1.计量资料的统计方法
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小样本比较时要求两总体分布为正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法(秩和检验)。方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析。
2.计数资料的统计方法
计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。 四格表资料:组间比较用
检验或u检验,若不能满足 检验:当计数资料呈配对设计时,获得的四格表为配对四格表,其用到的检验公式和校正公式可参考书籍。 R×C表可以分为双向无序,单向有序、双向有序属性相同和双向有序属性不同四类,不同类的行列表根据其研究目的,其选择的方法也不一样。
3.等级资料的统计方法
等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。
② 原因分析的三种方法 原因分析常用的三种统计方法
1、原因分析常用的三种统计方法:相关分析、回归分析和假设检验。
2、相关分析:相关分析显示变量如何与另一个变量相关。例如,它显示了计件工资是否会带来更高的生产率。
3、回归分析:回归分析是对一个变量值与另一个变量值之间差异的定量预测。回归模拟依赖变量和解释变量之间的关系,这些变量通常绘制在散点图上。您还可以使用回归线来显示这些关系是强还是弱。
4、假设检验:假设检验是基于某些假设并从样本到人口的数理统计中的统计分析方法。主要是为了解决问题的需要,对整体研究提出一些假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。提出了两个数据集之间统计关系的假设,并将其用作理想化零假设的替代方案。建议两个数据集之间没有关系。
③ 总结!14个常用的统计假设检验的方法
本文分享利用SPSSAU进行14个常用的统计假设检验的方法,分为以下五个部分:
一、正态性检验
正态性特质是很多分析方法的基础前提,如果不满足正态性特质,则应该选择其它的分析方法,因此在做某些分析时,需要先进行正态性检验。如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。
常见的分析方法正态性特质要求归纳如下表(包括分析方法,以及需要满足正态性的分析项,如果不满足时应该使用的分析方法)。
如果p 值大于0.05,则说明具有正态性特质,反之则说明数据没有正态性特质。
如果是问卷研究,数据很难满足正态性特质,而实际研究中却也很少使用不满足正态性分析时的分析方法。
SPSSAU认为有以下三点原因:
① 参数检验的检验效能高于非参数检验,比如方差分析为参数检验,所以很多时候即使数据不满足正态性要求也使用方差分析
② 如果使用非参数检验,呈现出差异性,则需要对比具体对比差异性(但是非参数检验的差异性不能直接用平均值描述,这与实际分析需求相悖,因此有时即使数据不正态,也不使用非参数检验,或者Spearman相关系数等)
③ 理想状态下数据会呈现出正态性特质,但这仅会出现在理想状态,现实中的数据很难出现正态性特质(尤其是比如问卷数据)【可直接使用“直方图”直观展示数据正态性情况】。
二、方差齐检验
如果要进行方差分析,需要满足方差齐性的前提条件,需要进行方差齐检验,其用于分析不同定类数据组别对定量数据时的波动情况是否一致。例如研究人员想知道三组学生的智商 波动情况是否一致(通常情况希望波动一致,即方差齐)。
判断p 值是否呈现出显着性(p <0.05),如果呈现出显着性,则说明不同组别数据波动不一致,即说明方差不齐;反之p 值没有呈现出显着性(p >0.05)则说明方差齐。
提示: 方差不齐时可使用‘非参数检验’,或者还可使用welch 方差,或者Brown-Forsythe方差。
三、相关性检验
(1)相关分析
相关分析是一种简单易行的测量定量数据之间的关系情况的分析方法。可以分析包括变量间的关系情况以及关系强弱程度等。相关系数常见有三类,分别是:
1.Pearson相关系数
2.Spearman等级相关系数
3.Kendall相关系数
三种相关系数最常使用的是Pearson相关系数;当数据不满足正态性时,则使用Spearman相关系数,Kendall相关系数用于判断数据一致性,比如裁判打分。下图是详细使用场景:
如果呈现出显着性(结果右上角有*号,此时说明有关系;反之则没有关系)。
有了关系之后,关系的紧密程度直接看相关系数大小即可。(一般0.7以上说明关系非常紧密;0.4~0.7之间说明关系紧密;0.2~0.4说明关系一般。)
如果说相关系数值小于0.2,但是依然呈现出显着性(右上角有*号,1个*号叫0.05水平显着,2个*号叫0.01水平显着;显着是指相关系数的出现具有统计学意义普遍存在的,而不是偶然出现),说明关系较弱,但依然是有相关关系。
(2)卡方检验
卡方检验主要用于研究定类与定类数据之间的差异关系。卡方检验要求X、Y项均为定类数据,即数字大小代表分类。并且卡方检验需要使用卡方值和对应p 值去判断X与Y之间是否有差异。通常情况下,共有三种卡方值,分别是Pearson卡方,yates校正卡方,Fisher卡方;优先使用Pearson卡方,其次为yates校正卡方,最后为Fisher卡方。
