1. 低格硬盘数据深度恢复 200高分请不吝赐教
低格后再写入数据的硬盘要恢复低格前的数据,目前国内几本无法全完恢复。
问题1:真的有读盘机能够恢复硬盘的数据吗?
最近几年,国内的数据恢复行业有了较大的发展,人们对这个行业也逐渐有了一定的认识,但出于商业利益的考虑,从事这个行业的商家在技术上遮遮掩掩,甚至故弄玄虚,让消费者不辩真假,自从国内某网站发了几个号称是国外的读盘机的照片后,被人炒的沸沸扬扬,有人还写文章说国内哪儿有这个设备在对外服务,更有无良商家号称自己开发出了这种设备,现对外服务云云,坑骗消费者;真的有这种设备吗?我们下面就有关的技术问题做一个探讨。
要不依靠磁头,采用所谓的激光直接读取硬盘的数据,目前从原理上来说无非有两种方法:一种是利用磁光的克尔效应,一种是利用已在磁性材料研究方面广泛应用的磁力显微镜,下面我们详细分析一下它们各自的原理和局限性。
一、磁光克尔效应
克尔效应是1876年由物理学家克尔发现的,当偏振光照射到磁性物质上发生反射时,反射光的偏振角在磁场的作用下会发生改变;那么如果我们将一束偏振光照到硬盘的盘片上,再检测它的反射光的偏振角的变化不就能读出硬盘上的数据吗?理论上是这样,甚至我们都能买到这样的产品,那就是MO,可惜到现在3.5吋的MO最大容量也不过1个多G,算上硬盘的两个面也就3G左右,谁还会有单碟容量3G的盘要用这种方法恢复数据呢?那为什么不能生产容量大一些的呢?如果要生产大容量的产品,就要减小偏振光的波长,必然需要短波长的偏振光发生器,而现在最大容量的蓝光光盘的容量才多大呢?那还是5.25吋的,要3.25吋容量还更小;同时因为克尔效应所产生的偏振角的改变是非常小的,只有零点几度,而且还要受到磁场强度和偏振光波长的影响,即便有了满足容量要求的偏振光发生器,这么高精度的检偏器也生产不出来,更何况它们还必须做成一体的,而且这种方法的读取速度也是很慢的,大家看看MO的速度就知道,所以使用这个原理的读盘机是不存在的,那网站的图片是什么呢?由于图片不够清晰,不能准确分辩其生产厂和型号,就只能让人去猜测了。
二、磁力显微镜
磁力显微镜是上世纪80年代末发明的一种显微镜,它是将一个以很小的探针悬在磁性物质的上面,在磁场的作用下,探针会发生偏转进而带动上面的一个小镜面,利用一束激光照射镜面,然后探测激光的反射角的变化来检测磁场的大小,再将激光的偏转角经过光电转换形成磁场的伪图像的装置(有兴趣深入研究的话,可以下载附件看看);如果是硬盘盘片的话,用磁力显微镜可以得到盘片上的磁力图,按理说是可以得到硬盘的数据的,但请注意,我发现在磁力图上不能分辩磁化的方向,要知道硬盘上可是用磁化方向的改变来判定0和1的,但这个似乎还不是大问题,问题是,磁力显微镜一次能观测的范围很小,约10×10平方微米,耗时约5分钟,大家可以算算,要用它完整扫描3.5吋盘的一个面需要多长时间,更不要说多盘面的硬盘了,而且,在转换扫描点的过程中的准确定位问题如何解决?还有,它得到的是图像文件,大家可以想象一下一个完整盘面的数据量会有多大?要将这些图片拼接识别成数据需要什么样的电脑来处理呢?所以这个方法也不太现实。
除了上面分析的原因外,还有其它的方面,一是硬盘存储数据的时候并不是我们往数据接口上输入个1它就写个1,它是经过RLL编码才写入的,不同型号的硬盘编码的方式不一定相同,再加上不同的硬盘的0磁道的起点不同,坏道的数量、位置不同(P-List、G-List不同)需要识别的工作量就更大。只有所有的这些技术问题都得到了完满的解决才能生产出所谓的读盘机,这样的可能性在现有的技术条件下有多大呢?
既然采用所谓激光直接读取盘片数据的读盘机不可能生产出来,那么有没有其它办法生产出能直接读取盘片上的数据的设备呢?理论上是可能的,不过依然只能使用磁头来读取数据,在盘片生产过程中有一种盘片动态测试仪就是这么工作的,它能测出盘片的信噪比和误码率,不过它测试的盘片连伺服信息都没有,如果是读取一个写了数据的盘片,那么它的定位、中心调整、动平衡等机械问题和数据预放、ECC、CRC、RLL解码、P-List、G-List的处理等工作,特别是机械方面的难度是非常大的,更何况要适应所有厂家、所有型号的硬盘就更困难,反正到现在也没见到过类似的数据恢复设备,但有数据恢复研究机构早就在做一些研究性的工作,感兴趣的网友可以下载附件研究研究,希望有一天能见到这种设备在数据恢复工作中使用,毕竟市场的需求是很大的,如果真的像大家希望的连盘片物理损坏都能读到数据那何乐而不为呢。
问题2:数据恢复机构能恢复覆盖了的数据吗?
我们有时会看到数据恢复机构的广告中说他们能恢复覆盖了的数据,在网上也能查到有关的说法;这可能有两种情况,第一种是他们能恢复被部分覆盖的介质的没有覆盖的部分的数据,第二种情况是他们的确有能力恢复被覆盖的扇区覆盖前的数据。
如果只是第一种情况,那么显然这些广告或文章中偷换了概念,对数据恢复方面稍有了解的人都知道,没有覆盖的部分的数据依然是存在的,要恢复它并不是一件困难的事;而第二种情况显然要复杂得多,通过查阅相关的资料发现有很多说法认为覆盖前的数据是有可能恢复的,主要有以下几种理由:第一种理由是,由于纵向磁记录的硬盘的磁介质由多层的小磁柱组成,在磁头对介质磁化的过程中,下层的小磁柱没有被充分磁化而保留了原来的数据信息,只要用适当的设备读取深层磁柱的信号,就能分析出覆盖前的数据;第二种理由是由于硬盘主要是由机械部件构成的数据记录媒体,那么在记录过程中因为机械的重复性误差的存在,使得后写入的数据不能准确覆盖前面的数据,在磁力显微镜下是能看到在现有数据记录的边缘还有前面的记录的残存,这样通过分析边缘的残存的信息就能恢复覆盖前的数据;第三种理由是由于磁性材料在外磁场撤销后(就是磁头移位后)的磁场强度会发生微小的变化,那么如果是在原来为0的数据位写上了个1,那么它的磁场强度就只有0.95个标准1的强度,如果是在原来为1的数据位上写上了个1,那么它的磁场强度就有1.05个标准1的强度,这样,只要在硬盘的预放电路部分接上一个足够灵敏的放大器,将磁头读取的信号放大后与标准的1的电平进行比较就能得到覆盖前的数据。
经过查阅相关的资料,我们发现关于深层数据恢复的说法似乎并无根据,由于硬盘的数据是用RLL编码的形式编码后存入硬盘的,而RLL编码有一个很重要的特性就是只有有翻转才有数值的变化,然后再根据编码规律进行译码;既然磁头在写入数据时需要让小磁柱翻转,那么它写入时的磁场强度必须足够大,至少要大于磁性材料的矫顽力,实际上还要大才行,这样就不存在深层的粒子无法翻转的情况,至于测量其磁场强度,目前并没有发现相关的实验方法,而且就算能测量,由于已经发生了翻转,还有什么意义呢?
