导航:首页 > 研究方法 > 应力强度分析方法

应力强度分析方法

发布时间:2022-12-11 01:16:07

1. 压力容器分析设计ansys分析结果中的应力怎么分类

分类设计法:

1,结构设计。根据设计要求确定压力容器的结构形式,利用分析设计标准中的厚度计算公式或图表,计算壳体、封头、法兰等受压元件的厚度,再详细考虑需要作应力分析的部位。
2、建立力学分析模型。根据容器结构、载荷及边界条件的复杂性适用合适的分析方法,较简单的可用解析法,复杂的采用数值方法。力学分析模型包括几何模型、容器所承受的载荷及边界条件。
3、应力分析。按弹性理论分析容器各重要部位的应力。
4、应力分类。按计算出的应力按P(Pm、Pl、Pb)、Q及F进行分类。
5、应力强度计算。
6、应力强度校核。即安定性分析

应力分类法优点:

1、简单。采用工程设计人员非常熟悉的弹性应力分析方法。应力评定时直接给出各类等效应力的许用值,因而应力分类后的强度校核与常规设计类似
2、通用。采用有限元软件可以对任何结构形式和载荷工况进行弹性应力分析
3、保守。各类应力的许用极限已经设在保守的水平上,因此总体上是一种偏保守的设计方法
4、成熟。应用很多年了
摘自《压力容器应力分析设计方法的进展和评述》陆万明 寿比南 杨国义

2. 应力,应变怎么测试

主要的测试方法有电测法、光纤光栅法、振弦式应变测量等

一般是指在建构筑物施工过程中,如钢结构安装、卸载、改造、加固,混凝土浇筑等过程,采用监测仪器对受力结构的应力变化进行监测的技术手段,在监测值接近控制值时发出报警,用来保证施工的安全性,也可用于检查施工过程是否合理。
★静态应力应变测试目的
a)
获得结构或构件的应力应变分布规律及应力集
中状况;
b)
检验结构或构件的强度储备;
c)
验证结构或构件设计的合理性。
★动态应力应变测试目的
a)
确定动态应变随时间变化的规律,并对其进行
频谱分析,根据统计特性研究结构或构件强度、
刚度;
b)
验证结构或构件设计的合理性。
根据以往经验来分析我们目前应力测试涉及到以下领域:
1、宝钢150m3N2球罐
水压试验应力测试。
2、挖掘机重要构件的应力测试。
3、屋面板加载状态下的应力测试。
4、紧密计量泵合拢时的受力测试。
5、某重工业厂房顶升纠偏过程中的安全监测。

3. 各种材料应力的检测方法都有哪些

材料应力的检测方法与设备有很多,其中新拓三维XTDIC三维全场应变测量系统基于数字图像相关算法,为试验者提供非接触式动态全场三维应变及位移测量,应变测量范围从0.005%-2000%以上。
XTDIC可直接测量全场振幅、振动信息 ;可用于实时监测 ;试验过程可追溯、可评估。基于自主研发算法,结合客户现场试验情况,可为客户提供定制开发服务。客户需求因行业、工况而有一定的差异,产品定制成为客户的关注点,新拓三维提供的定制化服务。

