导航:首页 > 研究方法 > 牛顿第二定律解题的受力分析方法

牛顿第二定律解题的受力分析方法

发布时间:2022-12-11 05:17:04

如何运用牛顿第二定律解题

力和运动关系的两类基本问题
关于运动和力的关系,有两类基本问题,那就是:
① 已知物体的受力情况,确定物体的运动情况;
② 已知物体的运动情况,确定物体的受力情况。
1. 从受力确定运动情况
已知物体受力情况确定运动情况,指的是在受力情况已知的条件下,要求判断出物体的运动状态或求出物体的速度和位移。处理这类问题的基本思路是:先分析物体的运动情况求出合力,根据牛顿第二定律求出加速度,再利用运动学的有关公式求出要求的速度和位移。
2. 从运动情况确定受力
已知物体运动情况确定受力情况,指的是在运动情况(如物体的运动性质、速度、加速度或位移)已知的条件下,要求得出物体所受的力。处理这类问题的基本思路是:首先分析清楚物体的受力情况,根据运动学公式求出物体的加速度,然后在分析物体受力情况的基础上,利用牛顿第二定律列方程求力。
3. 加速度a是联系运动和力的纽带
在牛顿第二定律公式(F=ma)和运动学公式(匀变速直线运动公式v=v0+at, x=v0t+ at2, v2-v02=2ax等)中,均包含有一个共同的物理量——加速度a。
由物体的受力情况,利用牛顿第二定律可以求出加速度,再由运动学公式便可确定物体的运动状态及其变化;反过来,由物体的运动状态及其变化,利用运动学公式可以求出加速度,再由牛顿第二定律便可确定物体的受力情况。
可见,无论是哪种情况,加速度始终是联系运动和力的桥梁。求加速度是解决有关运动和力问题的基本思路,正确的受力分析和运动过程分析则是解决问题的关键。
4. 解决力和运动关系问题的一般步骤
牛顿第二定律F=ma,实际上是揭示了力、加速度和质量三个不同物理量之间的关系。方程左边是物体受到的合力,首先要确定研究对象,对物体进行受力分析,求合力的方法可以利用平行四边形定则或正交分解法。方程的右边是物体的质量与加速度的乘积,要确定物体的加速度就必须对物体的运动状态进行分析。
由此可见,应用牛顿第二定律结合运动学公式解决力和运动关系的一般步骤是:
① 确定研究对象;
② 分析研究对象的受力情况,必要时画受力示意图;
③ 分析研究对象的运动情况,必要时画运动过程简图;
④ 利用牛顿第二定律或运动学公式求加速度;
⑤ 利用运动学公式或牛顿第二定律进一步求解要求的物理量。
6. 教材中两道例题的说明
第1道例题已知物体受力情况确定运动情况,求解时首先对研究的物体进行受力分析,根据牛顿第二定律由合力求出加速度,然后根据物体的运动规律确定了物体的运动情况(末速度和位移)。
第2道例题已知物体运动情况确定受力情况,求解时首先对研究的物体进行运动分析,从运动规律中求出物体运动的加速度,然后根据牛顿第二定律得出物体受到的合力,再对物体进行受力分析求出了某个力(阻力)。
在第2道例题的求解过程中,我们还建立了坐标系。值得注意的是:在运动学中通常是以初速度的方向为坐标轴的正方向,而在利用牛顿第二定律解决问题时,通常则是以加速度的方向为坐标轴的正方向。
应用牛顿运动定律解题的技巧
牛顿运动定律是动力学的基础,也是整个经典物理理论的基础。应用牛顿运动定律解决问题时,要注意掌握必要的解题技巧:
① 巧用隔离法 当问题涉及几个物体时,我们常常将这几个物体“隔离”开来,对它们分别进行受力分析,根据其运动状态,应用牛顿第二定律或平衡条件(参见下一节相关内容)列式求解。特别是问题涉及物体间的相互作用时,隔离法不失为一种有效的解题方法。(参阅本节例5)
② 巧用整体法 将相互作用的两个或两个以上的物体组成一个整体(系统)作为研究对象,去寻找未知量与已知量之间的关系的方法称为整体法。整体法能减少和避开非待求量,简化解题过程。整体法和隔离法是相辅相成的。(参阅本节例5“点悟”)
③ 巧建坐标系 通常我们建立坐标系是以加速度的方向作为坐标轴的正方向,有时为减少力的分解,也可巧妙地建立坐标轴,而将加速度分解,应用牛顿第二定律的分量式求解。(参阅本章第3节例5)
④ 巧用假设法 对物体进行受力分析时,有些力存在与否很难确定,往往用假设推理法可以迅速解决。使用这种方法的基本思路是:假设某力存在(或不存在),然后利用已知的物理概念和规律进行分析推理,从而肯定或否定所做的假设,得出正确的判断。(参阅本章“综合链接”例4)
⑤ 巧用程序法 按时间顺序对物体运动过程进行分析的解题方法称为程序法。其基本思路是:先正确划分问题中有多少个不同的运动过程,然后对各个过程进行具体分析,从而得出正确的结论。(参阅本章“亮点题粹”题4)
⑥ 巧建理想模型 应用牛顿第二定律解题时,往往要建立一些理想模型。例如:将物体看成质点,光滑接触面摩擦力为0,细线、细杆及一般的物体为刚性模型,轻弹簧、橡皮绳为弹性模型等等。(参阅本章第3节例6)
⑦ 巧析临界状态 在物体运动状态的变化过程中,往往在达到某个特定状态时,有关的物理量将发生突变,此状态称为临界状态。利用临界状态的分析作为解题思路的起点,是一条有效的思考途径。(参阅本章第7节例3)