关于后两种说法,查阅资料发现都来源于Peter Gutmann的《Secure Deletion of Data from Magnetic and Solid-State Memory》,在IEEE上有很多相关的文章,其中关于边缘残留问题,我没有找到原文中提到的磁力显微镜的磁力图,但从本站的附件的Data-Independent Data Recovery Ver14Alrs.pdf中看到确实存在,这也是我查阅了大量资料后唯一发现的一张图片,但请大家注意,这篇Gutmann的文章第一次发表于1996年,那时的硬盘容量很小,磁道宽度和间距都很大、盘片转速低,对机械的精度要求低,所以有这种情况,而Data-Independent Data Recovery Ver14Alrs.pdf中的图片也无法确认是用什么盘做的实验;在很多的争论文章中,这位Daniel FeenBerg的《Can Intelligence Agencies Read Overwritten Data?》中描述了Gutmann的图片情况,也并不是每一张图的每一位都能看到边缘的残留,那么这少量分散的残留对恢复数据有什么意义呢?同时,由于磁力显微镜的分辨率最高就只有30nm,而现在的硬盘的磁道宽度已经接近甚至小于这个数,那还怎么分辨边缘的那一点点残留呢?
关于0上写1和1上写1的问题,由于有翻转才有数值的改变,那么如果是往IDE口写个1或0,经过编码已经不是原来的1和0了,如果是编码后的情况,那么还有1上写0和0上写0的情况,0和1并不是用磁场强度的大小来衡量的,而是根据翻转来衡量的,这样一来,这种说法就没有什么意义了。
在《Can Intelligence Agencies Read Overwritten Data?》中作者还调查了几个国家的相关机构,并没有发现哪里能恢复已被覆盖了的数据,而且这篇文章的发表日期还晚几年,所以从目前的情况来看,已经被覆盖的数据还是没有被恢复的直接证据的。
当然,由于条件所限,我没查到更多的IEEE中的相关研究文献,如果哪位网友有有关的资料,我很有兴趣研究一下。
问题3:国内数据恢复市场初步印象!
因为工作的原因,去年有机会对国内的数据恢复市场做了个初步的了解,这两年国内的数据恢复市场的发展的确很快,用户对数据恢复的需求也有较大增长,同时对数据恢复行业也逐渐有了了解。
我通过网上搜索的方式找寻有实力的数据恢复机构,同时也走访了国内的一些电脑市场,尽可能的找机会到可能有实力的数据恢复机构考察,发现现在国内的数据恢复机构差不多遍地开花,很多电脑市场都能看到数据恢复广告,数据恢复培训机构也很容易找到。
数据恢复是一个比较特殊的行业,可以说是在用最原始的工具解决一些非常棘手的技术问题,是对客户出现意外情况的一种补救措施,它对机构的设备、管理、人员技术素质和职业道德水准有很高的要求,忽视任何一个问题都有可能给客户带来进一步的损失,从我的了解来看目前国内的数据恢复行业的状况是令人担忧的。
首先,我们说说设备,从各种数据恢复机构的网站上看,国内似乎拥有国际最先进的设备,几乎个个机构都有100级的无尘设备,拥有全套的开盘设备,甚至电脑市场的一个摊档就声称有读盘机,能处理任何的硬件故障,因为只要拆出盘片就能将数据读出来;但仔细看看网页就会发现,大多数声称拥有无尘设备的机构都是盗用国内外相关机构的网页图片,或者是利用客户不了解无尘设备知识的情况,将一个根本就没有空气过滤系统的房间或玻璃箱样的东西声称为无尘设备,更有甚者,用绘图软件画个模糊的图像也说是无尘工作间,这些机构要么是在普通的工作环境下开盘,要么又将客户的介质交给另一家声称拥有无尘设备的机构去处理,由于部分硬盘故障的确在普通环境下打开盘体处理能够成功,所以这些机构就这样不负责任地处理,实际上由此给更多的客户带来了不可估量的损失;从我的调查来看,国内真正拥有1000级无尘室又对外开展数据恢复服务的机构寥寥无几,即使是拥有能满足开盘要求的无尘工作台的机构也没几家 (就不要提100级的无尘室了,数据恢复没必要,它的建设和运营成本也受不了),还有机构声称可以借用硬盘生产厂的无尘厂房开盘,这更是不可能,那么大一个厂房,要满足生产硬盘的技术要求,需要连续24小时开机,头一天还不能工作,它的电费就不是数据恢复的利润能负担得起的。
人员的情况也不容乐观,看看网上售卖的那些中文的资料价格和需求量以及汉化软件的下载量就知道,如果算上电脑市场那些摊档的话,国内数据恢复从业人员能看懂英文设备说明书的比例都不容乐观,更不要说阅读相关的英文技术资料了,大多数的机构就是从网上下载几个数据恢复的软件(有的还一定得汉化的)就开业了,只要电脑能认盘,就用软件搜,也不认真分析数据丢失的原因,殊不知,有些数据丢失的情况是很复杂的,这样盲目地用软件让硬盘长期工作,不但不能让客户得到满意的结果还会带来进一步的损坏;至于有些机构声称的研究能力,当然,的确有极少数的机构拥有进行深层技术研究所必须的专业人员和设备,但大多数是靠道听途说的所谓经验和秘籍在工作的,这特别表现在需要开盘的数据恢复方面,连最起码的符合要求的无尘设备都没有,研究从何而来;另外,有的机构声称的研究方向可能令全球的磁力学家汗颜,实际上,只要认真查查国内外的有关的技术文章就知道,他们声称的研究课题根本就不可能在研究,因为那样的研究就连国外的磁力学专家也未必有条件去做,之所以这样写,不过是想扩大影响而已,对机构技术的提高是不会有任何帮助的。
再来说说数据恢复的成功率的问题,国内的数据恢复机构的广告能力的确让人佩服,我看到的最高的数据恢复成功率居然高达99.9%,开盘的数据恢复成功率也高达90%,这可能是世界上成功率最高的了,如果真有这样的机构,不要说在国内,国外的情报机构恐怕要千方百计地网罗这样的人才,实际的情况呢,真正能做到总体的成功率80%已经不容易了,估计很多的机构连50%也达不到,剩下本应该能恢复的30%完全因为他们的二次损坏导致客户要付出更大的代价甚至完全无法恢复;至于开盘成功率,由于硬盘设计、生产和客观条件的原因,针对不同型号的硬盘约在30%到80%之间,有些型号的硬盘由于其固有的特点,出现故障后,盘片严重划伤的比例很高,我不知道他们怎么能读出数据,据我查阅的资料,就是国外的专业数据恢复机构对这类问题也没有很好的解决方法。
另外,数据恢复还涉及到为客户保密的问题,这需要从业机构从设备和管理上入手,同时从业人员也要有严格的道德约束,在这里就不作过多叙述了,希望出现意外的用户能找到真正对自己负责的数据恢复机构来完成自己所希望的工作。
问题4:数据恢复机构如何“销毁”您的数据?