具体应该使用Pearson卡方,yates校正卡方,也或者Fisher卡方;需要结合X和Y的类别个数,校本量,以及期望频数格子分布情况等,选择最终应该使用的卡方值。SPSSAU已经智能化处理这一选择过程。
第一:分析X分别与Y之间是否呈现出显着性(p值小于0.05或0.01);
第二:如果呈现出显着性;具体对比选择百分比(括号内值),描述具体差异所在;
第三:对分析进行总结。
卡方检验,SPSSAU提供两个按钮,二者的区别是,后者输出更多的统计量过程值以及深入指标表格,满足需要更多分析指标的研究人员,如下各图。
进行卡方检验,上传数据时需要特别注意数据格式,有两种格式:常规格式和加权格式。
① 常规格式数据 ,如下图。则通用方法中的【交叉(卡方)】和实验/医学研究中的【卡方检验】都可以使用。
② 加权数据: 但在某些情况下,我们得到的不是原始数据,而是经过整理的汇总统计数据。比如下面这样格式的数据:
类似这样的格式,不能直接使用的,需要整理成加权数据格式,只能使用实验/医学研究中的【卡方检验】
这时候点击实验/医学研究面板中的【卡方检验】-拖拽三个【分析变量】分别到对应分析框-【开始分析】即可。
四、参数检验
(1) 单样本t检验
单样本T检验用于比较样本数据与一个特定数值之间是否存在差异情况。
首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过平均值进行对比判断。
(2)独立样本T检验(T检验)
独立样本T检验用于分析定类数据(X)与定量数据(Y)之间的差异情况。
独立样本T检验除了需要服从正态分布、还要求两组样本的总体方差相等。当数据不服从正态分布或方差不齐时,则考虑使用非参数检验。
首先判断p 值是否呈现出显着性,如果呈现出显着性,则说明两组数据具有显着性差异,具体差异可通过平均值进行对比判断。
(3)配对样本T检验
用于分析配对定量数据之间的差异对比关系。与独立样本t检验相比,配对样本T检验要求样本是配对的。两个样本的样本量要相同;样本先后的顺序是一一对应的。
常见的配对研究包括几种情况:
判断p 值是否呈现出显着性,如果呈现出显着性,,则说明配对数据具有显着性差异,具体差异可通过平均值进行对比判断。
(4)方差分析
方差分析(单因素方差分析),用于分析定类数据与定量数据之间的关系情况.例如研究人员想知道三组学生的智商平均值是否有显着差异。
进行方差分析需要数据满足以下两个基本前提:
理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出 钟形 ,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。
第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。
第二:如果呈现出显着性;通过具体对比平均值大小,描述具体差异所在。
第三:如果没有呈现出显着性;说明X不同组别下,Y没有差异。
(5)重复测量方差
在某些实验研究中,常常需要考虑时间因素对实验的影响,当需要对同一观察单位在不同时间重复进行多次测量,每个样本的测量数据之间存在相关性,因而不能简单的使用方差分析进行研究,而需要使用重复测量方差分析。
第一、首先进行球形度检验,p <0.05说明没有通过球形度检验,p >0.05说明通过球形度检验;
第二、如果没有通过球形度检验,并且球形度W值大于0.75,则使用HF校正结果;
第三、如果没有通过球形度检验,并且球形度W值小于0.75,则使用GG校正结果;
第四、如果通过球形度检验,组内效应分析结果时使用“满足球形度检验”结果即可;
将数据上传至SPSSAU分析,选择【实验/医学研究】--【重复测量方差】。
五、非参数检验
凡是在分析过程中不涉及总体分布参数的检验方法,都可以称为“非参数检验”。因而,与参数检验一样,非参数检验包括许多方法。以下是最常见的非参数检验及其对应的参数检验对应方法:
非参数秩和检验研究X不同组别时Y的差异性,针对方差不齐,或者非正态性数据(Y)进行差异性对比(X为两组时使用mannWhitney检验,X超过两组时使用Kruskal-Wallis检验,系统默认进行判断);
(1)单样本Wilcoxon检验
单样本Wilcoxon检验是单样本t检验的代替方法。该检验用于检验数据是否与某数字有明显的区别,如对比调查对象整体态度与满意程度之间的差异。首先需要判断数据是否呈现出正态性分析特质,如果数据呈现出正态性特质,此时应该使用单样本t检验进行检验;如果数据没有呈现出正态性特质,此时应该使用单样本Wilcoxon检验
首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过中位数进行对比判断。
(2)Mann-Whitney检验
Mann-Whitney检验是独立样本t检验的非参数版本。该检验主要处理包含等级数据的两个独立样本,SPSSAU中称为非参数检验。