⑧ 巧求极值问题 求解极值问题常可采用物理方法和数学方法。建立物理模型,分析物理过程,这是物理解法的特征。数学解法则是先找出物理量的函数关系式,然后直接应用数学方法求的极值。(参阅本章“亮点题粹”题8)
例1 在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹。在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10m/s2,则汽车刹车前的速度为( )
A. 7 m/s B. 10 m/s C. 14 m/s D. 20 m/s
提示 设法求出汽车刹车后滑动的加速度。
解析 设汽车刹车后滑动的加速度大小为a,由牛顿第二定律可得
μmg=ma,a=μg。
由匀变速直线运动速度—位移关系式v02=2ax,可得汽车刹车前的速度为
m/s=14m/s。
正确选项为C。
点悟 本题以交通事故的分析为背景,属于从受力情况确定物体的运动状态的问题。求解此类问题可先由牛顿第二定律求出加速度a,再由匀变速直线运动公式求出相关的运动学量。
例2 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目,一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。已知运动员与网接触的时间为1.2s,若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小(g取10m/s2)。
提示 将运动员的运动分为下落、触网和蹦回三个阶段研究。
解析将运动员看作质量为m的质点,从h1高处下落,刚接触网时速度的大小为
(向下);
弹跳后到达的高度为h2,刚离网时速度的大小为
(向上)。
速度的改变量 Δv=v1+v2(向上)。
以a表示加速度,Δ t表示运动员与网接触的时间,则
Δv=a Δ t。
接触过程中运动员受到向上的弹力F和向下的重力mg,由牛顿第二定律得
F-mg=ma。
由以上各式解得 ,
代入数值得 F=1.5×103N。
点悟本题为从运动状态确定物体的受力情况的问题。求解此类问题可先由匀变速直线运动公式求出加速度a,再由牛顿第二定律求出相关的力。本题与小球落至地面再弹起的传统题属于同一物理模型,但将情景放在蹦床运动中,增加了问题的实践性和趣味性。题中将网对运动员的作用力当作恒力处理,从而可用牛顿第二定律结合匀变速运动公式求解。实际情况作用力应是变力,则求得的是接触时间内网对运动员的平均作用力。
例3 如图4—37所示,一水平传送带长为20m,以2m/s的速度做匀速运动。已知某物体与传送带间的动摩擦因数为0.1,现将该物体由静止轻放到传送带的A端。求物体被送到另一端B点所需的时间。(g 取10m/s2)
提示 本题要计算物体由A到B的时间,分析物体运动过程,有两种可能。一种可能是从静止开始一直加速到B,知道加速度就可求出运动时间;另一种可能是,物体加速一段时间后速度与传送带相同,接着做匀速运动,有两个过程,要分别计算时间。
解析 物体受重力mg、支持力FN和向前的摩擦力F作用,由牛顿第二定律,有
F=ma,
又 FN-mg=0, F=μFN,
解得 a=μg=0.1×10m/s2=1 m/s2。
当物体做匀加速运动达到传送带的速度v=2m/s时,其位移为
m=2m<20m,
所以物体运动2m后与传送带一起匀速运动。
第一段加速运动时间为 s=2s,
第二段匀速运动时间为 s=9s。
所以,物体在传送带上运动的总时间为
t=t1+t2=2s+9s=11s。
点悟 物体受力情况发生变化,运动情况也将发生变化。此题隐含了两个运动过程,如不仔细审题,分析运动过程,将出现把物体的运动当作匀速运动(没有注意到物体从静止开始放到传送带上),或把物体的运动始终当作匀加速运动。请将本题与练习巩固(4—1)第7题作一比较。
例4 如图4—38所示,风洞实验室中可产生水平方向的、大小可调解的风力。现将一套有小球的细直杆放入风洞实验室,小球孔径略等大于直径。
(1)当杆在水平方向固定时,调解风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。
(2)保持小球所受的风力不变,使杆与水平方向的夹角为370并固定,则小球从静止出发在细杆上滑下距离s所需时间为多少?(sin370=0.6, cos370=0.8)
提示 注意(1)中小球做匀速运动,(2)中小球做匀加速运动,两种情况风力及小球与杆间的动摩擦因数均不变,不要错误地认为滑动摩擦力相同。
解析 (1) 设小球所受风力为F,则 F=0.5mg。
当杆水平固定时,小球做匀速运动,则所受摩擦力Ff与风力F等大反向,即
Ff=F。
又因 Ff=μFN=μmg,
以上三式联立解得小球与杆间的动摩擦因数μ=0.5。
(2) 当杆与水平方向成θ=370角时,小球从静止开始沿杆加速下滑。设下滑距离s所用时间为t,小球受重力mg、风力F、杆的支持力FN’和摩擦力Ff’作用,由牛顿第二定律可得,
沿杆的方向 Fcosθ+mgsinθ-Ff’=ma,
垂直杆的方向 FN’+F sinθ-mgcosθ=0,
又 Ff’= μFN’, F=0.5mg,
解得小球的加速度