看到这个标题,很多网友可能觉得不可思议,数据恢复机构不是帮客户恢复数据的吗?怎么“销毁”数据呢?请注意,我并不是说的正常的销毁数据,而是说的在我们求助数据恢复机构的过程中,数据恢复机构出于种种原因,他们所采取的措施并不会导致恢复您的重要数据的结果,恰恰相反,可能导致您的重要数据不可能再被恢复或者恢复的难度被人为加大的情况。
我们在搜索引擎中搜索一下数据恢复网页,您会看到,到处都是数据恢复权威、数据恢复专家等称号,您打一个数据恢复机构的电话,很多时候,人家还没听完您的故障描述,就可能很肯定地告诉您,您的数据恢复的可能性在他们那里是99%,等您真正送到那里,您却变成了那剩下的1% ,等您把存储媒体送到下一家数据恢复机构的时候,被告知已经不可能恢复了,这是为什么呢?当然有时是您的存储媒体或数据的确由于损坏的情况很严重,在现有的技术条件下确实不能恢复,但另一个跟让人遗憾的事实可能是第一个数据恢复机构由于技术、设备、职业道德或纯粹出于商业竞争的目的等原因,有意或无意的行为导致您的存储媒体或数据被进一步破坏了,由于目前数据恢复行业并没有说由于数据恢复机构本身的原因导致的进一步损坏需要赔偿(当然这个从技术上说没有可操作性),所以种种手段被不断上演,客户的数据彻底丢失,欲哭无泪。我们下面谈谈可能给您的数据带来“破坏”的种种情况。
一、不仔细了解客户关于故障发生的过程和现象的描述就动手。由于某些设备的故障情况可以从客户描述的故障发生过程和现象中推断,如果可能是磁头物理损坏等特别情况的话,盲目地通电检查有可能带来更严重的损坏(如磁头进一步划伤盘片等),甚至导致完全无法恢复。
二、没彻底搞清楚设备的工作原理,拿客户的设备做实验品。有关国内数据恢复的实际情况,我们在国内数据恢复市场初步印象中已经做过介绍,但出于商业利益的目的,不少数据恢复机构往往过分夸大其能力和经验,明知自己没有完成这个工作的条件,还是接下客户的设备拿来做实验,这样一来自己多了一个不花钱的实验机会,让竞争对手少了一个机会,同时万一成功了,自己还能有一笔收入;这主要表现在RAID的数据恢复方面,由于大多数的机构不可能投资这么大一笔钱去进行有关的试验、研究,如是客户的设备就成了最好的试验品,拿到手以后最常见的操作是重建RAID,客户的数据被恢复回来的可能性是可想而知的。
三、只要认盘就用软件来恢复,不仔细分析导致数据丢失或设备故障的原因。有很多时候,一个能被正确识别的盘的数据丢失可能是由于该盘长期处于硬件不稳定工作状态导致的,这时再用软件强行让它工作进行数据恢复,能得到满意结果的可能性很小,大多数情况下会导致硬件的进一步损坏甚至不能被正确识别,数据恢复的难度必然增大。
四、盘不转就换板,不能解决的时候,有意或无意换掉客户的电路板。由于有相当多型号的硬盘的电路板上有记忆该硬盘的专有参数的芯片,丢失了这个芯片而该型号的盘又没有合适的设备重写这部分信息的话,这个盘的数据恢复的可能性就没有了。
五、动手能力太差,焊接的水平不过关。这同样发生在第四条所说的硬盘上,由于焊接时的温度、时间等的控制不好导致关键芯片损坏,结果是一样的。可能大多数人认为焊接可能是维修中最简单的活,实际上现在需要焊接的大多是SMT芯片,要用手工焊到厂家用专用设备才能做到的水平并不是一件很容易的事,而且在关键器件的焊接上必须保证做到100%成功,对于一个负责任的技术人员来说,在心理上本身就有压力。
六、乱写固件。由于固件中记忆了硬盘的坏道表,而现在的大容量硬盘的坏道表有多达数千甚至上万的坏道数据记录,如果该数据及可能能恢复坏道表的相关数据被破坏,那么这个硬盘的数据被正确恢复的可能性微乎其微;同时象写错了不同磁头数的硬盘固件等情况有可能导致数据彻底不能恢复。
七、在没有无尘设备的情况下开盘。当然有一些的确成功了,但如果统计一下的话,绝对是没有成功的要占大多数;由于在没有无尘设备的情况下开盘,不可避免地会有大量不同大小的灰尘进入盘体,即使盘能正常工作,也有可能由于这些灰尘引起的坏道导致重要数据恢复不正确,如果失败的话就更惨,由于清洗硬盘盘片需要用到特殊的清洗剂,这种清洗剂是限制进口的,国家有严格的规定,数据恢复机构是不可能有这种清洗剂的,更何况还涉及到其它的技术问题;同时,更换盘体内的零件并不像人们想象的那样拧上就好的,由于硬盘各个零件之间的配合机械精度要求很高,除了选择合适的备件外,还需要进行调节,这对操作的技术人员本身就是一个挑战,在普通的环境下进行这项工作,对数据可能带来灾难性的影响;而且像磁头损坏等情况往往伴随着固件的损坏,一个内部有灰尘而各零件之间的配合又没有调节好的盘体,成功修复固件的概率是很低的。
八、恢复不成功,给硬盘设置密码。当然这是针对盘能正确识别的情况,有些数据恢复机构为了不让竞争对手恢复他们恢复不了的数据,给硬盘设置密码;目前虽然有技术能解开部分型号的硬盘的密码,但不能做到解开所有型号硬盘的密码,这招的结果可想而之。
九、恢复不成功,将硬盘填0或低格。这同样是针对上述的情况,目的也一样,结果就要严重得多,因为已经不可能恢复了。
十、恢复不成功,将硬盘进一步破坏或调换。基于第八条的原因,同时可能发现您的盘体有利用价值,就拿一个没什么利用价值的同型盘交换,换盘的标签早就不是什么高技术活了
来自无忧存储BBS
2. 电脑硬盘是如何记录资料的
硬磁盘的存贮原理
硬磁盘是一种磁表面存储器,其记录信息的过程即是电磁信息的转换过程,它是通过磁头和磁记录介质(盘片)共同实现的。
写过程就是把要记录的数据序列经过写电路形成写电流,写电流经过写线圈,产生与数据相对应的磁场,磁化磁头缝隙下的磁介质层,完成“电_磁”转换。当磁盘在磁头下作恒速运动时,就将在盘片表面“刻”下一串与输入电脉冲序列相应的小的磁化单元,从而完成了“写入”过程。
在“读出”信息时,盘片在磁头下方运动,磁头线圈将切割磁盘表面磁化单元的磁力线,在磁头线圈内产生相应的感应电势信号,该信号经过读电路放大和处理就还原写入的脉冲序列,完成了“磁_电”转换,实现了“读出”过程。
早期的磁表面存储器在记录二进制数据序列时,直接按数据序列的磁化状态作记录,不作任何编码。这种非编码的磁记录方式的存储密度、存取速度都很低,可靠性也很差。随着磁表面存储技术的发展,普遍采用了编码磁记录方式。目前,磁记录的编码方式有若干种,主要有FM、MFM、RLL三种编码方式。
3. 光存储系统的光存储系统结构
光存储系统由编解码系统(Encoder&Decoder),读写信道(Channel),均衡器(Equalizer)和信号检测器(Detector)组成。其中,CD、DVD等光存储技术普遍使用RLL(d,k)编码(RLL,RunLengthLimitedCode游程长度受限码),在通过读写信道之后使用均衡器(Equalizer)消除ISI(InterSymbolInterference,码间干扰),然后经过检测编码和解码后得到原始数据。
由前面的理论分析,使用RLL(1,7)编解码,Braat-Hopkins信道模型,MMSE均衡器,使用Viterbi算法作为检测器(Detector)构建了和CD/DVD存储系统相符合的光存储系统模型。
4. 请教CD达人!翻录问题
本文是《有多少错误可以忍耐?CD与DVD光盘质量深入探讨》专题的一部分
可以说,CD光盘是人类信息化历史上的一个重要的突破。CD最早于1982年10月份诞生,虽然距今已经有20多年的历史,但它的相关设计在今天看来,仍是非常先进的,而且生命力仍然旺盛,即使是在DVD日益盛行的今天,也是重要的数据载体(媒介)。
