‘壹’ 请问蛋白质的检验方法有多少种(请尽量详细,
蛋白质测定方法:
测定蛋白质的方法可分为两大类:
一类是利用蛋白质的共性,即含氮量 、肽键和折射率测定蛋白质含量 ;
另一类是利用蛋白质中特定氨基酸残基、酸性和碱性基团 以及芳香基团等测定蛋白质含量.
(1) 凯氏定氮法:是通过测出样品中的总含氮量再乘以相应的蛋白质系数而求出蛋白质的含量,由于样品中含有少量非蛋白质含氮化合物,故此法的结果称为粗蛋白质含量.(是食品上蛋白质含量测定最常用的方法)
(2) 双缩脲法
(3) 染料结合法
(4) 酚试剂法:方法简便快速,故多用于生产单位质量控制分析.
(5) 紫外分光光度法-近红外光谱法
‘贰’ 鉴定蛋白质有哪些方法
蛋白质含量的测定:
1 凯氏定氮法
根据氮在蛋白质分子中含量恒定(平均占16%),因此测定出样品中氮的含量后,即可求出样品中蛋白质含量。
2 双缩脲法
3 福林-酚试剂法
福林-酚试剂包括两种试剂:碱性铜试剂,磷钼酸及磷钨酸的混合试剂。碱性铜试剂与蛋白质产生双缩脲反应。这种被作用的蛋白质中的酚基(酪氨酸),在碱性条件下易将磷钼酸和磷钨酸还原成蓝色的钼蓝和钨蓝,所生成蓝色的深浅,与蛋白质的含量成正比。在650nm和660nm波长下测定光吸收值,即可测定蛋白质含量。
4 紫外吸收法
酪氨酸,色氨酸在280nm处左右具有最大吸收。由于在各种蛋白质中这几种氨基酸含量差别不大,所以280nm的吸收值与浓度呈正相关。可用于蛋白质浓度的测定。
‘叁’ 蛋白质的定性测定方法
蛋白质定性方法茚三酮反应
1.范围
本方法采用茚三酮试剂与蛋白质中a-氨基酸反应生成蓝紫色化合物最大吸收值的波长为570nm
本方法适用于各类蛋白质测定范围0.5 g 50 g 蛋白质
2.原理
茚三酮是使氨基酸和多肽显色的重要试剂当茚三酮在弱酸性条件下和-氨基酸反应时氨基酸被氧化分解生成醛放出NH3 和C02 水合茚三酮则变成还原型茚三酮然后还原型茚三酮与NH3 及另一分子茚三酮进一步缩合生成蓝紫色化合物最大吸收值的波长为570nm此反应为一切a-氨基酸所共有反应灵敏因而本法是氨基酸定量测定应用最广泛的方法之一脯氨酸和羟脯氨酸与茚三酮反应生成黄色化合物最大吸收值的波长在44Onm 多肽和蛋白质虽然具有茚三酮反应但肽链越大灵敏度也越来越差故不宜作定量测定之用在多肽合成中常用来检验有无自由氨基的肽类存在
3 .试剂
茚三酮无水乙醇95%乙醇甘氨酸
4.试样制备
4.1 蛋白质溶液箱保存备用
4.2 1mg mL-1的茚三酮乙醇溶液,0.1g 茚三酮溶于100mL 95%乙醇新鲜配置
4.3 5mg mL-1的甘氨酸溶液
5.参考文献
1.陈曾燮刘兢罗丹 编.生物化学实验.合肥中国科学技术大学出版社1994.1-6
2.李建武等 合编.生物化学实验原理和方法.北京北京大学出版社1994.150-174
3.宁正祥 编.食品成分分析手册.北京中国轻工业出版社1998.62-80
‘肆’ 常用的蛋白质含量测定方法有哪些
①凯氏定氮法
原理:蛋白质平均含氮量为16%。当样品与浓硫酸共热,蛋白氮转化为铵盐,在强碱性条件下将氨蒸出,用加有指示剂的硼酸吸收,最后用标准酸滴定硼酸,通过标准酸的用量即可求出蛋白质中的含氮量和蛋白质含量。
②双缩脲法
原理:尿素在180℃下脱氨生成双缩脲,在碱性溶液中双缩脲可与Cu2+形成稳定的紫红色络合物。蛋白质中的肽键实际上就是酰胺键,故多肽、蛋白质等都有双缩脲(biuret)反应,产生蓝色或紫色复合物。比色定蛋白质含量。
缺点:灵敏度低,样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。其 精确度 较差 (数mg),且会受样品中 硫酸铵 及 Tris 的干扰,但 准确度 较高,不受蛋白质的种类影响。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用试剂由试剂甲和乙两部分组成。试剂甲相当于双缩脲试剂(碱性铜试剂),试剂乙中含有磷钼酸和磷钨酸。
在碱性条件下,蛋白质中的巯基和酚基等可将Cu2+还原成Cu+, Cu+能定量地与Folin-酚试剂反应生成蓝色物质,600nm比色测定蛋白质含量。
灵敏度较高(约 0.1 mg),但较麻烦,也会受 硫酸铵 及 硫醇化合物 的干扰。 步骤中各项试剂的混合,要特别注意均匀澈底,否则会有大误差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收进行测定。
280nm-260nm的吸收差法:若样品液中有少量核酸共存按下式计算:
蛋白质浓度(mg/ml)=1.24E280-0.74E260 (280 260为角标)
⑤色素结合法(Bradford 法)
直接测定法:利用蛋白质与色素分子(Coomassie Brilliant Blue G-250)结合物的光吸收用分光光度法进行测定。
考马斯亮兰(CBG)染色法测定蛋白质含量。CBG 有点像指示剂,会在不同的酸碱度下变色;在酸性下是茶色,在中性下为蓝色。当 CBG接到蛋白质上去的时候,因为蛋白质会提供 CBG一个较为中性的环境,因此会变成蓝色。当样本中的蛋白质越多,吸到蛋白质上的CBG也多,蓝色也会增强。因此,蓝色的呈色强度,是与样本中的蛋白质量成正比。