第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。
第二:如果呈现出显着性;通过具体对比中位数大小,描述具体差异情况。
(3)Kruskal-Wallis检验
Kruskal-Wallis检验是单因素方差分析的非参数替代方法。Kruskal-Wallis检验用于比较两个以上独立组的等级数据。
在SPSSAU中,与Mann-Whitney检验统称为“非参数检验”,分析时SPSSAU会根据自变量组别数自动选择使用Kruskal-Wallis检验或Mann-Whitney检验。
(4)配对Wilcoxon检验
Wilcoxon符号秩检验是配对样本t检验的非参数对应方法。该检验将两个相关样本与等级数据进行比较。
第一:分析每组配对项之间是否呈现出显着性差异(p值小于0.05或0.01)。
第二:如果呈现出显着性;具体对比中位数(或差值)大小,描述具体差异所在。
④ 常用统计分析方法
数据分析师针对不同业务问题可以制作各种具体的数据模型去分析问题,运用各种分析方法去探索数据,这里介绍最常用的三种分析方法,希望可以对您的工作有一定的的帮助
文中可视化图表均使用DataFocus数据分析工具制作。
1.相关分析
相关分析显示变量如何与另一个变量相关。例如,它显示了计件工资是否会带来更高的生产率。
2.回归分析
回归分析是对一个变量值与另一个变量值之间差异的定量预测。回归模拟依赖变量和解释变量之间的关系,这些变量通常绘制在散点图上。您还可以使用回归线来显示这些关系是强还是弱。
另请注意,散点图上的异常值非常重要。例如,外围数据点可能代表公司最关键供应商或畅销产品的输入。但是,回归线的性质通常会让您忽略这些异常值。
3.假设检验
假设检验是基于某些假设并从样本到人口的数理统计中的统计分析方法。主要是为了解决问题的需要,对整体研究提出一些假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。提出了两个数据集之间统计关系的假设,并将其用作理想化零假设的替代方案。建议两个数据集之间没有关系。
在掌握了数据分析的基本图形和分析方法之后,数据分析师认为有一点需要注意:“在没有确认如何表达你想要解决的问题之前,不要开始进行数据分析。”简而言之,如果您无法解释您试图用数据分析解决的业务问题,那么没有数据分析可以解决问题。
⑤ 常用统计分析方法有哪些
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
⑥ 统计学检验方法有哪些
统计学 各种应用条件、校正条件
应用检验方法必须符合其适用条件,不同设计的数据应选用不同检验方法。 一、第五章 参数估计 P74 总体均数的置信区间 1.正态近似法:
总体标准差σ已知,或σ未知但n>50时 2. t分布法
总体标准差σ未知,且n≤50时
二、第六章 计量资料两组均数t检验P93、P99 (一)t 检验的应用条件
适用于计量资料(单样本、两配对样本、两独立样本),并要求: 1. 样本来自正态分布的总体。W检验(n≤50时),H0:样本来自正态总体,P>0.05时尚不能认为两组资料的分布非正态;
2. 两独立样本均数比较时,两总体方差齐性。Levene检验,H0:方差相等。P>0.05时尚不能认为两组资料方差不齐。
(二)方差不齐或非正态时,两计量资料均数的比较方法 方法1. 仅方差不齐时,可采用近似t检验,即 t′检验。 方法2. 变量变换:对数变换、平方根变换、倒数变换等
方法3. 非参数检验:Wilcoxon符号秩检验(两相关样本P142);Wilcoxon秩和检验、Mann-Whiney-U检验(两独立样本 P145)等
三、第七章 计量资料多组均数的比较-方差分析 (一)方差分析流程 P109
1、多个样本均数比较。若P<0.05,均数不全相等,则进行第2步;
2、作多重比较:LSD-t检验、Dunnett-t检验(多个实验组与一个对照组比较)、SNK-q检验(多个均数间全面比较)
(二)方差分析的应用条件 P114
1、各样本相互独立,服从正态分布;W检验 2、各样本方差齐性。Levene检验
四、分类资料(计数资料)的比较-
⑦ 什么是统计检验怎么选择统计检验方法
统计检验亦称“假设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显着差异。这时称差异显着性检验。检验的推理逻辑为具有概率性质的反证法。
选择
显着性水平和否定域
有了与问题相关的抽样分布,我们便可以把所有可能的结果分成两类:一类是不大可能的结果;另一类人们预料这些结果很可能发生。既然如此,如果我们在一次实际抽样中得到的结果恰好属于第一类,我们就有理由对概率分布的前提假设产生怀疑。
在统计检验中,这些不大可能的结果称为否定域。如果这类结果真的发生了,我们将否定假设;反之就不否定假设。概率分布的具体形式是由假设决定的,假设肯定不止一个。在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示),并用它和其他备择假设(用符号H1表示)相对比。
