同或相近的光谱特征,从而表现出某种内在的相似性,归属于同一个光谱空间区域;不同的地物,光谱信息特征不同,归属于不同的光谱空间区域。这就是非监督分类的理论基础。由于在一幅复杂的图像中,训练区有时不能包括所有地物的光谱样式,这就造成了一部分像元找不到归属。在实际工作中为了进行监督分类而确定类别和训练区的选取也是不易的,因而在开始分析图像时,用非监督分类方法来研究数据的本来结构及其自然点群的分布情况是很有价值的。

    非监督分类主要采用聚类分析的方法,以此使得属于同一类别的像元之间的距离尽可能小而不同类别上像元间的距离尽可能地大。在进行聚类分析时,首先要确定基准类别的参量。然而非监督分类中并无基准类别的先验知识可利用,因而只能先假定初始的参量,并通过预分类处理来形成集群。再由集群的统计参数来调整预制的参量,接着再聚类、再调整。如此不断地迭代,直到有关参数达到允许的范围为止。

7.监督分类法

    与非监督分类不同,监督分类的最基本特点是在分类前人们对遥感图像上某些抽样区中影像地物的类别属性已有了先验知识,即先要从图像中选取所有要区分的各类地物的样本,用于训练分类器(建立判别函数)。这里的先验知识可来自于野外的实地考察,也可参照相关的其他的文字资料或图件或者直接是图像处理者本人的经验等。训练区中,具体确定各类地物各波段的灰度值,从而可确定特征参数,建立判别函数。监督分类一般是在图像中选取具有代表性的区域作为训练区,由训练区得到各个类别的统计数据,然后根据这些统计数据对整个图像进行分类,其既可采用概率判别函数,也可采用距离判别函数。

8.图像分割法

    它是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究有待不断深入。

② 分析PSNR对图像质量评价的优缺点并试图规划一种方案克服SNR的缺点

PSNR优点:便于计算和理解,能大致反映图象质量.一般情况下,PSNR的值高的图象质量相对

较高,通常,当PSNR值在28以上时,图象质量差异不太显着,当高于35~40时,则肉眼分辨不出差异.

PSNR缺点:,PSNR有时反映图象质量与人眼观察的图象质量情况并不完全相符.实验表明,
在同一幅图象中分别在图象高频部分、中低频部分、低频部加入白噪声干扰时,在高频部分
加入干扰时图象质量优于其它两种情况,但三者的峰值信噪比相同.
有理由认为PSNR 并不是一个很好的图象质量评价指标。由于PSNR的局限性,人们仍在不断的探讨,试图找出更接近人视觉特征的评价指标.


由于 PSNR的局限性 ,人们仍在不断的探讨 ,试图找出更接近人视觉特征的评价指标. 目前新的图象质量评价方案大多数为基于人眼视觉系统(HVS)的测量方法 ,以期更接近人眼的主观视觉.

新标准大致可以分为两类:基于视觉感知的测量方法和基于视觉兴趣的测量方法.

  1. 基于视觉感知的图象评价方法较早也较成功的有基于刚辨差(JND ,Just Notice Difference)的视觉感知方法.由于人眼分辨亮度差异的能力与背景亮度有关 ,在宽阔的常用背景亮度变化范围内 ,人眼的JND为常数;当背景亮度较强或较弱时,人眼的分辨能力减弱 ,即JND 增大.该方法基于此原理达到对图象质量定量测量的目的.

  2. 基于视觉兴趣的图象质量评价方法的思想是将图象分为感兴趣区(ROI ,Region of Interest) 和不感兴趣区 ,并由感兴趣程度对其设定加权值.整幅图象的视觉质量往往取决于感兴趣区的质量 ,不感兴趣区质量的降质则影响较小. 例如 ,假设测试图象中只有一个感兴趣区A1 ,其面积为S1 ,不感兴趣区A2 ,面积为S2 ,图象总面积为S = S1 + S2 .则由此可定义一个自己的均方误差IMSE:

③ 数字图像处理与分析方法哪些

数字图像处理主要研究的内容有以下几个方面:
1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。
4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5) 图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

④ 在图像处理中有哪些算法

1、图像变换:

由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。

2、图像编码压缩:

图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3、图像增强和复原:

图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

4、图像分割:

图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

5、图像描述:

图像描述是图像识别和理解的必要前提。

一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。

6、图像分类:

图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。

(4)图像质量分析方法扩展阅读:

图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。

数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。

数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,

但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。

如何根据图像直方图判断图像质量

直方图为我们判断图像的色调提供准确的科学依据。
直方图定义:直方图用图形表示了图像的每个亮度级别的像素的数量,展现了像素在图像中的分布情况。
点击“窗口”—>“直方图”,弹出直方图界面。
调整图像时,会出现二个直方图,黑色为调整后的直方图,灰色为调整前的直方图。调整后的直方图黑色(0色阶)增多,此时图片变暗。