间接测定法:蛋白质与某些酸性或碱性色素分子结合形成不溶性的盐沉淀。用分光光度计测定未结合的色素,以每克样品结合色素的量来表示蛋白质含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4’-二羧-2,2’-二喹啉)法与Lowry法相似,主要差别在碱性溶液中,蛋白质使Cu2+转变Cu+后,进一步以BCA 取代Folin试剂与Cu+结合产生深紫色,在波长562 nm有强的吸收。
它的优点在于碱性溶液中BCA 比Folin试剂稳定,因此BCA与碱性铜离子溶液结合的呈色反应只需一步骤即完成。灵敏度Lowry法相似。
本方法对于阴离子、非离子性及二性离子的清洁剂和尿素较具容忍度,较不受干扰,但会受还原糖 及EDTA的干扰。
⑦胶体金测定法
胶体金(colloidal gold)是氯金酸(chloroauric acid)的水溶胶,呈洋红色,具有高电子密度,并能与多种生物大分子结合。
胶体金是一种带负电荷的疏水胶体遇蛋白质转变为蓝色,颜色的改变与蛋白质有定量关系,可用于蛋白质的定量测定。
⑧其他方法
有些蛋白质含有特殊的 非蛋白质基团,如 过氧化物酶含有 亚铁血红素基团,可测 403 nm 波长的吸光来定量之。 含特殊金属的酶 (如镉),则可追踪该金属。
‘伍’ 测定蛋白质含量的方法有哪些
1、凯氏定氮法
凯氏定氮法是由丹麦化学家凯道尔于1833年建立的,现已发展为常量、微量、平微量凯氏定氮法以及自动定氮仪法等,是分析有机化合物含氮量的常用方法。
凯氏定氮法的理论基础是蛋白质中的含氮量通常占其总质量的16%左右(12%~一19%),因此,通过测定物质中的含氮量便可估算出物质中的总蛋白质含量(假设测定物质中的氮全来自蛋白质),即: 蛋白质含量=含氮量/16%。
2、紫外吸收光谱法
紫外吸收光谱法又称紫外分光光度法,是根据物质对不同波长的紫外线吸收程度不同而对物质组成进行分析的方法。此法所用仪器为紫外吸收分光光度计或紫外-可见吸收分光光度计。
光源发出的紫外光经光栅或棱镜分光后,分别通过样品溶液及参比溶液,再投射到光电倍增管上,经光电转换并放大后,由绘制的紫外吸收光谱可对物质进行定性分析。
(5)蛋白质定性分析的常用方法有哪些扩展阅读
蛋白质含量测定的意义:
膳食蛋白质符合人的需要时,可维持正常代谢,生成抗体,抵抗感染,有病也易恢复。相反,蛋白质供给不足时,会减轻体重,易患贫血,容易感染疾病;创伤、骨折不易愈合;严重缺乏时,血浆蛋白降低,可引起浮肿。
此外癌症与蛋白质摄入量不足也有一定关系。但是,蛋白质摄入过多也可造成肾脏负担。食物蛋白质在体内代谢所生成的尿酸、氨、酮体等累积过多,可导致衰老;而氨还对机体有毒性,不仅会陡然增加肝脏负担,还会增加胃肠负荷,引起肝肾受累以及消化不良等症。所以,蛋白质的摄入量要适当。
‘陆’ 蛋白质含量的测定方法有哪些
蛋白质含量测定的方法有微量凯氏定氮法、双缩脲法、folin―酚试剂法、考马斯亮兰法、紫外吸收法等。
1、微量凯氏定氮法:含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
2、双缩脲法:双缩脲是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。
3、folin―酚试剂法:这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难,近年来逐渐被考马斯亮兰法所取代。
4、考马斯亮兰法:1976年由bradford建立的考马斯亮兰法,是根据蛋白质与染料相结合的原理设计的。这一方法是目前灵敏度最高的蛋白质测定法。
5、紫外吸收法:蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。
‘柒’ 说明常用蛋白质测定方法的原理,并对各种方法加以比较
1、凯氏定氮法
准备4个50mL凯氏烧瓶并标号,想1、2号烧瓶中加入定量的蛋白质样品,另外两个烧瓶作为对照,在每个烧瓶中加入硫酸钾-硫酸铜混合物,再加入浓硫酸,将4个烧瓶放到消化架上进行消化。
消化完毕后进行蒸馏,全部蒸馏完毕后用标准盐酸滴定各烧瓶中收集的氨量,直至指示剂混合液由绿色变回淡紫红色,即为滴定终点,结算出蛋白质含量。
2、双缩脲法
双缩脲法是第一个用比色法测定蛋白质浓度的方法,硫铵不干扰显色, Cu2+与蛋白质的肽键,以及酪氨酸残基络合,形成紫蓝色络合物,此物在540nm波长处有最大吸收。
利用标准蛋白溶液和双缩脲试剂绘制标准曲线,将待测血清与硫酸钠在待测试管中混合,并只加入硫酸钠不含血清的试管作对照,将两支试管加入等量的双缩脲试剂,混合后于37℃环境中放置10分钟,在540nm波长进行比色,以对照管调零,读取吸光度值,标准曲线上直接查出蛋白质含量。
3、酚试剂法
取6支试管标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,每支试管液体总量加入蒸馏水补足而保持一致,混合均匀,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。
4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。
取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。
5、考马斯亮蓝法
