⑴ 数学建模方法和步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。
⑵ 建立数学模型的方法
建立数学模型的方法如下:
1.类比法。
数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。
变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。
初等数学法。主要用于一些静态、线性、确定性的模型。例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。
数据分析法。从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。
⑷ 数学建模五个步骤顺序
数学建模五个步骤顺序如下:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。
如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
⑸ 数学建模都要用到那些方法啊
随着科学技术的迅速发展,数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中。电气工程师必须建立所要控制的生产过程的数学模型,用这个模型对控制装置作出相应的设计和计算,才能实现有效的过程控制;气象工作者为了得到准确的天气预报,一刻也离不开根据气象站、气象卫星汇集的气压、雨量、风速等资料建立的数学模型;生理医学家有了药物浓度在人体内随时间和空间变化的数学模型,就可以分析药物的疗效,有效地指导临床用药;厂长经理们要是能够根据产品的需求状况、生产条件和成本、贮存费用等信息,筹划出一个合理安排生产和销售的数学模型,一定可以获得更大的经济效益。对于广大的科学技术人员和应用数学工作者来说,建立数学模型是沟通摆在面前的实际问题与他们掌握的数学工具之间的一座必不可少的桥梁。
那么,什么是数学模型,又是如何建立起这些形形色色的数学模型的呢?就让我们走近数学模型看一看吧!
原型与模型
原型(Prototype):人们在现实世界里关心、研究或者生产、管理的实际对象。
模型(Model):为特定的目的,将原型的某一部分信息简缩、提炼而构造的原型替代物。
数学模型:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
注意数学模型(Mathematical Model)与数学建模(Mathematical Modelling)之间的联系与区别。
建立数学模型的方法
一般说来建立数学模型可以分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象。建立数学模型没有固定的模式。一般这一过程可以如图所示的几个步骤:
数学模型的分类
基于不同的出发点可以有各种不同的分法:
按照模型的应用领域分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等。范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等。
按照建立模型的方法分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等。
按照模型的表现特性又有几种分法:
确定行模型和随机性模型 取决于是否考虑随机因素的影响。近几年来随着数学的发展,又有所谓突变性模型和模糊性模型。
静态模型和动态模型 取决于是否考虑随机因数引起的变化。
离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散是连续的。
线性模型和连续模型 取决于模型的基本关系,如微分方程是否是的。
按照建模目的分。有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等。
按照对模型的了解程度分。有所谓白箱模型、灰箱模型、黑箱模型等。它们分别意
味着人们对原型的内在机理了解清楚、不太清楚和不清楚。
数学模型的作用
数学是研究现实世界中的数量关系和空间形式的科学。它的产生和许多重大发展都和现实世界的生产活动和其他相应的学科的需要密切相关的。一般的说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节。
分析 通常是指定量研究现实对象的某种现象,或定量描述某种特性。例如 研究不同种群的生物在同一自然环境下生存时,相互竞争和依存的现象;描述药物浓度在人体内的变化规律以分析药物的疗效。
预报 一般是根据对象的固有特性预测当时间或环境变化时对象的发展规律。人口预报、天气预报以及传染病蔓延高潮时刻的预报可以作为这方面的例子。
决策 其含义很广,譬如根据对象满足的规律作出使某个数量指标达到最优的决策。使经济效益最大的价格策略,使总费用最少的设备维修方案都是这类决策。
控制 一般是指根据对象的特征和某些指标给出尽可能满意的控制方案。例如化工生产过程中温度和流量的控制,利用红绿灯对交流进行控制等
数学建模(mathematical modelling)
数学建模是构造刻划客观事物原型的数学模型并用析究和解决实际问题的种方法。运用这种科学方法,建模者必须从实际问题出发,遵循“实践――认识――实践”的辨证唯物主义认识规律,紧紧围绕着建模的目的,运用观察力、想象力和逻辑思维,对问题进行抽象、简化,反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模不仅仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。当代计算机的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。当今几乎所有重要的学科,只要在其名称前面或后面加上“数学”或“计算”二字,就成了现有的一种国际学术杂志名称。这表明各学科正在利用数学方法和数学成果来加速本学科的发展。就连计算机本身的产生和进步也是强烈地依赖于数学科学的发展,而计算机软件技术说到底也是数学技术。
引用绝对吓人的文字
⑹ 数学建模的思路是什么
说就是把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述。其形式是多样的,可以是方程(组)、不等式、函数、几何图形等等。
在数学建模中常用思想和方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法。
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
⑺ 什么叫数学建模
qw(最多可选2个答案)
对回答者的感言:
(选填项,40字以内)
学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
⑻ 数学建模研究什么与什么之间的关系一般用什么方法a
单单只是关系的话
那么就是格兰杰因果检验
如果你要的是某个方程的话
那么线性回归可以得到方程
相关性分析得到相关系数
主成分分析得到占比权重
当然以上是数学的
数模很奇葩,你题目不清,数模会研究到某物体与某物体的关系,那么上述方法全部不适用
最万能的说关系的应该就是条件概率了
⑼ 数学建模的步骤
数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。