当直方图白色部分(255色阶)增多时,可以看到图像变亮了起来。

下面看看直方图的主要属性:
平均值:显示的是像素的平均亮度值(0到255之间的平均亮度),通过平均值可以判断图像的色调类型。通过直方图的山峰靠近暗部还是亮部,判断图像时偏暗还是偏亮。
标准偏差:显示了亮度值得变化范围,该值越高,说明图像的亮度变化越剧烈。
中间值:显示了亮度值范围内的中间值,图像的色调越亮,它的中间值越高。
像素:显示了用于计算直方图的像素的总数。

⑥ 遥感图像处理的处理方法

是提高遥感图像的像质以利于分析解译应用的处理。灰度增强、边缘增强和图像的复原都属于图像的整饰处理。
是将卫星图像的像元虽然用256个灰度等级来表示,但地物反射的电磁波强度常常只占256个等级中的很小一部分,使得图像平淡而难以解译,天气阴霾时更是如此。为了使图像能显示出丰富的层次,必须充分利用灰度等级范围,这种处理称为图像的灰度增强。
常用的灰度增强方法有线性增强、分段线性增强、等概率分布增强、对数增强、指数增强和自适应灰度增强6种。
1、线性增强:把像元的灰度值线性地扩展到指定的最小和最大灰度值之间;
2、分段线性增强:把像元的灰度值分成几个区间,每一区间的灰度值线性地变换到另一指定的灰度区间;
3、等概率分布增强:使像元灰度的概率分布函数接近直线的变换;
4、对数增强:扩展灰度值小的像元的灰度范围,压缩灰度值大的像元的灰度范围;
5、指数增强:扩展灰度值大的和压缩灰度值小的像元的灰度范围;
6、自适应灰度增强:根据图像的局部灰度分布情况进行灰度增强,使图像的每一部分都能有尽可能丰富的层次。 是一种重要的图像处理方法,其基本原理是:像元的灰度值等于以此像元为中心的若干个像元的灰度值分别乘以特定的系数后相加的平均值。由这些系数排列成的矩阵叫卷积核。选用不同的卷积核进行图像卷积,可以取得各种处理效果。例如,除去图像上的噪声斑点使图像显得更为平滑;增强图像上景物的边缘以使图像锐化;提取图像上景物的边缘或特定方向的边缘等。常用的卷积核为3×3或5×5的系数矩阵,有时也使用7×7或更大的卷积核以得到更好的处理效果,但计算时间与卷积核行列数的乘积成正比地增加。
图像的灰度增强和卷积都是直接对图像的灰度值进行处理,有时称为图像的空间域处理。 在数字信号处理中常用离散的傅里叶变换,把信号转换成不同幅度和相位的频率分量,经滤波后再用傅里叶反变换恢复成信号,以提高信号的质量。图像是二维信息,可以用二维的离散傅里叶变换把图像的灰度分布转换成空间频率分量。图像灰度变化剧烈的部分对应于高的空间频率,变化缓慢的部分对应于低的空间频率。滤去部分高频分量可消除图像上的斑点条纹而显得较为平滑,增强高频分量可突出景物的细节而使图像锐化,滤去部分低频分量可使图像上被成片阴影覆盖的部分的细节更清晰地显现出来。精心设计的滤波器能有效地提高图像的质量。经傅里叶变换、滤波和反变换以提高图像质量的处理,有时称为图像的空间频率域处理。

⑦ 如何评价遥感图像的质量常用的指标有哪些

1)查看影像直方图中单个亮度值出现的频率。

2)在计算机上查看某一个具体位置为地理区域的像元亮度值。

3)计算基本的医院描述性统计量,判断影像遥感数据中是否存在异常。

4)计算多元统计量以确定波段间的相关关系(如识别冗余信息)。

上述都为比较宏观的描述,在具体评价的时候,可以从影像各个波段的最小值,最大值,值域,均值,标准差,波段间的协方差和相关系数等具体定量指标进行确认。

阅读全文

与图像质量分析方法相关的资料

热点内容
杜兰特真正的训练方法 浏览:317
网上买床安装方法 浏览:782
奶奶教裁剪方法简单好用 浏览:449
老人机短信中心在哪里设置方法 浏览:855
化肥中氮的含量检测方法视频 浏览:77
照片如何加水印方法 浏览:534
有点打呼噜有什么好方法 浏览:406
如何赏析诗句方法公式 浏览:725
快速融化冰块的方法 浏览:131
手臂痛怎么治疗方法 浏览:486
days360函数的使用方法 浏览:633
治疗湿尤有效方法 浏览:913
小米的快捷键设置在哪里设置方法 浏览:773
用底线思维方法解决问题 浏览:282
检测方法elisa法 浏览:196
远离口臭的最佳治疗方法 浏览:688
中药及其制剂常用的纯化方法 浏览:153
充电机使用方法步骤12V 浏览:1003
正确怀孕的方法 浏览:52
iphone6跳屏解决方法 浏览:897