要想了解CD光盘的纠错原理,就不能不先了解CD光盘的数据结构,确切的说就是CD光盘上数据的编码原理,它几乎囊括了当时最先进的编码技术,DVD与之相比,也并没有本质的变化。
CD光盘最早的产品是CD-Audio,其技术规范被称为红皮书(Red Book),应用于唱片领域,所以即使有了日后的其他扩展规范,也都是以它为基础制定的。
小资料:CD光盘的规范种类
CD光盘的规范被业界以不同颜色的Book来区分,目前共有以下几种:
CD01.jpg
除此之外,还有两个从黄皮书和绿皮书扩展出来的规范,它们分别是Multisession CD和Photo CD,索尼与飞利浦(CD的发明者)并没有给它们单独规定颜色。
在 CD光盘中,数据的最小的可访问存储单位是Block(块),在CD-ROM规范中则称之为Sector(扇区)。在Red Book规范中规定,它们由若干个子块组成,这个子块就是比较难于理解的帧(Frame)。什么叫帧呢?我们可以理解为CD光盘编码的单位。从下面这张CD光盘的数据流程图中,我们可以了解帧与块的关系和概念。
CD光盘的数据流程,以CD-Audio为例(点击放大)
我们现在可以反向的来理解CD-Audio的数据结构的设计原理。由于CD-Audio分为左右立体声道,每个声道的取样精度为16bit,取样频率为 44.1KHz,也就是说每秒取样44100次。CD-Audio规定,每一秒钟所读取的块数为75个,每个块又包含98个帧,那么采样数分摊下来是多少呢?44100÷75÷98=6,也就是说每一帧的取样次数为6次,每次两个声道,每声道的取样精度为16bit,因此一帧的容量就是 6×2×16=192bit=24字节。这就是一帧数据为什么是24字节的来历(请注意图中红圈的部分,那就是决定CD光盘纠错的重要部分,也将是下文中着重介绍的内容)。
我们现在知道了CD光盘一个块的容量就是2352字节,这也是所有CD规范的通用块容量。但是,后来出现的CD-ROM规范中则将扇区的内部设计进行了更改,
CD- ROM的几种扇区格式(点击放大):Mode 1就是我们常用的CD-ROM电脑数据光盘的格式,Mode 2则是CD-I、VCD、CD-ROM XA 等光盘的格式(其中Form 1也是电脑数据光盘格式)。其中ECC代表额外的错误纠正码,EDC为错误检测码(CRC校验)
注意,上图只是扇区(块)的格式图,不要将它与上面的CD数据流程图弄混了,尤其是ECC部分,与图1中的“校验”是两码事,这一点我们将在下文会进一步讲到。
CD光盘的编码与流程
CD光盘使用了两种编码来分别保证光盘的刻录质量,一个是从信息的逻辑正确性上保证,一个是从物理刻录的通道脉冲的识别可靠性上保证。它们分别是CIRC编码与EFM调制编码。
CIRC 的全称是交叉交错理德-所罗门编码(Cross Interleaved Read-Solomon Code),它的主旨是除了增加二维纠错编码外,还将源数据打散,根据一定的规则进行扰频和交错编码,使数据相互交叉交错,从而进一步提高纠错的能力,因为这样一来用户数据的错误将很难连续起来,有利于提高整体的纠错能力。
点击查看大图
我们现在再来看看上面这张CD数据流程图(点击放大),图中的编号就是CD刻录时的数据生成的过程。
第一步首先生成一个帧的原始数据,24字节,我们可以称之为初始帧(在相关标准中则叫Frame-1,简称F1)
第二步就是加入CIRC编码,一共8个字节,我们可以称之为校验帧(在相关标准中则叫Frame-2,简称F2),总字节数为32个。我们常说的,所谓的C1与C2纠错码就是在这一阶段加进去的,C1与C2的C就是CIRC编码的缩写。
第三步就是加入控制码,一个字节,我们可以称之为数据帧(在相关标准中则叫Frame-3,简称F3),此时帧的容量为33字节。
之后每个F3帧再加入3个字节的同步信息码就成为了最终用于刻录的帧,总容量为36字节。最后经过EFM调制,基本上是以每字节8bit转换成每字节17 bit的方式生成最终的信道脉冲(Channel bit)以控制刻录激光的开与关。
什么是EFM编码呢?就是Eight to Fourteen Molation的缩写,即8至14调制。为什么会使用这样的编码对源数据进行“修改”呢?这还要从光盘的读取原理说起。
光盘上的凹坑与平面并不直接代表0和1
光盘的读取是根据反射激光的强弱来进行逻辑1与0的分辨,但激光反射功率的强与弱并不直接代表1或0。反射功率强弱的突变点,也就是反射电平的翻转点,将被判断为逻辑值1,长时间的凹坑与平面则都是逻辑值0。
这样一来,如果是连续的1,那么就意味着凹坑与平面要突变多次,会占用更多的刻录空间,从而将影响有效的数据容积(或者说是信息量),而若以电平的高低来代表1和0,如果连续的0或1很长,又很难判断有多少个1和0,0与1的转变也较难分辨,所以必须要加以一定的规则限制。这个规则可以借助某种编码方式来禁止连续的1,并且又能把连续的0的长度限制在某种范围之内以利于识别,这就是所谓的“游程限制(RLL,Run Length Limited)编码规则”。
EFM就是这样的一种专用于信息记录的信道调制编码,它将原始数据重新进行编排,以保证不会有连续的1出现,而连续的0则被控制在2至10 个之间,可以表示为RLL(2,10)。也就是说,光盘上的信息中,两个逻辑1之间,最多有连续10个0,最少要有连续两个0。这样,有了相应的规则后,再配合时钟计时信息(每个信道脉冲的时间长度),就可以准确的分辨出数据了。需要指出的是,当8bit数据重新编成14bit数据后,两个14bit代码之间则还要符合RLL(2,10)的要求,因此还要根据相邻14bit代码的情况加入3bit的合并码(Merging bit),从而使最终的编码长度变为17bit。
EFM调制编码示意图,为了保证两个14位编码之间仍符合RLL(2,10)的要求又加入了3位合并码,因此EFM其实是8至17编码
了解了CIRC与EFM在CD数据刻录中的作用,就不难理解与之相关的CD刻录质量标准的含义,下面我们就将深入介绍有关CD光盘的C1与C2编码与纠错标准。而与EFM相关的就是我们常常能听到“高手”们讨论的Jitter,将在本专题后面的章节详细讲述。
CIRC编码流程
上文已经讲过,每个24字节的原始数据帧都要附加上8字节的校验码以保证帧数据的可靠性,而这个校验码则分为两个步骤来生成,我们来具体看一下。
点击查看大图
CIRC编码流程图(点击放大),图出的W12代表组成一个F1帧的12个字(16bit),n代表F1帧的编号,A、B代表组成一个字的两个字节(8bit)
第一步:交叉交错后生成C2校验码
在介绍CD数据生成过程的时候,我们知道CIRC编码处于F2生成阶段,因此要先导入F1原始数据帧,也就是24字节。要知道,之所以称为CIRC编码,是因为在编码的过程中,源数据有交叉和交错的过程。首先,源数据要按两个字(图中的A、B)一组分成6个大组,偶数组进行两个字节的延迟,从而形成扰频交错编码。
这里要解释一下所谓的延迟,两个字节的延迟意味着延迟两帧。也就是说,当进行交错之后,偶数组已经不再是原来F1帧中的源数据,而是当前帧的前两帧中的偶数组数据(相对于前两帧,当前帧就意味着两个字节的延迟),原始的偶数组将在后两帧的交错编码中出现。另外,从图中可以看出,字的顺序在交错后发生了很大不同,这种前后帧数据交叉并且顺序交错的过程就是扰频交错编码。