因 ,
故小球的下滑时间为 。
点悟 本题是牛顿运动定律在科学实验中应用的一个实例,求解时先由水平面上小球做匀速运动时的二力平衡求出动摩擦因数,再分析小球在杆与水平面成370角时的受力情况,根据牛顿第二定律列出方程,求得加速度,再由运动学方程求解。这是一道由运动求力,再由力求运动的典型例题。
发展级
例5 如图4—39所示,箱子放在水平地面上,箱内有一固定的竖直杆,杆上套着一个圆环。箱子的质量为M,环的质量为m,圆环沿杆滑动时与杆间有摩擦。
(1) 若环沿杆加速下滑,环与杆间摩擦力的大小为F,则箱子对地面的压力有多大?
(2) 若环沿杆下滑的加速度为a,则箱子对地面的压力有多大?
(3) 若给环一定的初速度,使环沿杆上滑的过程中摩擦力的大小仍为F,则箱子对地面的压力有多大?
(4) 若给环一个初速度v0,环沿杆上滑h高后速度恰好为0,则在环沿杆上滑的过程中箱子对地面的压力有多大?
提示 由于环沿杆下滑和上滑时的加速度与箱子不同,因此应分别以环和箱子为研究对象,分析它们的运动情况和受力情况,并找出它们之间的联系。
解析 (1) 环沿杆下滑时,环受到的摩擦力方向向上,箱子(即杆)受到的摩擦力方向向下,故箱子受到地面的支持力 FN=Mg+F。
根据牛顿第三定律可知,箱子对地面的压力
FN’= FN=Mg+F。
(2) 环以加速度a加速下滑,由牛顿第二定律有
mg-F=ma,
故环受到的摩擦力 F=m(g-a)。
直接应用(1)的结果,可得箱子对地面的压力
FN’ =Mg+F=Mg+ m(g-a)=(M+m)g-ma。
(3) 环沿杆上滑时,环受到的摩擦力方向向下,箱子(即杆)受到的摩擦力方向向上,故箱子受到地面的支持力 FN=Mg-F。
根据牛顿第三定律可知,箱子对地面的压力
FN’= FN=Mg-F。
(4) 由运动学公式 v02=2ah,
可得环沿杆上滑做匀减速运动的加速度大小为

