导航:首页 > 研究方法 > 检测矿产用到的分析方法

检测矿产用到的分析方法

发布时间:2022-12-14 02:19:54

① 矿物识别方法和工作流程

目前,矿物识别制图的方法是特征谱带识别和基于相似性测度的识别:①利用岩石矿物的特征谱带构造识别技术,该方法相对直观,简单可行,但是单一的特征往往造成岩石矿物的错误识别,其精度难以达到工程化应用的需求,同时对成像光谱数据的信噪比、光谱重建的精度要求较高;②从岩石矿物光谱的整体特征出发,与成像光谱视反射率数据进行整体匹配、拟合或构造模型进行分解,这也是目前研究的重点,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息,避免局部性特征(如单一特征构建的识别方法)造成识别的混淆,识别的精度高。

对于成像光谱上百个波段而言,数据量非常之大,尤其在目前无论是航空成像光谱数据,如AVIRIS、CASI、HyMap等,还是在轨的航天成像光谱数据,如Hyperion航带都普遍比较窄,一般在3~10km,给大面积应用带来很多不便,增加了大面积数据处理的难度,并使工作量在目前微机配置的条件下成倍增加。因此,无论是从岩石矿物光谱的局域特征还是整体特征开展对矿物的识别,在保证识别精度要求的条件下进行工程化的处理,必须探索新的技术流程。

在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:

(1)直接开展蚀变矿物的识别与信息提取:在对试验区岩石类型、构造、热液活动以及矿产综合研究的基础之上,提炼与矿化关系密切的蚀变矿物,利用标准库的光谱或野外实测光谱作为参考光谱。

(2)进行光谱域与特征域的转换,实现数据减维与数据压缩,降低工作量,提高工作效率:成像光谱数据波段上百,不同的航带宽度与记录长度使单次处理的数据量达1Gbytes,中间过渡文件单航带可达10Gbytes;在以前的处理中常常将航带分割成较小的区域进行处理后再进行拼接,利用MNF技术可以将整个光谱域空间转换到特征域空间,消除原有光谱向量间各分量之间的相关性,从而去掉信息量较少噪声较高的向量,使数据处理从成百的光谱域集中到去噪的特征域中进行,减低数据量,缩短数据处理时间,提高数据处理的效率。

(3)特征分离,增加不同矿物的可分性,提高矿物识别的精度:在成像光谱数据MNF变换并剔除噪声波段的特征域空间中,不同的波段被赋予了不同的物理或数学意义,地物的光谱特征在特征域发生分离,地物的细微特征得到放大,增加了数据的可分性。

4.4.2.1 光谱特征域转换

光谱分辨率的提高,一方面提高了数据的分类识别的精度以及应用能力,另一方面,增加了数据的容量,也使数据高冗余高相关。有效的数据压缩与特征提取势在必行。一般地,利用传统的主成分变换进行相应的变化,衍生出一系列的成像光谱数据压缩与特征提取方法,如MNF变换(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分块主成分变换(Jia et al.,1998)以及基于主成分的对应分析(Carr et al.,1999)等。空间自相关特征提取(Warner et al.,1997)、子空间投影(Harsanyi et al.,1994)和高维数据二阶特征分析(Lee et al.,1993;Haertel et al.,1999)也得到相应的重视。利用非线形的小波、分形特征(Qiu et al.,1999)也在研究之中。

主成分分析(PCA)是根据图像的统计特征确定变换矩阵对多维(多波段)图像进行正交线性变换,使变换后新的组分图像互不相关,并且把多个波段中有用信息尽可能地集中到少数几个组分图像中(图4-4-1)。一般地,随着主成分阶次的提高,信噪比逐渐减小。但在波段较多时并不完全符合这一规律。

为改善主成分在高光谱维中的数据处理能力,相应地利用最大噪声组分变换(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。该方法是利用图像的噪声组分矩阵(ΣNΣ-1)的特征向量对图像进行变换,使按特征值由大到小排序的变换分量所包含的噪声成分逐渐减小,而图像质量顺次提高。Σ为图像的总协方差矩阵,ΣN为图像噪声的协方差矩阵。MNF相当于所有波段噪声方差都相等时的主成分分析,因此可分为两步实现,第一步先将图像变换到一个新的坐标系统,使变换后图像噪声的协方差矩阵为单位阵;第二步再对变换后的图像施行主成分变换。此改进的算法称为“噪声调节主成分变换(NAPC)”。

对P波段的高光谱图像

Zi(x),i=1,2,…,p (4-4-1)

可以假设

Z(x)=S(x)+N(x) (4-4-2)

这里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分别为Z(x)中不相关的信息分量和噪声分量。因此,

Cov{Z(x)}=∑=∑S+∑N (4-4-3)

S和∑N分别为S(x)和N(x)的协方差矩阵。因此,可以定义第i波段噪声分量,

Var{Ni(x)}/Var{Zi(x)} (4-4-@4)