此后,扰频交错后生成的新数据进入C2编码器生成Q校验码。Q校验码为4字节,最后生成的新数据为28字节,因此C2也被称为(28,24)编码,意思是指输入24个字节,输出28个字节。
由此可见,C2编码并是针对原始F1帧的数据进行,但为什么要进行如此复杂的交叉交错的编码呢?这是为了保证纠错效率而设计,下文将有更详细的讲述。
第二步:字节依次延迟4帧后生成C1编码
将 C2编码完成后,将进行大规模的字节延迟交错编码,执行这个操作的就是延迟线,延迟单位为4字节,也就是说4帧,操作单位是每个字中的单个字节。这个要怎么理解呢?比方说,C2编码后的的第一个字节不延迟,第二个字节则将延后4帧,第三字节将延后8帧……如此反复直至第28个字节,将被延后108帧。也就是说,C2编码后的28个字节,将被有规律的分散到109个帧中(第一个字节延后0帧,加上最后一个字节延后108帧,一共是109帧)。
延迟操作之后则进入了C1编码器,显然此时的数据与原始的F1帧数据差别更大了,C1编码器将在28个字节的基础上再生成4个字节的P校验码,从而完成了建立了 F2帧的操作。由于输入28个字节,输出32个字节,因此C1也被称为(32,28)编码。从这个过程中不难看出,C1编码的对象中包含了C2编码(虽然是交错延后的),也承担了对Q校验码进行保护的任务。
现在的F2帧已经与F1帧有了很大不同,如果帧编号为n,那么F2-n帧中只有一个字节来自于F1-n帧。所以,严格的讲,C1、C2并不是对F1帧的校验编码,因为从C2编码开始,对象就已经不再是F1帧中的原始数据。这样(交叉交错)的目的就在于防止一帧中出现连续大量的错误而无法纠正,如果原原本本地按原始F1——C2编码——C1编码的过程生成校验码,将是非常脆弱的,如果这一帧的24 个字节中出现连续大量的错误码,仅凭CIRC的设计,纠错能力仍然有限。若将源数据分散到不同的数据帧中,然后再进行校验,将大大提供单个数据帧的纠错能力。理论上即使24个字节原始数据全有问题,但由于每个字节最终分布在间距为4的28个帧(跨度为109帧)中,也有可能被完全修复。显然,如果不进行交叉交错的话,这种可能性是不会存在的。
好啦,当我们了解了CD光盘的CIRC编码过程之后,就不难理解CD的解码过程,而解码过程就涉及到了纠错,纠错的效果将体现刻录的质量,或者说是驱动器的读盘能力。
CD光盘中的C1与C2解码流程图(点击放大)
在解码时,其实就是CIRC解码的反过程,原先C2先编码,现在是C1先解码,原先延迟的,解码时不延迟,而原先不延迟的则会根据规则进行延迟以反交叉交错进行数据还原。
从流程图中,我们可以发现,C1、C2解码是必经的过程,而并不像某些文章中所说的,C1应付不了的错误才会交给C2解码。事实上,不管C1解码过程中有没有错误,都要C2解码。从编码过程中,我们可以知道,两者所解码的对象完全不同,这也是为什么C1纠正不了的错误,C2反而能纠正,其实就是这个道理,而并不是说C2的纠错级别比C1高。
言归正传,C1与C2的纠错标准是怎样的呢?这里,业界使用了错误等级来对C1与C2解码进行了规定,可简写为En1和En2,其中E代表Error(错误),n代表出现错误的次数,1代表一次C1解码过程,2代表一次C2解码过程。
如果在一次C1解码中,发现了一个错误字节,即为E11,如果发现了两个错误字节即为E21,如果发现3个或更多的错误字节即为E31。其中,E11与 E21都可以在C1阶段纠正,而E31则不行。但是,不要忘了延迟交错的设计,当前帧(F2)的错误字节是分散在跨度为109帧的28个帧中,经过反延迟后,这些错误的字节肯定不会再在同一帧中了,所以通过C2编码仍然有可能被纠正。此时,如果在一次C2解码中,发现了一个错误字节,即为E12,如果发现了两个错误字节即为E22,如果发现了3个或更多的错误字节,即为E32。与E31一样,E32也不能在C2解码过程被纠正,由于C2是最后一个CIRC 解码器,所以E32的出现就意味着出现了一个不可修复的错误帧,因此它又称为CU(C-Uncorrectable,不可修复),对于CD来说,CU是绝对要尽量避免出现的。
在CD测试系统中,专门为C1与C2设置了状态标记(Flag),通过它们即可知道当前的纠错状态:
通过4个C1、C2状态标记来表示纠错状态表
有关CD光盘纠错的业界标准
在业界标准中,并没有对C2错误水平进行明确规定,而是更多的对C1错误率进行了限定,这是因为如果C2错误肯定会有C1错误,但如果有C1错误,不见得会有C2错误。
在 CD-ROM的规范中规定,随机错误的标准是,每10秒钟出现C1解码的错误(E11、E21或E31)帧数不超过3%。我们可以算一下,按一倍速1秒读取75个扇区,每扇区98个帧计算,10秒钟里共有10×75×98=73500个帧,3%就是2205个帧,约为平均一秒220个帧。由于一个坏帧就意味着一个坏块(扇区),因此也可以认为块错误率(BLER,BLock Error Rate)为每秒220个,我们可以理解为1秒钟C1错误的总合(E11+E21+E31)不能超过220个。
对于连续的突发性错误,CD-ROM规范中规定,当在C1解码时出现E31,则视为不可修复的帧错误,连续出现C1不可修复错误的帧要少于7个。
这里需要指出的是,BLER并不区分哪些块是可以被修复的,哪些块是不能被修复的,因为这里仍包括E31这一C1解码器所不能修复的错误。所以低的BLER 并不能说明光盘质量的好坏。比如一张光盘的BLER=210,但没有E31错误,而另一张光盘的BLER=50,但全是E31错误,那么完全可以说后者的质量不及前者,虽然它的BLER更低,但有着E32的隐患。
小常识:关于CD光盘的C3解码
在很多相关的文章中,大都提到CD光盘还会有一个C3解码的过程,但这并不确切。
在上文中,我们已经讲到CD光盘有多种规范,而各规范中的扇区格式并不相同,有的有ECC校验码,有的没有ECC校验码,而这个ECC校验就是所谓的C3解码,可见并不是每个CD光盘规格都具备。
严格的说,扇区的ECC校验并不是C3解码,而是被称为RSPC(Reed-Solomon ProdUCt-like Code,理德-所罗门乘积编码)解码。注意,CIRC是给每一帧进行校验的编码,而RSPC是给数据扇区进行校验的编码,两者不要混淆。我们可以这样理解:每个扇区——RSPC编码—— 分成98个帧——每个帧再进行CIRC编码——生成最后的 刻录数据。
在支持CD-ROM/-R/-RW的驱动器中,也都会有相应的 RSPC解码器,由于RSPC的存在,因此即使在C2解码中出现了E32错误,仍有可能在RSPC解码过程中进行修正。这也是为什么CD- ROM(Mode 1和Mode 2-Form 1)是针对计算机数据存储而开发的原因,保证数据文件的准确性远比保证歌曲数据的准确性更重要。如果是普通的CD-Audio播放机,则不会有RSPC解码器(Decoder)。
5. 全面的硬盘知识
硬盘,英文“hard-disk”简称HD 。是一种储存量巨大的设备,作用是储存计算机运行时需要的数据。
体现硬盘好坏的主要参数为传输率,其次的为转速、单片容量、寻道时间、缓存、噪音和S.M.A.R.T.