由牛顿第二定律有 mg+F=ma,
故环受到的摩擦力 F=m(a-g)。
直接应用(3)的结果,可得箱子对地面的压力
FN’ =Mg-F=Mg-m(a-g)=(M+m)g-ma=(M+m)g- 。
点悟 上述将圆环和箱子分隔开来,分别对它们进行受力分析和运动分析的方法,称为隔离法。在问题涉及多个物体组成的系统时,常常运用隔离法分析求解。
本题第(2)小题也可采用整体法分析:圆环和箱子组成的系统受重力(M+m)g和地面的支持力FN的作用。因为圆环向下的加速度a应由系统的合外力提供,故有
(M+m)g-FN=ma,
解得 FN=(M+m)g-ma。
由牛顿第三定律可得,箱子对地面的压力
FN’ = FN=(M+m)g-ma。
本题第(4)小题在求得环沿杆上滑做匀减速运动的加速度大小后,也可采用整体法分析,请自行解答。
例6 一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭。图4—40是从探测器发射到落回地面全过程的速度图象。已知该行星表面没有大气,不考虑探测器总质量的变化,求:
(1) 探测器在行星表面上升达到的最大高度 H;
(2) 该行星表面附近的重力加速度g;
(3) 发动机正常工作时的推力F。
提示 题给速度图象中,B点时刻是速度正负的转折点,故B点时刻探测器升至最大高度;A点时刻是加速度正负的转折点,故A点时刻是发动机刚关闭的时刻。
解析 (1) 0~25s内探测器一直处于上升阶段,上升的最大高度在数值上等于△OAB的面积,即 H= ×25×64 m=800 m。
(2) 9 s末发动机关闭,此后探测器只受重力作用,故在这一阶段的加速度即为该行星表面的重力加速度,由图象得 g= = m/s2=4 m/s2,
(3) 由图象知探测器加速上升阶段探测器的加速度为
a= m/s2,
根据牛顿运动定律,得 F-mg=ma,
所以发动机正常工作时的推力 F=m(g+a)=1.67×104 N。
点悟 本题是应用牛顿运动定律求解的图象类问题,仍属于已知运动求力的问题,只是将物体的运动情况由图象反映出来。此类问题求解的关键是,要根据图象的特点,挖掘图象中的隐含条件,把图象与物体的实际运动对应起来进行研究。

㈡ 高中物理 牛顿第二定律

牛顿第二定律
(1)内容:物体加速度的大小跟它所受的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
(2)表达式:F=ma 或 a=F/m(其中m为物体的质量,a为物体的加速度,F为物体所受的合力)
(3)注意一点:F=ma 是当公式中F、m、a的单位分别是国际单位牛顿、千克、米每二次方秒才成立,如果不是国际单位,牛顿第二定律公式则为F=kma,k是一个比例系数。
2、对牛顿第二定律的理解
(1)因果性:有力才有加速度,没力就没有加速度,力是产生加速度的原因;打个不是很恰当的比方,力和加速度的关系就像你和你爸妈的关系,力就是你爸妈,加速度就是你,因为有你爸妈才有你,没有你爸妈就一定没有你,你爸妈是产生你的原因。
(2) 矢量性:由公式可知,加速度的方向由物体所受合力方向决定,加速度方向与合力方向相同。
(3)独立性:作用在物体上的每个力都将独立的产生各自的加速度,都遵循牛顿第二定律,物体实际运动的加速度合力提供(或者每个力产生的加速度的矢量和),每个力也会在自己的方向上产生独立的加速

(4)瞬时性:物体的加速度与物体所受的合力总是同时存在、同时变化、同时消失。
(5)牛顿第二定律只能解决惯性参考系中宏观低速的运动问题。
强调的方面:
a、物体加速度的方向由物体所受的合外力决定,所以,如果合力的方向和速度方向相同,那么物体肯定做加速运动,反之成立;只要有合力,不管速度如何,一定就有加速度。
b、加速度的方向与物体运动的方向无关,只由合外力方向决定,并且和合外力方向相同。
c、加速度是运动学和力学的桥梁,从力学过度到运动学或运动学过度到力学,一定要加速度
是加速度的定义式,而a=F/m是加速度的决定式。
3、利用牛顿第二定律解题的一般步骤和常用方法
(1)一般步骤:
a、首先明确对象,正确选取你要研究的物体。
b、受力分析:根据物体的运动情况,画出物体运动情景草图进行受力分析。
c、求合力:利用平行四边形定则或三角形定则求合力,选取正方向(一般以初速度方向为正方向)。
d、列出牛顿第二定律方程并求解
(2)常用方法
a、矢量合成法:利用利用平行四边形定则或三角形定则求合力,根据牛顿第二定律求物体的加速度,加速度方向与合理方向相同。
b、正交分解法:利用正交分解把物体所受的各个力分解到互相垂直的坐标系上,然后分别求横坐标和纵坐标的合力,一般情况我们把物体运动的方向作为横坐标,垂直物体运动的方向作为纵坐标。