Bradford浓染液的配制:将100mg考马斯亮蓝G-250溶于50ml 95%乙醇,加入100ml85%的磷酸,用蒸馏水补充至200ml,此染液放4℃至少6个月保持稳定。
标准曲线蛋白质样本的准备:尽量使用与待测样本性质相近的蛋白质作为标准品,测定抗体,可用纯化的抗体作为标准。待测样本是未知的,也可用抗体作为标准蛋白。通常在20ug—150ug/100ul之间绘制标准曲线。
将待测样本溶于缓冲溶液中,该缓冲溶液应与制作标准曲线的缓冲溶液相同(最好用PBS)。按1:4用蒸馏水稀释浓染料结合溶液,出现沉淀,过滤除去。
每个样本加5ml稀释的染料结合溶液,作用5~30min。染液与蛋白质结合后,将由红色变为蓝色,在595nm波长下测定其吸光度。注意,显色反应不得超过30min。根据标准曲线计算待测样本的浓度。
‘捌’ 常用来测定蛋白质含量的方法有哪些优缺点是什么
1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
优点:可用于所有食品的蛋白质分析中;操作相对比较简单;实验费用较低;结果准确,是一种测定蛋白质的经典方法;用改进方法(微量凯氏定氮法)可测定样品中微量的蛋白质。
缺点:凯氏定氮法只是一个氧化还原反应,把低价氮氧化并转为氨盐来测定,而不能把高价氮还原为氮盐的形式,所以不可以测出物质中所有价态的氮含量。
2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。
当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。
优点:测定速度较快,干扰物质少,不同蛋白质产生的颜色深浅相近。
缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。
优点:灵敏度高,对水溶性蛋白质含量的测定很有效。
缺点:①费时,要精确控制操作时间;②酚法试剂的配制比较繁琐。
4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。
取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。
优点:简便、灵敏、快速,不消耗样品,测定后能回收。
缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较大的干扰。
5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。
在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。
一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。
优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。
缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此用于不同蛋白质测定时有较大的偏差。
‘玖’ 常用的血清蛋白质含量测定方法有哪些
四种血清总蛋白质的测定的方法:
1.基于蛋白分子中含有酪氨酸和色氨酸而使用的酚试剂比色法 由于各种蛋白质分子中上述两种氨基酸的组成比例不同,特别是白蛋白含色氨酸为0.2%,而γ-球蛋白中含量达2%-3%,导致较大的差异。Lowry的改良法在酚试剂中加入Cu2+,集中原法和双缩脲反应两者的作用,使呈色灵敏度提高。其中75%的呈色依赖于Cu2+.反应产物最佳吸收峰在650-750nm,方法灵敏度为双缩脲方法的100倍左右。有利于检测较微量的蛋白质。但试剂反应仍易受多种化合物的干扰。
2.紫外测定法 采用280nm和215/225紫外吸收值,计算蛋白质含量280nm 是由于蛋白质分子中存在芳香族氨基酸所致。方法的特异性和准确性受蛋白分子中该种氨基酸的含量比例影响甚大。尿酸和肝红素在280nm附近有干扰。紫外区200-225nm是肽健的强吸收峰。在此区域其吸收值为280nm的10-30倍,将血清稀释1000-2000倍可以消除干扰物质的影响。
3.采用沉淀反应进行散射比浊法 用磺柳酸、三氯醋酸等配方,此方法甚为简便,不需特殊仪器,技术关键在于:①选择最佳试剂浓度及温度;②混匀技术;③选用的标准;④待测标本中的蛋白浓度。
4.染料结合法 蛋白质可与某些染料特异结合,如氨基黑(amino black)与考马亮蓝(comassive brilliant blue )。这一性质除了可以用于电泳后的蛋白质区带染色,亦可用于总蛋白质的定量。缺点是多种蛋白质与染料的结合力不一致。考马亮蓝在与蛋白质结合后的吸收峰从465nm移向595nm,这一性质可用分光光度法来定量检测。
‘拾’ 蛋白质分离鉴定的常用方法有哪些
蛋白质分离鉴定的常用方法:
沉淀法
沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。
1、盐析法
盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。
2、有机溶剂沉淀法
有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。
3、蛋白质沉淀剂
蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。