1956年IBM公司制造出世界上第一块硬盘350 RAMAC(Random Access Method of Accounting and Control),它的数据为:容量5MB、盘片直径为24英寸、盘片数为50片、重量上百公斤。盘片上有一层磁性物质,被轴带着旋转,有磁头移动着存储数据,实现了随机存取。
1970年磁盘诞生
1973年IBM公司制造出了一台640MB的硬盘、第一次采用“温彻斯特”技术,是现在硬盘的开端,因为磁头悬浮在盘片上方,所以镀磁的盘片在密封的硬盘里可以飞速的旋转,但有好几十公斤重。
1975年Soft-adjacent layer(软接近层)专利的MR磁头结构产生
1979年IBM发明了薄膜磁头,这意味着硬盘可以变的很小,速度可以更快,同体积下硬盘可以更大。
1979年IBM 3370诞生,它是第一款采用thin-film感应磁头及Run-Length-Limited(RLL)编码配置的硬盘,"2-7"RLL编码将能减小硬盘错误
1986年IBM 9332诞生,它是第一款使用更高效的1-7 run-length-limited(RLL)代码的硬盘。
1989年第一代MR磁头出现
1991年IBM磁阻MR(Magneto Resistive)磁头硬盘出现。带动了一个G的硬盘也出现。磁阻磁头对信号变化相当敏感,所以盘片的存储密度可以得到几十倍的提高。意味着硬盘的容量可以作的更大。意味着硬盘进入了G级时代。
1993年GMR(巨磁阻磁头技术)推出,这使硬盘的存储密度又上了一个台阶。
认识硬盘
硬盘是电脑中的重要部件,大家所安装的操作系统(如:Windows 9x、Windows 2k…)及所有的应用软件(如:Dreamwaver、Flash、Photoshop…)等都是位于硬盘中,或许你没感觉到吧!但硬盘确实非常重要,至少目前它还是我们存储数据的主要场所,那你对硬盘究竟了解多少了?可能你对她一窍不通,不过没关系,请见下文。
一、硬盘的历史与发展
从第一块硬盘RAMAC的产生到现在单碟容量高达15GB多的硬盘,硬盘也经历了几代的发展,下面就介绍一下其历史及发展。
1.1956年9月,IBM的一个工程小组向世界展示了第一台磁盘存储系统IBM 350 RAMAC(Random Access Method of Accounting and Control),其磁头可以直接移动到盘片上的任何一块存储区域,从而成功地实现了随机存储,这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘,这些盘片表面涂有一层磁性物质,它们被叠起来固定在一起,绕着同一个轴旋转。此款RAMAC在那时主要用于飞机预约、自动银行、医学诊断及太空领域内。
2.1968年IBM公司首次提出“温彻斯特/Winchester”技术,探讨对硬盘技术做重大改造的可能性。“温彻斯特”技术的精隋是:“密封、固定并高速旋转的镀磁盘片,磁头沿盘片径向移动,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触”,这也是现代绝大多数硬盘的原型。
3.1973年IBM公司制造出第一台采用“温彻期特”技术的硬盘,从此硬盘技术的发展有了正确的结构基础。
4.1979年,IBM再次发明了薄膜磁头,为进一步减小硬盘体积、增大容量、提高读写速度提供了可能。
5.80年代末期IBM对硬盘发展的又一项重大贡献,即发明了MR(Magneto Resistive)磁阻,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往20MB每英寸提高了数十倍。
6.1991年IBM生产的3.5英寸的硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此硬盘容量开始进入了GB数量级。
7.1999年9月7日,Maxtor宣布了首块单碟容量高达10.2GB的ATA硬盘,从而把硬盘的容量引入了一个新里程碑。
8.2000年2月23日,希捷发布了转速高达15,000RPM的Cheetah X15系列硬盘,其平均寻道时间只有3.9ms,这可算是目前世界上最快的硬盘了,同时它也是到目前为止转速最高的硬盘;其性能相当于阅读一整部Shakespeare只花.15秒。此系列产品的内部数据传输率高达48MB/s,数据缓存为4~16MB,支持Ultra160/m SCSI及Fibre Channel(光纤通道) ,这将硬盘外部数据传输率提高到了160MB~200MB/s。总得来说,希捷的此款("積架")Cheetah X15系列将硬盘的性能提高到了一个新的里程碑。
9.2000年3月16日,硬盘领域又有新突破,第一款“玻璃硬盘”问世,这就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此两款硬盘均使用玻璃取代传统的铝作为盘片材料,这能为硬盘带来更大的平滑性及更高的坚固性。另外玻璃材料在高转速时具有更高的稳定性。此外Deskstar 75GXP系列产品的最高容量达75GB,这是目前最大容量的硬盘,而Deskstar 40GV的数据存储密度则高达14.3 十亿数据位/每平方英寸,这再次涮新数据存储密度世界记录。
二、硬盘分类
目前的硬盘产品内部盘片有:5.25,3.5,2.5和1.8英寸(后两种常用于笔记本及部分袖珍精密仪器中,现在台式机中常用3.5英寸的盘片);如果按硬盘与电脑之间的数据接口,可分为两大类:IDE接口及SCSI接口硬盘两大阵营。
三、技术规格
目前台式机中硬盘的外形差不了多少,在技术规格上有几项重要的指标:
1.平均寻道时间(average seek time),指硬盘磁头移动到数据所在磁道时所用的时间,单位为毫秒(ms)。注意它与平均访问时间的差别,平均寻道时间当然是越小越好,现在选购硬盘时应该选择平均寻道时间低于9ms的产品。
2.平均潜伏期(average latency),指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,单位为毫秒(ms)。
3.道至道时间(single track seek),指磁头从一磁道转移至另一磁道的时间,单位为毫秒(ms)。
4.全程访问时间(max full seek),指磁头开始移动直到最后找到所需要的数据块所用的全部时间,单位为毫秒(ms)。
5.平均访问时间(average access),指磁头找到指定数据的平均时间,单位为毫秒。通常是平均寻道时间和平均潜伏时间之和。注意:现在不少硬盘广告之中所说的平均访问时间大部分都是用平均寻道时间所代替的。
6.最大内部数据传输率(internal data transfer rate),也叫持续数据传输率(sustained transfer rate),单位Mb/S(注意与MB/S之间的差别)。它指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。注意,在这项指标中常常使用Mb/S或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/S(兆字节/秒),就必须将Mbps数据除以8(一字节8位数)。例如,WD36400硬盘给出的最大内部数据传输率为131Mbps,但如果按MB/S计算就只有16.37MB/s(131/8)。
7.外部数据传输率:通称突发数据传输率(burst data transfer rate),指从硬盘缓冲区读取数据的速率,在广告或硬盘特性表中常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用的是Ultra ATA/66,它的最大外部数据率即为66.7MB/s,而在SCSI硬盘中,采用最新的Ultra 160/m SCSI接口标准,其数据传输率可达160MB/s,采用Fibra Channel(光纤通道),最大外部数据传输将可达200MB/s。在广告中我们有时能看到说双Ultra 160/m SCSI的接口,这理论上将最大外部数据传输率提高到了320MB/s,但目前好像还没有结合有此接口的产品推出。