选择线形转换,MNF变换可以表示为

成像光谱岩矿识别方法技术研究和影响因素分析

在变换中,确保

成像光谱岩矿识别方法技术研究和影响因素分析

同时,为使噪声与信息分离,S(x)分别与Z(x)和N(x)正交。

图4-4-1 MNF变换的特征值曲线

MNF有两个重要的性质,一是对图像的任何波段作比例扩展,变换结果不变;二是变换使图像矢量、信息分量和加性噪声分量互相垂直。乘性噪声可通过对数变换转换为加性噪声。变换后可针对性地对各分量图像进行去噪,或舍弃噪声占优势的分量。MNF变换的特征值曲线如图4-4-1。

4.4.2.2 特征分离

在MNF变换后的特征域中不同波段具有不同物理与数学意义。比如变换后的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF变换中,通过信号与噪声分离,使信息更加集中于有限的特征集中,一些微弱信息则在去噪转化中被增强。同时在MNF转换过程中,使光谱特征向量集汇聚,增强分类信息。

图4-4-2是一些矿物光谱通过MNF变换前后的曲线剖面图,从右图可见信息与噪声分别有序地集中在一些有限的波段内。通过舍弃噪声波段或其他处理,相应地降低或消除噪声的影响。同时信息也比原始数据更易区分。

4.4.2.3 矿物识别

矿物识别主要选用光谱相似性测度的方法。基于整个谱形特征的相似性概率的大小,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息。

图4-4-2 矿物光谱MNF变换前后特征比较

基于整个光谱形特征的识别方法主要有光谱角技术、光谱匹配滤波、光谱拟合与线形分解等。利用大气校正后的重建光谱数据,可选择性地利用上述矿物识别技术开展端元矿物的识别。光谱角方法可直接选择端元矿物进行匹配,最终生成二值图像,简单易行,在阈值合理可靠的前提下能够获取较高的识别精度。

在成像光谱岩矿地质信息识别与提取方法中,光谱角技术是一种较好的方法之一(王志刚,1993;刘庆生,1999)。光谱角识别方法是在由光谱组成的多维光谱矢量空间,利用一个岩矿矢量的角度测度函数(θ)求解岩矿参考光谱端元矢量(r)与图像像元光谱矢量(t)的相似性测度,即:

成像光谱岩矿识别方法技术研究和影响因素分析

这里,‖*‖为光谱向量的模。参考端元光谱可来自实验室、野外测量或已知类别的图像像元光谱。θ介于0到π/2,其值愈小,二者相似度愈高,识别与提取的信息愈可靠。通过合理的阈值选择,获取矿化蚀变信息的二值图像。

4.4.2.4 阈值的选择与航带间信息的衔接

无论是光谱角技术还是光谱匹配以及混合光谱分解,都存在对非矿物信息的分割,因此阈值的选择是一个必须面临的重要问题。这不仅关系到所识别矿物的可靠度,也关系到矿物分布范围大小的界定。同时由于是分航带提取,不同航带间因大气校正的误差和噪声的影响而使同一地物的光谱特征存在差异,可能使所提取的矿物空间展布特征在航带之间所有诊断和一致性,增加了制图的困难。因此对于阈值的选择,需遵循以下原则:在去除明显假象信息、保留可靠的矿化蚀变信息情况下考虑整体的一致性以及航带的过渡性。

4.4.2.5 技术流程

结合成像光谱数据预处理,根据实际应用情况,可以总结出成像光谱遥感地质调查工作的技术流程,如图443所示。

② 矿石检测用什么方法

矿石是指可从中提取有用组分或其本身具有某种可被利用的性能的矿物集合体。可分为金属矿物、非金属矿物。

矿石检测的方法有:物相分析法、岩石全分析、粘土分析法、化学分析法、光薄片鉴定法、岩石鉴定等等。

如何利用矿物鉴定矿物

物理方法:用矿物的一些物理性质来区分矿物,这是最简单实用的方法,是我们在野外鉴定的主要方法,这些物理性质主要有:1)形状:片状、肾状、鲕状、菱形、立方状、板状、致密状、短柱状等。2)颜色 矿物的颜色是最容易引起注意的。分为三种:自色—矿物本身所固有的颜色。它色—矿物中混入杂质,带色的气泡所导致的颜色。假色—由矿物表面氧化膜、光线干涉等作用引起的颜色。3)条痕:矿物粉末的颜色。将矿物在白瓷板上刻划后留下粉末的颜色。它可以消除假色,减弱他色,保存自色,但矿物硬度一定要小于白瓷板。具体简单的物理方法区别,准备2个道具,第一是一把小刀,第二是一块白色瓷砖。石英:玻璃光泽透明,解理较好,硬度比小刀大,小刀划不出明显的痕迹出来长石:玻璃光泽比石英硬度稍小 比较常见,主要是钠长石和钾长石滑石:白色,半透明,硬度很低,可以用指甲画出痕迹出来,放在舌头上还有种粘的感觉。萤石:具很强荧光,用小刀可以刻出明显痕迹。长石分两大类——正长石(钾长石)和斜长石,二者区别在于两组解理的夹角,正长石等于90度,斜长石小于90度 一般颜色多样,有些正长石显肉红色,是由于含有铁的原因黄铁矿:浅黄铜黄色,表面常具黄褐色锖色。放在白色瓷砖上划出的条痕绿黑或褐黑。强金属光泽菱铁矿:一般为晶体粒状或不显出晶体的致密块状、球状、凝胶状。颜色一般为灰白或黄白黄铜矿:很容易和金矿混淆。从它的颜色和条痕当中鉴别出来,它和黄铁矿相像,但是硬度不如黄铁矿。鉴定时,指甲刻不出明显痕迹,但如果是金矿的话,指甲可以划出痕迹。