4. 实验应力分析的实验方法

实验应力分析方法目前已有电学的、光学的、声学的以及其他方法。 有电阻、电容、电感等多种方法,而以电阻应变计测量技术应用较为普遍,效果较好。
①电阻应变计法
电阻应变计是一种能将构件上的尺寸变化转换成电阻变化的变换器,一般由敏感栅、引线、粘结剂、基底和盖层构成。将它安装在构件表面。构件受载荷作用后,表面产生微小变形,敏感栅随之变形,致使应变计产生电阻变化,其变化率和应变计所在处构件的应变成正比 。测出电阻变化,即可按公式算出该处构件表面的应变,并算出相应的应力。依敏感栅材料不同,电阻应变计分金属电阻应变计和半导体应变计两大类。另外还有薄膜应变计、压电场效应应变计和各种不同用途的应变计,如温度自补偿应变计、大应变计、应力计、测量残余应力的应变化等。
②电容应变计法
电容应变计是一种能将构件上的尺寸变化转换成电容变化的变换器。试件变形时,两电容极片间距随之变动,引起电容变化。测出电容变化率,按公式可算出试件的应变 。电容 应 变计有弓形 、平板式和杆式等类型,多用于发电厂的管道、设备或核能设备的长期高温应变测量,监视裂纹的形成和发展,以及对航空航天构件材料进行高温性能测试等。 此法发展较快,方式较多,逐渐形成光测力学。经典的光弹性实验技术已从二维、三维模型实验(如光弹性法、光弹性应力冻结法)发展成为能用于工业现场测量的光弹性贴片法,用来解决扭转和轴对称问题的光弹性散光法,研究应力波传播和热应力的动态光弹性法和热光弹性法,进行弹-塑性应力分析的光塑性法 , 以及研究复合材料力学的正交异性光弹性法 。除了上述 经典方法外 ,还有云纹法、云纹干涉法、全息干涉法、散斑干涉法、全息光弹性法、焦散线法等。此外还有80年代发展起来的光纤传感技术和数字图像处理技术等。
①光弹性法
运用光学原理研究弹性力学问题的一种实验应力分析方法。某些各向同性透明的非晶体高分子材料受载荷作用时,呈现光学各向异性,使一束垂直入射偏振光沿材料中的两主应力方向分解成振动方向互相垂直、传播速度不同的两束平面偏振光;卸载后,又恢复光学各向同性。这就是所谓的暂时双折射效应。用具有这种效应的透明塑料按一定比例制成零构件模型,置于偏振光场中,施加一定的载荷,模型上便产生干涉条纹。通过计算,就能确定模型受载时各部位的应力大小和方向。此法对应力集中区和三维内部应力问题的求解特别有效。
②云纹法
通过测定云纹并对其进行分析以确定试件的位移场或应变场的一种实验分析法。其原理是,当栅板和栅片重叠时,因栅片牢固地粘贴在试件表面而随之变形,遂使栅板和栅片上的栅线因几何干涉而产生条纹即云纹。可通过云纹测定物体表面的等高线,以及板壳的挠度分布等。
③云纹干涉法
几何云纹法与光学干涉法相结合的一种实验分析法。将高密度衍射光栅精确复制在物体表面,并用激光束照射该光栅,便可通过光栅衍射波干涉形成的条纹图,获得物体表面的变形信息 。此法灵敏 度高 ,条纹对比度好;能进行全场分析,实时观测,量程几乎不受限制。
④全息干涉法
利用全息照相获得物体变形前后的光波波阵面相互干涉所形成的干涉条纹图进行物体变形分析的一种方法。全息照相是一种不用透镜而能记录和再现被摄物体的三维图像的照相方法。它能把来自物体的光波波阵面的振幅和相位信息以干涉条纹形式记录下来,又能在需要时再现出来,以观察到物体的三维图像。全息干涉法的主要内容是研究条纹图的形成、条纹的定位以及对条纹图的解释。对于具有漫反射表面的不透明物体,条纹图表示物体沿观察方向的等位移线;对于透明的光弹性模型(如有机玻璃),则表示模型中主应力之和等于常数的等和线。常用的全息干涉法有双曝光法、即时法和均时法。
⑤散斑干涉法
精确检测物体表面各点位移的光学测试法。激光照射在漫反射物体表面时,由反射光波干涉形成的散斑随物体变形或位移而变化。采用适当装置,通过双曝光法把变形前后的散斑记录在一张全息底片上,经显影定影后便可获得存储物体表面各点位移信息的散斑图。用激光照射散斑图,就显出散斑干涉条纹。在进行光学傅里叶变换信息处理后,便可分析出位移信息。
⑥焦散线法
利用焦散线测量应变(或应力)奇异场力学参数的一种光学实验法。当一束光垂直照射在一块受载的带有边缘裂纹透明薄板试件的局部高应变场区域时,由于域内各处厚度的变化十分悬殊,使透过的光线发生强烈偏折和汇聚,在试件与像屏间的空间形成一个明亮的曲面,称为焦散面。若用一个半透明屏幕切割此焦散面,就可看到一条明亮的曲线,即焦散线。通过光学和力学分析,可将焦散线的几何参数与奇异场的力学参数间的关系建立起来,从而通过测量焦散线的几何形状,可求出有关的力学量。
⑦光纤传感技术
用光纤作“传”和“感”的元件,当光通过光纤时,光的某一特性(如光强、相位、波长、偏振等)受到被测物理量的影响而发生变化,利用这一变化即可测得诸如声压、电场、磁场、位移、加速度、应变、温度等。光纤传感器的独特优点是:光纤是一种绝缘介质,不受电磁干扰,能耐高温高压,能在腐蚀和易燃、易爆等恶劣环境下工作;光纤灵敏度高,能探射极弱的信号和微小的信号变化;可做成便于应用的任何形状;光纤作为传输介质,损耗低 ,可作远距离遥测和遥控;能构成对各种物理量(如声、电 、磁、温度、转动等)微扰敏感的器件。因此,光纤传感器在传感器领域内占有重要地位。
⑧数字图像处理技术
利用电子计算机对图像信息进行采集、处理和分析的图像信息处理技术。在实验力学领域内,主要用来分析处理光测力学中光弹性法、云纹干涉法、全息干涉法、散斑干涉法等的光学干涉条纹信息,获取全面而有效的实验数据,实现光测力学的图像信息采集自动化和数据分析程序化。 有声弹性法、声发射技术和声全息法等。
①声弹性法
利用超声剪切波的双折射效应测量应力的一种方法。超声波在有应力的介质中传播时,其剪切波沿两主应力方向发生偏振,两偏振波以不同速度传播。实验和理论分析得到应力-光学定律 : 沿主应力方向的两个超声剪切波的速度差与两主应力差成正比。该比例系数称声弹性系数,与材料的弹性常数有关。用此法可测量非透明材料的内部应力,并可测量焊接件的残余应力。
②声发射技术
构件在受力过程中产生变形或裂纹时 ,以弹性波形式释放出应变能的现象称为声发射;利用接收的声发射信号,对构件进行动态无损检测的技术称为声发射技术。此技术可用来检测裂纹和研究腐蚀断裂过程,以及监视构件的疲劳裂纹扩展等;还可用来评价构件的完整性,判断结构的危险程度。
③声全息法
20世纪60年代发展起来的成像技术。其原理和全息照相相同,即利用波的干涉原理记录物波的振幅和相位,并利用衍射原理再现物体的像。它的不同处是用超声波代替光波。此法的成像分辨率高,用于无损检验,可显示试件内部缺陷的形状和大小。 常见的有脆性涂层法、X射线应力测定法、比拟法等。
①脆性涂层法
把特殊的涂料喷涂在工程构件表面,以确定主应力方向和估计主应力大小的一种全场实验方法。涂料喷涂到构件表面后,经过处理,就在构件表面结成脆性层。当此构件由于加载而产生的应变在某点达到一定的临界值时,该点涂层就出现一条与主应力方向垂直的裂纹。连接同一载荷下所有裂纹的端点,其连线上各点是有相等的应力值,称为等应力线。通过逐级加载,可得几乎遍布整个涂层表面的裂纹图和对应于不同载荷的等应力线,从而可直接观察到构件表面各处主应力大小和方向的分布状况。此法主要用来测出最大应力区和主应力方向,作为电阻应变计测量技术的辅助方法。
②X射线应力测定法
利用X射线穿透金属晶格时发生衍射的原理,测量衍射角的变化并通过布拉格公式确定晶格的变化,从而算出金属构件表面应力的一种实验方法。此法可无损地测量构件中的应力或残余应力,特别适于测量薄层和裂纹尖端的应力分布,是检验产品质量,研究材料强度,选用较佳工艺的一种重要手段。
③比拟法
根据两种物理现象之间的比拟关系,通过一种物理现象的观测试验,研究另一种物理现象的方法。如果两种物理现象中存在以形式相同的 数 学方程 描 述的物理量,它们之间便存在比拟关系,就可用一种较易测试的物理现象模拟另一种难以测试的物理现象,从而使试验工作大为简化。在实验应力分析领域中,常用的有薄膜比拟、电比拟、电阻网络比拟、沙堆比拟。