8.主轴转速:是指硬盘内主轴的转动速度,目前ATA(IDE)硬盘的主轴转速一般为5400~7200rpm,主流硬盘的转速为7200RPM,至于SCSI硬盘的主轴转速可达一般为7200~10,000RPM,而最高转速的SCSI硬盘转速高达15,000RPM(即希捷“積架X15”系列硬盘)。
9.数据缓存:指在硬盘内部的高速存储器:目前硬盘的高速缓存一般为512KB~2MB,目前主流ATA硬盘的数据缓存应该为2MB,而在SCSI硬盘中最高的数据缓存现在已经达到了16MB。对于大数据缓存的硬盘在存取零散文件时具有很大的优势。
10.硬盘表面温度:它是指硬盘工作时产生的温度使硬盘密封壳温度上升情况。这项指标厂家并不提供,一般只能在各种媒体的测试数据中看到。硬盘工作时产生的温度过高将影响薄膜式磁头(包括GMR磁头)的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。如果对于高转速的SCSI硬盘一般来说应该加一个硬盘冷却装置,这样硬盘的工作稳定性才能得到保障。
11.MTBF(连续无故障时间):它指硬盘从开始运行到出现故障的最长时间,单位是小时。一般硬盘的MTBF至少在30000或40000小时。这项指标在一般的产品广告或常见的技术特性表中并不提供,需要时可专门上网到具体生产该款硬盘的公司网址中查询。
四、接口标准
ATA接口,这是目前台式机硬盘中普通采用的接口类型。
ST-506/412接口:
这是希捷开发的一种硬盘接口,首先使用这种接口的硬盘为希捷的ST-506及ST-412。ST-506接口使用起来相当简便,它不需要任何特殊的电缆及接头,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了,采用该接口的老硬盘容量多数都低于200MB。早期IBM PC/XT和PC/AT机器使用的硬盘就是ST-506/412硬盘或称MFM硬盘,MFM(Modified Frequency Molation)是指一种编码方案 。
ESDI接口:
即(Enhanced Small Drive Interface)接口,它是迈拓公司于1983年开发的。其特点是将编解码器放在硬盘本身之中,而不是在控制卡上,理论传输速度是前面所述的ST-506的2…4倍,一般可达到10Mbps。但其成本较高,与后来产生的IDE接口相比无优势可言,因此在九十年代后就补淘汰了
IDE及EIDE接口:
IDE(Integrated Drive Electronics)的本意实际上是指把控制器与盘体集成在一起的硬盘驱动器,我们常说的IDE接口,也叫ATA(Advanced Technology Attachment)接口,现在PC机使用的硬盘大多数都是IDE兼容的,只需用一根电缆将它们与主板或接口卡连起来就可以了。 把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容,对用户而言,硬盘安装起来也更为方便。
ATA-1(IDE):
ATA是最早的IDE标准的正式名称,IDE实际上是指连在硬盘接口的硬盘本身。ATA在主板上有一个插口,支持一个主设备和一个从设备,每个设备的最大容量为504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共规定了3种PIO模式和4种DMA模式(没有得到实际应用),要升级为ATA-2,你需要安装一个EIDE适配卡。
ATA-2(EIDE Enhanced IDE/Fast ATA):
这是对ATA-1的扩展,它增加了2种PIO和2种DMA模式,把最高传输率提高到了16.7MB/s,同时引进了LBA地址转换方式,突破了老BIOS固有504MB的限制,支持最高可达8.1GB的硬盘。如你的电脑支持ATA-2,则可以在CMOS设置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的设置。其两个插口分别可以连接一个主设备和一个从设置,从而可以支持四个设备,两个插口也分为主插口和从插口。通常可将最快的硬盘和CD—ROM放置在主插口上,而将次要一些的设备放在从插口上,这种放置方式对于486及早期的Pentium电脑是必要的,这样可以使主插口连在快速的PCI总线上,而从插口连在较慢的ISA总线上。
ATA-3(FastATA-2):
这个版本支持PIO-4,没有增加更高速度的工作模式(即仍为16.7MB/s),但引入了简单的密码保护的安全方案,对电源管理方案进行了修改,引入了S.M.A.R.T(Self-Monitoring,Analysis and Reporting Technology,自监测、分析和报告技术)
ATA-4(UltraATA、UltraDMA、UltraDMA/33、UltraDMA/66):
这个新标准将PIO-4下的最大数据传输率提高了一倍,达到33MB/s,或更高的66MB/s。它还在总线占用上引入了新的技术,使用PC的DMA通道减少了CPU的处理负荷。要使用Ultra-ATA,需要一个空闲的PCI扩展槽,如果将UltraATA硬盘卡插在ISA扩展槽上,则该设备不可能达到其最大传输率,因为ISA总线的最大数据传输率只有8MB/s 。其中的Ultra ATA/66(即Ultra DMA/66)是目前主流桌面硬盘采用的接口类型,其支持最大外部数据传输率为66.7MB/s。
Serial ATA:
新的Serial ATA(即串行ATA),是英特尔公司在今年IDF(Intel Developer Forum,英特尔开发者论坛) 发布的将于下一代外设产品中采用的接口类型,就如其名所示,它以连续串行的方式传送资料,在同一时间点内只会有1位数据传输,此做法能减小接口的针脚数目,用四个针就完成了所有的工作(第1针发出、2针接收、3针供电、4针地线)。这样做法能降低电力消耗,减小发热量。最新的硬盘接口类型ATA-100就是Serial ATA是初始规格,它支持的最大外部数据传输率达100MB/s,上面介绍的那两款IBM Deskstar 75GXP及Deskstar 40GV就是第一次采用此ATA-100接口类型的产品。在2001年第二季度将推出Serial ATA 1x标准的产品,它能提高150MB/s的数据传输率。对于Serial ATA接口,一台电脑同时挂接两个硬盘就没有主、从盘之分了,各设备对电脑主机来说,都是Master,这样我们可省了不少跳线功夫。
SCSI接口:
SCSI就是指Small Computer System Interface(小型计算机系统接口),它最早研制于1979,原是为小型机的研制出的一种接口技术,但随着电脑技术的发展,现在它被完全移植到了普通PC上。现在的SCSI可以划分为SCSI-1和SCSI-2(SCSI Wide与SCSI Wind Fast),最新的为SCSI-3,不过SCSI-2是目前最流行的SCSI版本。 SCSI广泛应用于如:硬盘、光驱、ZIP、MO、扫描仪、磁带机、JAZ、打印机、光盘刻录机等设备上。它的优点非常多主要表现为以下几点:
1、适应面广; 使用SCSI,你所接的设备就可以超过15个,而所有这些设备只占用一个IRQ,这就可以避免IDE最大外挂15个外设的限制。
2、多任务;不像IDE,SCSI允许对一个设备传输数据的同时,另一个设备对其进行数据查找。这将在多任务操作系统如Linux、Windows NT中获得更高的性能。
3、宽带宽;在理论上,最快的SCSI总线有160MB/s的带宽,即Ultra 160/s SCSI;这意味着你的硬盘传输率最高将达160MB/s(当然这是理论上的,实际应用中可能会低一点)。