4、聚乙二醇沉淀作用
聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。
5、选择性沉淀法
根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。
吸附层析
1、吸附柱层析
吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、薄层层析
薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、聚酰胺薄膜层析
聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
离子交换层析
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。
凝胶过滤
凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
亲和层析
亲和层析的原理与众所周知的抗原-抗体、激素-受体和酶-底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的底物(S)才能和一定的酶(E)结合,产生复合物(E-S)一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶-底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把固相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲液的pH值、或增加离子强度、或加入抑制剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。
上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。
聚焦层析
聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。
聚焦层析原理可以从pH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。
1、PH梯度溶液的形成
在离子交换层析中,pH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子交换剂进行层析时,制备pH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室中装高pH溶液,而在另一室装低pH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的pH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故pH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94(作固定相)时,先用起始缓冲液平衡到pH9,再用含pH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加入,柱内每点的pH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了pH6~9的梯度。聚焦层析柱中的pH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,pH梯度会逐渐向下迁移,从底部流出液的pH却由9逐渐降至6,并最后恒定于此值,这时层析柱的pH梯度也就消失了。
2、蛋白质的行为
蛋白质所带电荷取决于它的等电点(PI)和层析柱中的pH值。当柱中的pH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的pH值是随着淋洗时间延长而变化的。当蛋白质移动至环境pH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境pH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。
不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。
3、聚焦效应
蛋白质按其等电点在pH梯度环境中进行排列的过程叫做聚焦效应。pH梯度的形成是聚焦效应的先决条件。如果一种蛋白质是加到已形成pH梯度的层析柱上时,由于洗脱液的连续流动,它将迅速地迁移到与它等电点相同的pH处。从此位置开始,其蛋白质将以缓慢的速度进行吸附、解吸附,直到在等电点pH时被洗出。若在此蛋白质样品被洗出前,再加入第二份同种蛋白质样品时,后者将在洗脱液的作用下以同样的速度向前移动,而不被固定相吸附,直到其迁移至近似本身等电点的环境处(即第一个作品的缓慢迁移处)。然后两份样品以同样的速度迁移,最后同时从柱底洗出。事实上,在聚焦层析过程中,一种样品分次加入时,只要先加入者尚未洗出,并且有一定的时间进行聚焦,剩余样品还可再加到柱上,其聚焦过程都能顺利完成,得到的结果也是满意的。
气相色谱