5. 应力应变测试常用的方法有哪些

常见的应力测试方法
应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。
应力测试一般的方法是将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片其实就是应用了这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅所使用的是铜铬合金材料,这种材料其电阻变化率为常数,它与应变成正比例关系。
我们通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。
对于应力仪或者应变仪,关键的指标有:
测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。

6. 什么是应力强度

1、所谓“应力强度”就是指“应力大小”单位也就是单位面积上的载荷,如:N/M^2(牛顿/平方米)。“应力强度”不是一个有别与
2、“应力”的大小也就是“应力”的强度,都是一个概念,就像“电动机”与“马达”一样
3、有一点不一样的是:“强度”包含有“能量、能力”的意思,是一个形容词,而“大小”却指向这种“能量”在“单位”上的“多少”而已

7. 裂纹尖端的应力强度因子及裂纹扩展判据

一、应力强度因子K与K的计算

断裂力学认为当裂纹尖端的应力强度因子达到材料的断裂韧性时,裂纹就扩展,否则裂纹就不扩展或停止扩展。因此,在利用断裂力学来研究裂纹的扩展问题时,应力强度因子的精确计算是至关重要的。

考虑Ⅰ、Ⅱ型混合裂纹的扩展问题,裂纹尖端的应力场和位移场分别为(范天佑,2003)

岩石断裂与损伤

式中:G为剪切模量;对于平面应力问题k=(3-ν)/(1+ν),对于平面应变问题k=1-4ν,ν为泊松比;K和K分别为Ⅰ型和Ⅱ型裂纹尖端的应力强度因子。

下面综合利用数值流形方法与奇异边界元法模拟裂纹扩展(Zhang G X et al.,1999),其中应力场和位移场通过二阶流形元方法计算,裂纹尖端的应力强度因子通过奇异边界元计算。具体计算步骤为:

(1)利用二阶流形元方法求出如图12-4(a)所示的含有不连续面的结构的应力和位移。

(2)限定一个至少包含一条裂纹的一个子区域作为问题分析的对象,利用奇异边界元法来求解。把利用二阶流形元法求出的沿子区域边界上的位移作为约束条件,并考虑裂纹面上的无拉力条件,如图12-4(b)所示。