㈢ 牛顿第二定律的一般解题步骤

(1)正确的受力分析。 对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。
(2)受力分析的依据。
①力的产生条件是否存在,是受力分析的重要依据之一。
②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。
③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。
(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。
①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)
③根据牛顿第二定律列方程,求出物体的加速度。 ④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
(2)由物体的运动情况求解物体的受力情况。 解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:
①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
②题目中求的力可能是合力,也可能是某一特定的作用力。即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力。

㈣ 应用牛顿第二定律求解加速度的常用方法有哪些

根据牛顿第二定律,已知物体的受力情况可以求出加速度。
1.确定研究对象,进行受力分析,运动分析。如果有多个物体,相对静止的用整体法(即把多个物体当成一个,求它们的共同加速度),相对运动的用隔离法,要先分析研究对象的受力(尤其不要忽略重力和静摩擦力)。
2.表示出合力,注意方向和单位。
3.用a=F/m求出加速度,注意F一定是合力。
再看看别人怎么说的。

㈤ 高一上学期物理 牛顿第二定律解决哪两类问题。 牛顿第二定律解题的一般步骤。

牛顿第二定律解决两类问题:一,已知物体的受力情况求解物体的运动量。二,已知物体的运动情况求解物体受的力!
牛顿第二定律解题的一般步骤:1,审题,确定研究对象;2,对研究对象进行受力情况分析;3进行运动情况分析;4,列方程(或方程组);5,解方程(或方程组);6,讨论答案的正确性。

㈥ 在牛顿第二定律的应用中怎样分析物体的受力情况,接下来怎样分解力呢

分析受力一般是先保守力(比如重力,电场力)后非保守力(比如摩擦力)

然后遵循最少分解原则,就是分解的力数量越少越好,一般情况下是正交分解。偶尔在存在长度关系时使用相似三角形分解(力构成的三角形和已知长度构成的三角形)
也可在判断出加速度方向后,沿加速度方向和垂直于加速度方向正交分解。

最后就是根据运动状态及牛二列出受力关系式

㈦ 在牛顿第二定律的应用中怎样分析物体的受力情况,接下来怎样分解力呢

分析受力一般是先保守力(比如重力,电场力)后非保守力(比如摩擦力)
然后遵循最少分解原则,就是分解的力数量越少越好,一般情况下是正交分解.偶尔在存在长度关系时使用相似三角形分解(力构成的三角形和已知长度构成的三角形)
也可在判断出加速度方向后,沿加速度方向和垂直于加速度方向正交分解.
最后就是根据运动状态及牛二列出受力关系式

㈧ 牛顿第二定律

定律内容 物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。即动量对时间的一阶导数等于外力之和。 牛顿第二定律说明了在宏观低速下,∑F∝a,∑F∝m,用数学表达式可以写成∑F=kma,其中的k是一个常数。但由于当时没有规定1个单位的力的大小,于是取k=1,就有∑F=ma,这就是今天我们熟悉的牛顿第二定律的表达式。