④ 矿石一般怎样分析其中的矿物质成分

测矿石的成分,一般是先判断出是什么矿物,然后以分析这种矿物的国标进行化验。判断矿物一般根据硬度、密度和外观。判断出矿物后,就会知道它会含有哪些主要成分。化验一般是先熔矿,然后每种主要成分都有对应的分析化验方法,化验周期一般是2-7天,很麻烦的。
还有光谱分析,这个快,但是很贵
希望你满意。

⑤ 矿物成分分析方法

矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。

在选择成分分析方法时,应注意检测下限和精密度。

检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。

精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即

相对误差RE=

×100%

常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。

1.化学分析法

化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。

化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。

2.电子探针分析法

电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。

电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。

图24-3 电子探针结构示意图

电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。

值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。

电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。

电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。

电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。

3.光谱类分析法

光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。

光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。

图24-4 光谱分析流程图

4.X射线光电子能谱分析法

X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。

光电过程存在如下的能量关系:

hv=Eb+Ek+Er

式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。

X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。

5.电感耦合等离子质谱分析法

电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。

ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。

在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。

6.穆斯堡尔谱

穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。

图24-5 某透闪石石棉的穆斯堡尔图谱

由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+

穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。

穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。

⑥ 矿石检测元素,用什么方法

矿石元素元素分析仪器采用"智能动态跟踪"和"标准曲线的非线性回归"技术,结果数显直读百分含量,自动打印结果;微机控制及数据处理,可储存9条曲线,并可进行曲线修正,具有断电数据保护、自诊断功能;调整波长、变更比色皿、改变称样量及合理利用曲线,可扩大测量元素的品种及含量范围;机外溶样,操作灵活、简单,无管道、无电磁阀腐蚀、老化问题。主要技术参数: 测量范围:(以Mn、P、Si为例) Mn:0.01-2.00%、P:0.005-0.80%、Si:0.01-5.00% (若改变测试条件,测量范围可相应扩大) 测量精度:符合GB223.3-5-1988标准 分析时间:5秒。
折叠编辑本段应用
矿石元素分析仪用途及应用领域
1、快速普查大范围的矿区,有效测定地带模式,绘制矿山图、实时勘察。
2、发现异常状况,做到优先开采富矿区。
3、现场快速追踪矿化异常,有效地寻找"热点"地带,圈定矿体边界。
4、对铣头、精矿和矿渣精确的分析,以建立高效开采和富集的过程。
5、判定矿带走向及矿石含量的异常,避免错误开采。
6、对高品位、精选矿石精确的品位评定,提供矿石采集、收购价值依据。
7、对矿渣、尾矿中残存的矿石元素分析,再次判定其价值。
8、在矿石开采过程,搪孔、研磨、浓缩和熔炼过程中进行品检,确定品位,对滤熔池、存储塘和钢槽溶液进行分析。
9、动力设备、管道、产线维护,分析设备润滑油等油品中的微量金属,以判定设备的磨损状况。
10、污染水、废水中污染金属成份、污染模式、污染边界的迅速调查与测量。
11、现场监测RCRA所涉及的金属和优先控制的污染金属。
12、原土地、污染水、废水、等有害物质的现场处置最小化处理并给污染控制、补救方法的深度分析提供理论依据。

阅读全文

与检测矿产用到的分析方法相关的资料

热点内容
电脑四线程内存设置方法 浏览:506
数字电路通常用哪三种方法分析 浏览:9
实训课程的教学方法是什么 浏览:519
苯甲醇乙醚鉴别方法 浏览:76
苹果手机微信视频声音小解决方法 浏览:694
控制箱的连接方法 浏览:69
用什么简单的方法可以去痘 浏览:783
快速去除甲醛的小方法你知道几个 浏览:798
自行车架尺寸测量方法 浏览:118
石磨子的制作方法视频 浏览:146
行善修心的正确方法 浏览:401
薯仔炖鸡汤的正确方法和步骤 浏览:274
北京电流检测方法 浏览:482
手机u盘保护方法 浏览:114
数字搭配有哪些方法 浏览:666
约一场球的正确方法 浏览:189
在家中洗衣服的方法如何 浏览:294
28天锻炼腹肌最快的方法 浏览:203
简单练翘臀方法视频 浏览:760
心理诊断评估常用的方法有哪些 浏览:845