(3)计算出裂纹尖端的应力强度因子,判断裂纹是否扩展,如果裂纹扩展则应更新物理网格和数学网格重新计算。

(4)对下一个这样的子区域进行以上计算。

应力强度因子的计算方法:对于含有一条裂纹的子区域如图12-4(b)所示,把利用数值流形方法求出的边界位移u-(η)、v-(η)作为其已知的边界位移,这就成了一个边值问题,可采用间接边界元方法来求解。为了形成边界积分方程,需要对下面两类问题的基本解进行讨论。应力强度因子的计算方法:对于含有一条裂纹的子区域如图12-4(b)所示,把利用数值流形方法求出的边界位移u-(η)、v-(η)作为其已知的边界位移,这就成了一个边值问题,可采用间接边界元方法来求解。为了形成边界积分方程,需要对下面两类问题的基本解进行讨论。应力强度因子的计算方法:对于含有一条裂纹的子区域如图12-4(b)所示,把利用数值流形方法求出的边界位移u-(η)、v-(η)作为其已知的边界位移,这就成了一个边值问题,可采用间接边界元方法来求解。为了形成边界积分方程,需要对下面两类问题的基本解进行讨论。应力强度因子的计算方法:对于含有一条裂纹的子区域如图12-4(b)所示,把利用数值流形方法求出的边界位移u-(η)、v-(η)作为其已知的边界位移,这就成了一个边值问题,可采用间接边界元方法来求解。为了形成边界积分方程,需要对下面两类问题的基本解进行讨论。

图12-4 裂纹尖端的应力强度因子求解示意图

1.无限域内的静力学基本解

假设一点载荷作用于复合平面内的一点z=s,如图12-5所示。在与X方向成α角的x1 y1坐标系内一点z处的应力和位移可由Kelvin基本解求得

岩石断裂与损伤

其中:G为剪切模量,对于平面应变问题κ=3-4ν,平面应力问题κ=(3-ν)/1+ν。

图12-5 点载荷作用的无限域平面

图12-6 点载荷作用的带裂纹无限域平面

2.点载荷作用于裂纹表面时的基本解

为了确定裂纹尖端的奇异性,应该采用具有奇异性的基本解。对于一个含有长度为2a的裂纹的无限域问题,当在裂纹表面z=s处受到一对力P=Fy-iFx作用时,如图12-6所示,在x1-y1坐标系内一点z处的应力和位移可通过求解Cauchy问题求得

岩石断裂与损伤

其中:

岩石断裂与损伤

3.边界积分方程

对于如图12-4(b)所示的子区域,假定有一个分布的虚拟力Q(s)作用于边界Γ,和一个虚拟力P(s)作用于裂纹表面。那么在该子区域中z点的应力和位移可以通过积分方程式(12-5)和式(12-6)来确定:

岩石断裂与损伤

假设由数值流形方法计算出来的作用于边界Γ上的位移为:,其中,(η)和分别为边界Γ上η点的法向和切向位移。假设式(12-7)中的点z趋向于边界Γ上的η点,即:,这样就可以得到一个在边界Γ上满足已知位移的积分方程:

岩石断裂与损伤

岩石断裂与损伤

另外一个积分方程可以通过使用裂纹边界条件来获得。根据不同形式的裂纹扩展模式,该方程的形式也相应不同。

对于Ⅰ型和张-剪型裂纹问题,在裂纹表面的法向和切向方向都应该满足无拉力条件。采用类似于式(12-10a)中的方法,通过假定式(12-9)中的点z趋向于裂纹表面上的点ξ,并假定裂纹表面上的法向应力和切应力均为零,又可以得到如下的积分方程:

岩石断裂与损伤

对于闭-剪型裂纹问题,裂纹上下表面上的法向位移应该是相同的,而且在切向方向上还应该满足无拉力的自由边界条件:

岩石断裂与损伤

其中:。

利用边界元法求解方程式(12-10)即可得到Q(s)和P(s)。裂纹尖端的应力强度因子K和K即可通过式(12-11)求得

岩石断裂与损伤

在利用通常的数值分析方法如有限元方法来计算裂纹尖端的应力强度因子时,为了捕捉裂纹尖端的奇异性,通常需要加密裂纹尖端的网格划分。而对于本节中所采用的方法,由于奇异面积已经被限制在裂纹尖端附近的一个很小的区域内,并且它对远区域内的应力和位移的影响都是很小的。同时该方法中的应力和位移首先是利用二阶数值流形方法求得,并且在远离裂纹尖端处其精度也可以得到保证。利用已经求出的应力和位移,根据奇异边界元方法就可以求出裂纹尖端的应力强度因子,即使在裂纹尖端处采用较粗的计算网格,利用这种方法也能求得精确很高的应力强度因子。