多种组分的混合样品进入色谱仪的气化室气化后呈气态。当载气流入时,气化的物质被带人色谱柱内,在固定相和流动相中不断地进行分配.在理想状态下,溶质于气-液两相间的分配可用分配系数Kg描述。当分配系数小时,溶质在柱中就停留时间短,也即滞留因子(Rf)大,所以它将首先从色谱柱流出而进入鉴定器,经放大系统放大后,输出讯号便在记录仪中自动记录下来,这时呈现的图形为色谱图,亦称色谱峰;当分配系数大时,溶质在柱中停留时间就长,其色谱图在记录仪上后出现。由于不同物质有不同的分配系数,所以将一混合样品通过气-液色谱柱时,其所含组分就可得到分离。
气相色谱柱效率高、分辨率强的重要原因是,理论塔板数(N)大。毛细管气相色谱的N可达105~6。增加理论塔板数和降低样品组分的不同分子在展层中扩展程度(速率理论),就可明显地提高柱效。以下将讨论塔板理论和速率理论对柱效的影响:
1、塔板理论
塔板理论是将色谱假设为一个蒸馏塔,塔内存在许多块塔板,样品各组分在每块塔板的液相和气相间进行分配,在柱内塔板间高度H(即理论塔板高度)一定时,在有效范围内,柱子越长,N也就越大,样品各组分分配次数也就越多,分辨率自然提高;若柱长一定时,塔板理论高度H越小,就越能增加样品各组分的分配次数,进而提高其分辨率。因此 N=L/H 在线性分配和忽略塔板间纵向扩散的条件下,根据样品组分的保留时间tr、峰宽W或半峰高宽度2ΔXi,Martin导出了计算N的公式,样品组分峰宽度值越小,理论塔板数越高。实际上,进行色谱分析时,峰宽度值的大小是衡量分辨率高低的一个尺度。
2、速率理论
根据塔板理论,在H(塔板理论高度)一定时,增加柱长可以提高柱效。但是,柱子过长,将会延长分析时间,降低检测的灵敏度。所以实践中应设法降低H,提高柱效。
速率理论主要是分析同一样品的不同分子,在色谱柱中迁移速度差异所引起色谱峰的扩张程度。而涡流扩散、纵向分子扩散和质量传递(包括流动相传质和固定相传质)等因子与速率理论值(H)的密切关系可用下面的公式表示:
H=A+B/U+C
涡流扩散(A)是由于样品组分随着流动相的移动通过固定相颗粒不均匀的色谱柱时,引起同一组分的不同分子在流动相中形成不规则的"涡流",致使色谱峰变宽、柱效降低。如固定相颗粒均匀、直径小时,则可降低"涡流"现象发生。
纵向扩散(B/U)亦称分子扩散项。纵向扩散与样品分子在色谱柱中的流畅程度(有无阻碍)、流动相的速度(U)等因子有关。因此,降低溶质在流动相中扩散系数和缩短溶质在流动相中停留时间,均可降低纵向扩散。
传质阻力(C):溶质分子在气相与气液界面进行交换所受的阻力,以及在进入固定相液膜传递的差异性统称传质阻力。传质阻力分别与固定相颗粒直径的平方和固定相液膜厚度成正比关系。
高效液相色谱
高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。
高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。
1、进样系统
一般采用隔膜注射进样器或高压进样器完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。
2、输液系统
该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4×107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、pH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。
3、分离系统
该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成)。固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基团基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基团(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。
另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。
再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。
4、检测系统
高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。
(1)紫外检测器
该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10?g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。
(2)示差折光检测器
凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7?g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。
(3)荧光检测器
凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14?g/ml),痕量分析和梯度洗脱作品的检测均可采用。
(5)数据处理系统
该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。