4、少CPU占用率
从最早的SCSI到现在Ultra 160/m SCSI,SCSI接口具有如下几个发展阶段
1、SCSI-1 —最早SCSI是于1979年由美国的Shugart公司(Seagate希捷公司的前身)制订的,并于1986年获得了ANSI(美国标准协会)承认的SASI(Shugart Associates System Interface施加特联合系统接口) ,这就是我们现在所指的SCSI -1,它的特点是,支持同步和异步SCSI外围设备;支持7台8位的外围设备最大数据传输速度为5MB/S;支持WORM外围设备。
2、SCSI-2 —90年代初(具体是1992年),SCSI发展到了SCSI-2,当时的SCSI-2 产品(通称为Fast SCSI)是能过提高同步传输时的频率使数据传输率提高为10MB/S,原本为8位的并行数据传输称为:Narrow SCSI;后来出现了16位的并行数据传输的WideSCSI,将其数据传输率提高到了20MB/S 。
3、SCSI-3 —1995年推出了SCSI-3,其俗称Ultra SCSI,全称为SCSI-3 Fast-20 Parallel Interface(数据传输率为20M/S)它采用了同步传输时钟频率提高到20MHZ以提高数据传输的技术,因此使用了16位传输的Wide模式时,数据传输即可达到40MB/s。其允许接口电缆的最大长度为1.5米。
4、1997年推出了Ultra 2 SCSI(Fast-40),其采用了LVD(Low Voltage Differential,低电平微分)传输模式,16位的Ultra2SCSI(LVD)接口的最高传输速率可达80MB/S,允许接口电缆的最长为12米,大大增加了设备的灵活性。
5、1998年9月更高的数据传输率的Ultra160/m SCSI(Wide下的Fast-80)规格正式公布,其最高数据传输率为160MB/s,这将给电脑系统带来更高的系统性能。
现有最流行的串行硬盘技术
随着INTEL的915平台的发布,最新的ICH6-M也进入了我们的视野。而ICH6除了在一些电源管理特性方面有所增强外,也正式引入了SATA(串行ATA,以下简称SATA)和PCI-E概念。对于笔记本来说,从它诞生的那天起就一直使用着PATA(并行ATA,以下简称PATA)来连接硬盘,SATA的出现无疑是一项硬盘接口的革命。而如今随着INTEL的积极推动,笔记本也开始迈入SATA的阵营。
关于SATA的优势,笔者相信诸位也都有了解。确实,比起PATA,SATA有着很多不可比拟的优势,而笔者将在本文中透过技术细节来多其进行分析。相信您读完本文后会对SATA有着更深入的了解。另外由于本文主要针对笔记本和台式机,所以诸如RAID等技术不在本文讨论范围之内。
串行通信和并行通信
再进行详细的介绍之前,我们先了解一下串行通信和并行通信的特点。
一般来说,串行通信一般由二根信号线和一根地线就可完成互相的信息的传送。如下图,我们看到设备A和设备B之间的信号交换仅用了两根信号线和一根地线就完成了。这样,在一个时钟内,二个bit的数据就会被传输(每个方向一个bit,全双工),如果能时钟频率足够高,那么数据的传输速度就会足够快。
如果为了节省成本,我们也可以只用一根信号线和一根地线连接。这样在一个时钟内只有一个bit被传输(半双工),我们也同样可以提高时钟频率来提升其速度。
而并行通信在本质上是和串行通信一样的。唯一的区别是并行通信依靠多条数据线在一个时钟周期里传送更多的bit。下图中,数据线已经不是一条或者是两条,而是多条。我们很容易知道,如果有8根数据线的话,在同一时钟周期内传送的的数据量是8bit。如果我们的数据线足够多的话,比如PCI总线,那一个周期内就可以传送32bit的数据。
在这里,笔者想提醒各位读者,对于一款产品来说,用最低的成本来满足带宽的需要,那就是成功的设计,而不会在意你是串行通信还是并行通信,也不会管你的传输技术是先进还是落后。
PATA接口的速度
我们知道,ATA-33的速度为33MB/S,ATA-100的速度是100MB/S。那这个速度是如何计算出来的呢?
首先,我们需要知道总线上的时钟频率,比如ATA-100是25MHz,PATA的并行数据线有16根,一次能传送16bit的数据。而ATA-66以上的规范为了降低总线本身的频率,PATA被设计成在时钟的上下沿都能传输数据(类似DDR的原理),使得在一个时钟周期内能传送32bit。
这样,我们很容易得出ATA-100的速度为:25M*16bit*2=800Mbps=100MByte/s。
PATA的局限性
在相同频率下,并行总线优于串行总线。随着当前硬盘的数据传输率越来越高,传统的并行ATA接口日益逐渐暴露出一些设计上的缺陷,其中最致命的莫过于并行线路的信号干扰问题。
那各信号线之间是如何干扰的呢?
1,首先是信号的反射现象。从南桥发出的PATA信号,通过扁长的信号线到达硬盘(在笔记本上对应的也有从南桥引出PATA接口,一直布线到硬盘的接口)。学过微波通信的读者肯定知道,信号在到达PATA硬盘后不可避免的会发生反弹,而反弹的信号必将叠加到当前正在被传输的信号上,导致传输中数据的完整性被破坏,引起接受端误判。
所以在实际的设计中,都必须要设计相应的电路来保证信号的完整性。
我们看到,从南桥发出的PATA信号一般都需要经过一个排阻才发送到PATA的设备。我们必须加上至少30个电阻(除了16根数据线,还有一些控制信号)才能有效的防止信号的反弹。而在硬盘内部,硬盘厂商会在里面接上终端电阻以防止引号反弹。这不仅对成本有所上升,也对PCB的布局也造成了困扰。
当然,信号反弹在任何高速电路里都会发生,在SATA里我们也会看到终端电阻,但因为SATA的数据线比PATA少很多,并且采用了差分信号传输,所以这个问题并不突出。
2,其次是信号的偏移问题
理论上,并行总线的数据线的长度应该是一致的。而在实际上,这点很难得到保证。信号线长度的不一致性会导致某个信号过快/过慢到达接受端,导致逻辑误判。不仅如此,导致信号延迟的原因还有很多,比如线路板上的分布电容、信号线在高频时产生的感抗等都会引起信号的延迟。
如图,在左侧南桥端我们发送的数据为[1,1,1,0],在发送到硬盘的过程中,第四个信号由于某种原因出现延迟,在判断时刻还没到达接受端。这样,接受端判断接受到的信号为[1,1,1,1],出现错误。由此也可看出,并行数据线越多,出现错误的概率也越大。
下图是SONY Z1的硬盘转接线,我们看到,设计师做了不少蛇行走线以满足PATA数据线的长度一致性要求。
我们可以很容易想象,信号的时钟越快,被判断信号判断的时间就越短,出现误判的可能性就越大。在较慢的总线上(上),允许数据信号和判断信号的时间误差为a,而在高速的总线上(下),允许误差为b。速度越快,允许的误差越小。这也是PATA的总线频率提升的局限性,而总线频率直接影响着硬盘传输速度。。。
3,还有是信号线间的干扰(串音干扰)
这种干扰几乎存在与任何电路。和信号偏移一样,串音干扰也是并行通信的通病。由于并行通信需要多条信号线并行走线(以满足长度、分布电容等参数的一致性),而串音干扰就是在这时候导致的。由于信号线在传输数据的过程中不停的以0,1间变换,导致其周边的磁场变化甚快。通过法拉第定律我们知道,磁场变化越快,切割磁力线的导线上的电压越大。这个电压将导致信号的变形,信号频率越高,干扰愈加严重,直至完全无法工作。串音干扰可以说这是对并行的PATA线路影响最大的不利因素,并且大大限制了线路的长度。
硬盘的恢复主要是靠备份,还有一些比较专业的恢复技术就是要专业学习的了.不过我不专业,现在最常用的就是GHOST,它可以备份任何一个盘付,并生成一个备份文件必要的时候可以用来恢复数据
现在市场上的主要几款硬盘就是迈托,西部数据(WD),希捷(ST),三星,东之,松下,还有最新的那个易拓保密硬盘