二、裂纹扩展判据

平面问题中的裂纹体受到外载作用之后裂纹面有张开和闭合两种情况出现。无论裂纹面张开或闭合,只要裂纹面上的点有相对位移,裂纹尖端就有应力集中现象出现,这时裂纹体的破坏就不能用传统的强度理论准则来判断,而必须采用相应的断裂力学准则来考虑。

实际物体中的裂纹类型往往不是单一性的,通常在裂纹尖端附近可能同时存在着Ⅰ型、Ⅱ型、Ⅲ型的裂纹应力。这种复合型裂纹的扩展与单纯张开型裂纹的不同之处在于裂纹的扩展往往不是沿着原裂纹面的方向,而是沿着与原裂纹面成某一角度的方向进行。为了解决这一问题,提出了许多种复合型裂纹的脆性断裂理论。

当裂纹尖端的应力强度因子为已知时,可以采用最大环向应力理论来建立复合裂纹的断裂准则。环向应力理论假设:裂纹沿环向应力取最大值的方向开始扩展,裂纹的扩展是由于最大环向应力σ达到临界值而产生的。

由式(12-3)可以得到Ⅰ-Ⅱ型裂纹尖端的环向极坐标应力分量表达式:

岩石断裂与损伤

扩展方向角θ0满足,即

岩石断裂与损伤

由式(12-13)求出裂纹的开裂角θ0后,代入式(12-12)式可求出r=r0圆周上的最大环向应力为

岩石断裂与损伤

于是可以建立相应的断裂准则:

岩石断裂与损伤

式中,σθc为最大环向应力的临界值,它可以通过Ⅰ型裂纹的断裂韧度KⅠC来确定:

岩石断裂与损伤

综合考虑式(1214)~式(1216),可以得到按最大环向应力理论建立起来的Ⅰ-Ⅱ复合型裂纹的断裂准则:

岩石断裂与损伤

式中:Keq和KⅠC分别为裂纹尖端的等效应力强度因子和断裂韧度。

8. 应力如何进行分级

将力学性质类似的结构材,归为一个等级的工作。从任何一种树种的原木锯出的成材,即使尺寸规格相同,但它们之间的强度差异有时会相差几倍。为了简化成材分级和经济有效地利用木材,将某一树种或两种以上的一组树种主要强度性质相近的成材,归入一个应力级。同一应力级的成材应该符合一种或多种划分标准,并具有工程设计所需要的一套容许应力以及一个等级名称。木材应力等级的划分法有直观分级法和机械应力分级法两种。

直观分级法

结构材表面足为肉眼所能判别的特征为依据的分级法。也是最古老的应力分级法。直观分级法是以木材密度、腐朽、心材和边材、斜纹、节子、裂缝和劈裂等的大小、程度或数量而定。这些特征对强度性质的影响称为强度比;对弹性模量的影响称为品质因素。直观分级木材的力学性质是以实际尺寸大小的结构材的主要强度值为基础,而不是无疵、纹理通直的木材的强度值。直观分级所依据的木材主要强度值是从无疵木材的强度值,并折减直观等级规定结构材容许缺陷的影响推导出来的。

机械应力分级法

用应力分级机对结构材进行非破损性检验,从而可以直接划分木材应力等级的分级方法。此项方法所依据的是木材的弹性模量与抗弯强度、顺纹抗拉强度、顺纹抗压强度的相关关系,所以木材的弹性模量是机械应力分级法划分应力等级的基础。利用非破损性的检验设备,可以高速度地测出划分木材一系列应力等级所需的表观弹性模量,或与劲度相应的挠度。木材属非匀质材料,表观弹性模量取决于跨度、方位(材边或材面)、试验方式(静力或动力)、加荷方式(拉伸、弯曲、集中加荷、匀布加荷等)。任何一种表观模量均可使用,只要将分级机适当地校正,就可以得到相应的强度性质。目前已有连续应力分级机问世,并已应用于生产,检测速率最高可达365米/分。

9. 应力强度因子的确定

对于Ⅰ、Ⅱ、Ⅲ型裂纹尖端区域,应力分量可统一写成式(2-20)的形式:

岩石断裂与损伤

式中:fij(θ)为极角θ的分布函数,称为角分布函数;Km表征了裂纹尖端附近区域应力场强弱程度,其中m=Ⅰ、Ⅱ、Ⅲ得到K、K、K,分别代表Ⅰ、Ⅱ、Ⅲ型裂纹尖端应力场的强弱程度,称为应力强度因子(K因子),定义如下:

岩石断裂与损伤

式中自变量ξ如图2-4所示。

若已知应力场,则可用式(2-22)求应力强度因子:

岩石断裂与损伤

图2-4 裂纹尖端附近坐标

K的量纲为:[力][长度]-3/2;SI:N·m-3/2(10-6MPa·m1/2)。应力强度因子的确定方法有解析法、数值法、实测法等,本节分别介绍应力强度因子的确定方法。