内容
物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。(网络名片中的定义是不准确的。) 在国际单位中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1m/s^2;加速度的力,叫做1N。即1N=1kg·m/s^2。
编辑本段3.公式
F合=ma (单位:N(牛)或者千克米每二次方秒)N=(kg×m)/(s×s) 牛顿发表的原始公式:F=d(mv)/dt(见 自然哲学之数学原理) 动量为p的物体,在合外力为F的作用下,其动量随时间的变化率等于作用于物体的合外力。 用通俗一点的话来说,就是以t为自变量,p为因变量的函数的导数,就是该点所受的合外力。 即:F=dp/dt=d(mv)/dt (d即德尔塔,△) 而当物体低速运动,速度远低于光速时,物体的质量为不依赖于速度的常量,所以有 F=m(dv/dt)=ma 这也叫动量定理。在相对论中F=ma是不成立的,因为质量随速度改变,而F=d(mv)/dt依然使用。 由实验可得在加速度一定的情况下F∝m,在质量一定的情况下F∝a (只有当F以N,m以kg,a以m/s^2为单位时,F合=ma 成立)
编辑本段4.几点说明
⑴牛顿第二定律是力的瞬时作用规律。力和加速度同时产生,同时变化,同时消失。 ⑵F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。 ⑶根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。 ⒋牛顿第二定律的六个性质: ⑴因果性:力是产生加速度的原因。若不存在力,则没有加速度。 ⑵矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F= ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。 根据他的矢量性可以用正交分解法讲力合成或分解。 ⑶瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小或方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 ⑷相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。 ⑸独立性:物体所受各力产生的加速度,互不干扰,而物体的实际加速度则是每一个力产生加速度的矢量和,分力和分加速度在各个方向上的分量关系,也遵循牛顿第二定律。 ⑹同一性:a与F与同一物体某一状态相对应。
编辑本段5.牛顿第二定律的使用
⒈当考察物体的运动线度可以和该物体的德布罗意波长相比拟时,由于粒子运动不准确性原理(即无法同时准确测定粒子运动的方向与速度),物体的动量和位置已经是不能同时准确获知的量了,因而牛顿动力学方程缺少准确的初始条件无法求解。也就是说经典的描述方法由于粒子运动不准确性原理已经失效或者需要修改。量子力学用希尔伯特空间中的态矢概念代替位置和动量(或速度)的概念(即波函数)来描述物体的状态,用薛定谔方程代替牛顿动力学方程(即含有力场具体形式的牛顿第二定律)。 用态矢代替位置和动量的原因是由于测不准原理我们无法同时知道位置和动量的准确信息,但是我们可以知道位置和动量的概率分布,测不准原理对测量精度的限制就在于两者的概率分布上有一个确定的关系。 ⒉由于牛顿动力学方程不是洛伦兹协变的,因而不能和狭义相对论相容,因而当物体做高速移动时需要修改力,速度,等力学变量的定义,使动力学方程能够满足洛伦兹协变的要求,在物理预言上也会随速度接近光速而与经典力学有不同。 但我们仍可以引入“惯性”使牛顿第二定律的表示形式在非惯性系中使用。 例如:如果有一相对地面以加速度为a做直线运动的车厢,车厢地板上放有质量为m的小球,设小球所受的合外力为F,相对车厢的加速度为a',以车厢为参考系,显然牛顿运动定律不成立.即 F=ma'不成立 若以地面为参考系,可得 F=ma中,a对地是小球相对地面的加速度. 由运动的相对性可知:a对地=a+a' 将此式带入上式,有 F=m(a+a')=ma+ma' 则有 F+(-ma)=ma' 故此时,引入Fo=-ma,称为惯性力,则F+Fo=ma' 此即为在非惯性系中使用的牛顿第二定律的表达形式. 由此,在非惯性系中应用牛顿第二定律时,除了真正的和外力外,还必须引入惯性力Fo=-ma,它的方向与非惯性系相对惯性系(地面)的加速度a的方向相反,大小等于被研究物体的质量乘以a。 注意: 当物体的质量m一定时,物体所受合外力F与物体的加速度a是成正比的是错误的,因为是合力决定加速度。但当说是物体的质量m一定时,物体的加速度a与物体所受合外力F成正比时则是正确的。 解题技巧: 应用牛顿第二定律解题时,首先分析受力情况,运动图景,列出各个方向(一般为[1])的受力的方程与运动方程。 同时,寻找题目中的几何约束条件(如沿绳速度相等等)列出约束方程。联立各方程得到物体的运动学方程,然后依据题目要求积分求出位移、速度等。
编辑本段6.牛顿第二定律的应用
牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三大法宝之一,同时也是高考考查的重点和热点。因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。
一、连接体问题
两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统,即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。 当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。 例1:如图1所示的三个物体质量分别为m1.m2和m3。带有滑轮的物体放光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。为使三个物体无相对滑动,试求水平推力F的大小。
解答:本题是一道典型的连接体问题。 由题意可知,三个物体具有向右的相同的加速度,设为a,把它们三者看成一个整体,则这个整体在水平方向只受外力F的作用。 由牛顿第二定律,即: F=(m1+m2+m3)a ……① 隔离m2,受力如图2所示 在竖直方向上,应有:T=m2g ……② 隔离m1,受力如图3所示 在水平方向上,应有:T′=m1a……③ 由牛顿第三定律 T′=T ……④