值得注意的是,假设只能被检验,从来不能加以证明。统计检验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。为了使检验更严格、更科学,还需要更多的东西。首先,我们必须确定冒犯第一类和第二类错误的风险的程度;其次,要确定否定域是否要包含抽样分布的两端。
第一类错误是,零假设H0实际上是正确的,却被否定了。第二类错误则是,H0实际上是错的,却没有被否定。第二类错误是,零假设H0实际上是错误的,却没有被否定。遗憾的是,不管我们如何选择否定域,都不可能完全避免第一类错误和第二类错误,也不可能同时把犯两类错误的危险压缩到最小。
对任何一个给定的检验而言,第一类错误的危险越小,第二类错误的概率就越大;反之亦然。一般来讲,不可能具体估计出第二类错误的概率值。第一类错误则不然,犯第一类错误的概率是否定域内各种结果的概率之和。
由于犯第一类错误的危险和犯第二类错误的危险呈相背趋向,所以统计检验时,我们必须事先在冒多大第一类错误的风险和多大第二类错误的风险之间作出权衡。被我们事先选定的可以犯第一类错误的概率,叫做检验的显着性水平(用α表示),它决定了否定域的大小。
如果抽样分布是连续的,否定域可以建立在想要建立的任何水平上,否定域的大小可以和显着性水平的要求一致起来(后面的正态检验就如此)。如果抽样分布是非连续的,就要用累计概率的方法找出一组构成否定域的结果。
即在已知概率分布表上,从两端可能性最小的概率开始向中心累计,直至概率之和略小于选定的显着性水平为止。在许多场合,我们能预测偏差的方向,或只对一个方向的偏差感兴趣。每当方向能被预测的时候,在同样显着性水平的条件下,单侧检验比双侧检验更合适。
因为否定域被集中到抽样分布更合适的一侧,可以得到一个比较大的尾端。这样做,可以在犯第一类错误的危险不变的情况下,减少了犯第二类错误的危险。
(7)统计检验方法分析扩展阅读
选择统计检验程序的方法时需考虑以下条件:
1、看总体分布是否已知。如果已知,看是不是正态分布。如果已知样本分布为常态分布就可以选择参数检验法,如果总体分布未知就用非参数检验法。
2、在参数检验中,如果总体分布为正态,总体方差已知,两样本独立或相关都可以采用Z检验;如果总体方差未知,根据样本方差,采取不同的t检验。如果总体分布非正态,总体方差已知,根据样本独立或相关采取Z’检验;如果总体方差未知,根据独立和相关采取不同的Z‘检验。
3、根据题目考虑用单侧还是双侧检验。
4、在非参数检验中,按照两个样本相关和不相关、精度与容量等,可以采用符号检验、秩和检验等方法。
⑧ 统计学常用数据分析方法(二)推断统计&参数检验
01
推论统计
推论统计是统计学中研究年份较为短的一部分内容。
推论统计主要以结果为依据,来证明或推翻某个命题也就是通过分析样本与样本分布的差异从而去估算样本与总体、同一样本的前后两次的差异、样本与样本的差异、总体与总体的差异是否具有显着性差异。
举个例子,我们想研究教育背景是否会影响人的收入。然后我们可以找1000名30岁大学毕业生和1000名30岁初中毕业生。采集他们的工作以及收入情况。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的收入显着高于初中毕业生组的收入,二者在0.01水平上具有显着性差异,说明大学毕业生的一些收入情况优于中学毕业生组,也就是学历会影响收入。”
02
正态性检 验
很多统计方法的前提条件是数值服从或近似服从正态分布,所以在进行数据分析之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
03
参数检验
已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验叫做参数检验。
Z检验:使用条件:当样本含量n较大时,样本值符合正态分布
T检验:使用条件:当样本含量n较小时,样本值符合正态分布
单样本t检验:想知道来自总体的一个样本均值μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;
配对样本t检验:当总体均值未知时,并且两个样本可以配对,同对中的两者一一对应,对于处理效果的各种条件方面扱为相似;
两独立样本t检验:利用两个总体的独立样本,通过推断两个总体的均值是否存在显着性差异;两独立样本的样本容量可以相等,也可以不相等。
04
非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
⑨ 有哪些统计方法
统计法有:计量资料的统计方法;计数资料的统计方法;等级资料的统计方法。
1、分析计量资料的统计分析方法可分为参数检验法和非参数检验法。参数检验法主要为t检验和方差分析(ANOVA,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。
2、计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。
3、等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。
4、统计方法是指有关收集、整理、分析和解释统计数据,并对其所反映的问题作出一定结论的方法。统计方法是一种从微观结构上来研究物质的宏观性质及其规律的独特的方法。