一、解析法

解析法又可分为复变函数法与积分变换法,复变函数法可利用Westergaard应力函数或Muskhelishvili法,主要解决二维问题。积分变换法可求解二维、三维问题。由于工程上受力构件的边界形状和边界条件都很复杂,所以求解偏微分方程组时边界条件很难精确满足,因此解析法只适用于物体几何形状比较简单、边界条件容易满足的问题。下面仅介绍常用的复变函数法。

考虑无限大平板受二向均匀拉应力,具有长度为2a的中心贯穿裂纹,由定义:

岩石断裂与损伤

岩石断裂与损伤

满足问题的全部边界条件,代入上式可得

岩石断裂与损伤

下面利用这种方法求解几个常见问题的应力强度因子。

1.图2-5所示“无限大”平板中具有长度为2a的穿透板厚的裂纹,裂纹表面上x=±b处各作用一对单位厚度的集中力P

由式(2-7)→∞,σxyxy=0。

图2-5“无限大”平板裂纹面上作用两对集中力

选取复变解析函数:

岩石断裂与损伤

边界条件:

a.b.处,裂纹为自由表面,σyxy=0。

c.如切出xy坐标系内的第一象限的薄平板,在x轴所在截面上内力总和为P。

经检验,解析函数Z满足三个边界条件。将z=ξ+a代入复变解析函数中,得

岩石断裂与损伤

2.如图2-6所示,具有长度为2a的中心贯穿裂纹的无限大平板,距离x=b处作用一对单位厚度的集中力P

选取复变解析函数:

岩石断裂与损伤

3.如图2-7所示,具有长度为2a的中心贯穿裂纹的无限大平板,距离x=±b范围内的裂纹面受均布荷载,集度为q

图2-6“无限大”平板裂纹面上作用一对集中力

图2-7“无限大”平板裂纹面上作用部分均布荷载

利用叠加原理,根据图2-5的结果可得

岩石断裂与损伤

岩石断裂与损伤

当整个表面受均布载荷时,如图2-8所示,b→a,则

岩石断裂与损伤

4.如图2-9所示,受二向均布拉力作用的无限大平板,在x轴上有一系列长度为2a,裂纹中心间距为2b的裂纹

图2-8“无限大”平板裂纹面上作用均布荷载

图2-9 二向均布拉力作用的具有系列裂纹的无限大平板

边界条件是周期的:

岩石断裂与损伤

在所有裂纹内部应力为零。即:y=0,,-a±2b<x<a±2b,σyxy=0。

所有裂纹前端σy>σ。

单个裂纹时:

岩石断裂与损伤

又Z应为2b的周期函数,故

岩石断裂与损伤

引入变量ξ=z-a,得

岩石断裂与损伤

当ξ→0时,,

岩石断裂与损伤

岩石断裂与损伤

,称为修正系数,大于1,表示其他裂纹存在对应力强度因子的影响。若裂纹间距离比裂纹本身尺寸大很多(b≥5a),可不考虑相互作用,按单个裂纹计算。

对于宽度为W含中心裂纹的有限宽板受均匀拉力,应力强度因子修正系数也可按上述值近似计算,此时用W代替2b:

图2-10 受剪切作用的具有周期性裂纹的无限大平板

岩石断裂与损伤

5.无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算

Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):

岩石断裂与损伤

对于无限大平板中的周期性的裂纹,如图2-10所示,且在无限远的边界上作用处于平板面内的纯剪切力作用。

岩石断裂与损伤

引入变量:ξ=z-a,得

岩石断裂与损伤

同理,对于无限大板Ⅲ型周期性裂纹应力强度因子:

岩石断裂与损伤

6.深埋裂纹的应力强度因子的计算

深埋裂纹的计算模型是无限大体中的片状裂纹,1950年,Green和Sneddon分析了弹性物体的深埋椭圆形裂纹邻域内的应力和应变,如图2-11所示,得到椭圆表面上任意点,沿y方向的张开位移为

图2-11 深埋椭圆片状裂纹

岩石断裂与损伤

其中:Γ为第二类椭圆积分。有

岩石断裂与损伤

1962年,Irwin利用上述结果计算了这种情况下的应力强度因子:

岩石断裂与损伤

在椭圆的短轴方向上,即,有

岩石断裂与损伤

此式为椭圆片状深埋裂纹危险部位的应力强度因子。当a≪c时,有

岩石断裂与损伤

当a=c时,为圆片状裂纹,此时

岩石断裂与损伤

7.半椭圆表面裂纹的应力强度因子计算

工程上更多地遇到的是表面裂纹,常按照表面半椭圆裂纹考虑,但至今未得到严格的解析解,一般根据无限大体中椭圆片状裂纹的解经过修正近似处理。

(1)表面浅裂纹的应力强度因子:当a≪B(板厚)可简化为浅裂纹,这时可以忽略后自由表面对N点应力强度因子的影响,如图2-12所示,近似得到N处的应力强度因子。

图2-12 表面椭圆片状裂纹

岩石断裂与损伤

(2)表面深裂纹的应力强度因子:对于表面深裂纹,引入前后两个自由表面,使裂纹尖端的弹性约束减少,裂纹容易扩展增大。应力强度因子由下式确定。

岩石断裂与损伤

其中:M1为前自由表面的修正系数;M2为后自由表面的修正系数。

Paris和Sih给出的修正系数为

岩石断裂与损伤

式中:B为板厚;a为裂纹深度;c为裂纹长度。当a/c→0时,接近于单边切口试样,M1=1.12。当a/c→1时,接近于半圆形的表面裂纹,M1=1。

当a≪B时,M2≈1,即浅裂纹不考虑后自由表面的影响。对于一般工程问题,表面裂纹最深点处的应力强度因子为

岩石断裂与损伤

二、数值解法

解析法适用于无限大平板中简单裂纹的情况,对实际构件及各种试样,当裂纹尺寸与构件或试样其他特征尺寸相比并不是很小时,应考虑自由边界对裂纹尖端应力强度因子的影响。对这类问题很难获得严格的解析解,常用数值方法求其近似解。常用的数值方法有边界配置(位)法、有限单元法、边界元法。这些方法都是通过数值分析求出裂纹尖端附近应力场或位移场的近似表达式,由定义建立应力强度因子的表达式。

1.边界配置法

边界配置法是将应力函数用无穷级数表达,使其满足双调和方程和边界条件,但不是满足所有的边界条件,而是在有限宽板的边界上,选足够多的点,用以确定应力函数,然后再由符合边界条件的应力函数确定K值。

边界配置法主要用于计算平面问题的单边裂纹问题,且只限于讨论直边界问题。下面以图2-13所示的三点弯曲试样为例进行说明。1957年Williams提出一用无穷级数表示的应力函数,称为Williams应力函数:

图2-13 三点弯曲试样

岩石断裂与损伤

该函数满足双调和方程:▽4ψ(r,θ)=0。

边界条件:裂纹左、右表面(θ=±π/2),σy和τxy均为零,上式满足。

在外边界上的边界条件的满足如下确定:在有限宽板的边界上选取足够的点,如图2-13所示,使这些点的边界条件满足,则可求出Cj

为了计算方便引入量纲为一的量:

岩石断裂与损伤

其中:B为试件厚度;W为试件高度。

岩石断裂与损伤

对于Ⅰ型裂纹:

岩石断裂与损伤

在裂纹尖端附近,θ=0,r→0。

岩石断裂与损伤

又因为当θ=0时,cosθ=1,当j=1时与r无关,而当j=2,3,4,…,∞时与r有关,当r→0时都为零。

岩石断裂与损伤

利用边界条件确定D1,取含裂纹三点弯曲试样的左半段为研究对象,取m个点分析,以2m有限级数代替无限级数精度足够。

岩石断裂与损伤

其中S=4W为标准试件,式(2-41)、式(2-42)为美国ASTM-E399-72规范建议的公式。

2.确定应力强度因子的有限元法

有限单元法以变分原理为理论基础,将连续体离散成有限单元来分析其变形和应力,然后进行整体分析求得受力物体的应力场和位移场。有限单元法能解决复杂几何形状和载荷情况比较复杂的裂纹体的应力强度因子。比较成熟的是奇异单元的应用。不同裂纹体在不同的开裂方式的应力强度因子是不同的。一些实验方法、解析方法都有各自的局限性,而有限元等数值解法十分有效地求解弹塑性体的应力和位移场,而应力和位移场与K密切相关,所以,可以通过有限元方法进行应力强度因子的计算。

利用位移法求应力强度因子,如Ⅰ型裂纹:

岩石断裂与损伤

式中。

通过有限元法求出裂纹尖端附近的位移场,计算(r,π),然后外推到裂纹尖端,这种方法为外推法。

也可利用应力法求应力强度因子,这时先求应力场:,然后求当θ=0时的应力分量,即。

三、实测法

由于实际问题的多样性和复杂性,计算比较困难,特别是三维问题。对于弹塑性断裂问题、动态断裂问题常应用具有直观性和模拟性的实测法。常用的实则方法有柔度法、网络法、光弹性法、激光全息法、激光散斑法、云纹法等。其中光弹性法求裂纹应力强度因子的基本原理如下:

对于Ⅰ型裂纹,如已求得σx、σy、τxy,则可求出最大切应力,根据光弹性原理有

岩石断裂与损伤

式中:n为光弹性模型的条纹级数;f为材料的条纹值;d为试样厚度。将σx、σy、τxy代入上式得:

岩石断裂与损伤

由光弹性实验等差线和等倾线条纹图测出ri、θi、ni,求得,得出曲线,外推至r→0处有

岩石断裂与损伤

四、叠加原理及其应用

1.K的叠加原理及其应用

线弹性叠加原理:当n个载荷同时作用于某一弹性体上时,载荷组在某一点上引起的应力和位移等于单个载荷在该点引起的应力和位移分量之总和。叠加原理适用于K

证明:

岩石断裂与损伤

设在F1载荷作用下,有

岩石断裂与损伤

设在F2载荷作用下,有

岩石断裂与损伤

由叠加原理有

岩石断裂与损伤

因此,计算复杂载荷下应力强度因子的方法:将复杂载荷分解成简单载荷,简单载荷作用下的应力强度因子可利用前述方法或查K手册。

下面利用叠加原理求图2-14(a)所示铆钉孔边双耳裂纹的K值。首先将图(a)分解为图(b)+图(c)-图(d)。

图2-14 铆钉孔边双耳裂纹的叠加原理计算

根据叠加原理:,因为,所以:

岩石断裂与损伤

其中可查应力强度因子手册。

岩石断裂与损伤

式中:D为圆孔直径;W为板宽度;a为双耳裂纹长度。

确定:

无限板宽中心贯穿裂纹受集中力P作用时:

岩石断裂与损伤

考虑有效裂纹长度:得

岩石断裂与损伤

有限板宽的修正系数:

岩石断裂与损伤

所以

岩石断裂与损伤

2.应力场叠加原理及其应用

应力场叠加原理:在复杂的外界约束作用下,裂纹前端的应力强度因子等于没有外界约束,但在裂纹表面上反向作用着无裂纹时外界约束在裂纹处产生的内应力所致的应力强度因子。

如图2-15(a)所示为具有中心穿透裂纹的平板,在上下边界受均匀拉应力作用,将其分解为图(b)和图(c),图(b)为除板边力以外,在裂纹面上还作用一组反力,使裂纹恢复原状,从而相当于裂纹不存在。因此图(b)问题是一般的弹性力学问题。它的解在研究裂纹尖端的应力奇异性时是可以不予考虑的。图(c)代表的问题是裂纹表面受应力作用而板边不受力的问题。

图2-15 应力场叠加原理的应用

岩石断裂与损伤

在裂纹端部问题的意义上,图(a)等价于图(c)。因此可用无裂纹构件中裂纹位置处由于外力作用所引起的应力——“当地应力”求解各种受力情况下的应力强度因子。

对于Ⅱ型和Ⅲ型裂纹,如图2-16所示,也可将在无穷远处(板的边缘)受载荷作用而裂纹表面应力自由的裂纹问题(问题A),转化为问题B与C的叠加。问题B相当于除板边力以外,在裂纹面上还作用一组反力,使裂纹恢复原状,从而相当于裂纹不存在。问题C是裂纹表面受应力作用而板边不受力的问题。因此在裂纹端部问题的意义上,问题A等价于问题C。

图2-16 叠加原理的应用

对于问题C三种型式的裂纹的解有共同的表达式,裂纹面上的边界条件为

Ⅰ型裂纹:

Ⅱ型裂纹:

Ⅲ型裂纹:

应力函数Z:

岩石断裂与损伤

应力强度因子K:

岩石断裂与损伤

问题C在地学中具有实际意义。在断层问题中,依据位移测量和地震波反演,可以推测断层面上的应力场,而远场应力状态至今还没有得到可靠数据。因此,由应力场可以推断出断层应力场和位移场的变化量,研究断层的动力过程。

计算各种裂纹体的应力强度因子是线弹性断裂力学中一项十分重要的任务。各种受力情况及不同裂纹位置的应力强度因子资料已编辑成手册。在中国航空研究院主编的《应力强度因子手册》中可查到大部分应力强度因子的数据,一般断裂力学教材中也附有常用应力强度表达式,故在此不再详述。

阅读全文

与应力强度分析方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:61
五菱p1171故障码解决方法 浏览:855
男士修护膏使用方法 浏览:543
电脑图标修改方法 浏览:604
湿气怎么用科学的方法解释 浏览:536
910除以26的简便计算方法 浏览:803
吹东契奇最简单的方法 浏览:701
对肾脏有好处的食用方法 浏览:97
电脑四线程内存设置方法 浏览:511
数字电路通常用哪三种方法分析 浏览:12
实训课程的教学方法是什么 浏览:524
苯甲醇乙醚鉴别方法 浏览:81
苹果手机微信视频声音小解决方法 浏览:699
控制箱的连接方法 浏览:74
用什么简单的方法可以去痘 浏览:788
快速去除甲醛的小方法你知道几个 浏览:802
自行车架尺寸测量方法 浏览:123
石磨子的制作方法视频 浏览:151
行善修心的正确方法 浏览:402
薯仔炖鸡汤的正确方法和步骤 浏览:275