联立以上四式解得:
点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。其方法一般采用隔离和整体的策略。隔离法与整体法的策略,不是相互对立的,在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。
二、瞬时性问题
当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。 例2:如图4所示,木块A与B用一轻弹簧相连,竖 直放在木块C上。三者静置于地面,它们的质量之比是1∶2∶3。设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度aA、aB分别是多少?
解答:本题所涉及到的是弹力的瞬时变化问题。 原来木块A和B都处受力平衡状态,当突然抽出木块C的瞬间,C给B的支持力将不复存在,而A、B间的弹簧还没有来得及发生形变,仍保持原来弹力的大小和方向。 分析此题应从原有的平衡状态入手 设木块A的质量为m,B的质量则为2m。 抽出木块C前木块,A、B的受力分别如图5.6所示。

抽出木块C后,A的受力情况在瞬间不会发生变化,仍然保持原有的平衡状态,则aA=0。 抽出木块C后,对B木块来说,N消失了。则
(方向竖直向下)
(方向竖直向下) 点评:解答瞬时性问题要把握两个方面:一是区别“刚性绳”和“弹性绳”,当受力发生变化时前者看成形变为零,受力可以突变;后者的形变恢复需要时间,弹力的大小不能突变。二是正确分析物体在瞬间的受力情况,应用牛顿第二定律求解。
三、临界问题
某一物理现象转化为另一物理现象的转折状态叫临界状态,临界状态可理解为“恰好出现”或“恰好不出现”的交界状态。处理临界问题的关键是要详细分析物理过程,根据条件变化或状态变化,找到临界点或临界条件,而寻找临界点或临界条件常常用到极限分析的思维方法。 例3:如图7所示,倾角为α的光滑斜面体上有一个小球m被平行于斜面的细绳系于斜面上,斜面体放在水平面上
⑴要使小球对斜面无压力,求斜面体运动的加速度范围,并说明其方向。 ⑵要使小球对细绳无拉力,求斜面体运动的加速度范围,并说明其方向。 解答:为了确定小球对斜面无压力或对细绳无拉力时斜面体的加速度,应先考虑小球对斜面体或对细绳的弹力刚好为零时的受力情况,再求出相应的加速度。 ⑴分析临界状态, 依题则有: Tsinα=mg Tcosα=ma0 即可得a0=gcotα 则斜面体向右运动的加速度 a≥a0=gcotα(方向水平向右) ⑵分析临界状态,受力如图9所示。
依题意则有
(方向水平向左)即可得:

则斜面体向左运动的加速度 点评:临界问题和极值问题是中学物理习题中的常见题型,它包含着从某一物理现象转变为另一种物理现象,或从某一物理过程转入另一物理过程的转折状态。在这个转折点上,物理系统的某些物理量正好有临界值。常用“最大”“最小”“刚好”“恰好”等词语指明或暗示题中要求的临界值或范围。我们通常用极限分析法,首先找出发生连续性变化的物理量,将其变化推向一个或两个极限,从而暴露其间存在的状态与条件的关系,然后应用物理规律列式求解。

阅读全文

与牛顿第二定律解题的受力分析方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:61
五菱p1171故障码解决方法 浏览:857
男士修护膏使用方法 浏览:543
电脑图标修改方法 浏览:605
湿气怎么用科学的方法解释 浏览:536
910除以26的简便计算方法 浏览:804
吹东契奇最简单的方法 浏览:701
对肾脏有好处的食用方法 浏览:97
电脑四线程内存设置方法 浏览:511
数字电路通常用哪三种方法分析 浏览:12
实训课程的教学方法是什么 浏览:524
苯甲醇乙醚鉴别方法 浏览:81
苹果手机微信视频声音小解决方法 浏览:699
控制箱的连接方法 浏览:74
用什么简单的方法可以去痘 浏览:788
快速去除甲醛的小方法你知道几个 浏览:802
自行车架尺寸测量方法 浏览:123
石磨子的制作方法视频 浏览:151
行善修心的正确方法 浏览:402
薯仔炖鸡汤的正确方法和步骤 浏览:275