多重比较法是指多个等方差正态总体均值的比较方法。经过方差分析法可以说明各总体均值间的差异是否显着,即只能说明均值不全相等,但不能具体说明哪几个均值之间有显着差异。
多重比较法包括:
1、图基法
这种方法的基础是学生化的极差分布( studentized range distribution)。令r为从均值为μ、方差为σ2的正态分布中得到的一些独立观察的极差(即最大值减最小值),令v为误差的自由度数目(多重比较中为N-G)。
2、谢弗法
谢弗法( Scheffé's method) 又称S多重比较法,也为多重比较构建一个100(1 -α) %的联立置信区间( Scheffé,1953,1959)。
(1)实验统计学多重分析的两种方法扩展阅读:
图基法和谢弗法的比较
1、谢弗法可应用于样本量不等时的多重比较,而原始的图基法只适用于样本量相同时的比较。
2、在比较简单成对差异( simple pairwise differences)时,图基法最具效力,给出更窄的置信区间,虽然它对于广义比对( general contrasts) 也可适用。
3、与此相比,对于涉及广义比对的比较,谢弗法更具效力,给出更窄的置信区间。
4、如果F检验显着,那么谢弗法将从所有可能的比对(contrasts)中至少检测出一对比对是统计显着的。
5、谢弗法应用起来更为方便,因为F分布表比图基法中使用的学生化极差分布更容易得到。
6、正态性假定和同方差性假定对于图基法比对于谢弗法更加重要。
参考资料来源:网络-多重比较法
Ⅱ 多元统计分析的简介
multivariate statistical analysis
研究客观事物中多个变量(或多个因素)之间相互依赖的统计规律性。它的重要基础之一是多元正态分析。又称多元分析 。 如果每个个体有多个观测数据,或者从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析 。 它是数理统计学中的一个重要的分支学科。20世纪30年代,R.A.费希尔,H.霍特林,许宝碌以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到迅速发展。50年代中期,随着电子计算机的发展和普及 ,多元统计分析在地质 、气象、生物、医学、图像处理、经济分析等许多领域得到了广泛的应用 ,同时也促进了理论的发展。各种统计软件包如SAS,SPSS等,使实际工作者利用多元统计分析方法解决实际问题更简单方便。重要的多元统计分析方法有:多重回归分析(简称回归分析)、判别分析、聚类分析、主成分分析、对应分析、因子分析、典型相关分析、多元方差分析等。
早在19世纪就出现了处理二维正态总体(见正态分布)的一些方法,但系统地处理多维概率分布总体的统计分析问题,则开始于20世纪。人们常把1928年维夏特分布的导出作为多元分析成为一个独立学科的标志。20世纪30年代,R.A.费希尔、H.霍特林、许宝禄以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到了迅速的进展。40年代,多元分析在心理、教育、生物等方面获得了一些应用。由于应用时常需要大量的计算,加上第二次世界大战的影响,使其发展停滞了相当长的时间。50年代中期,随着电子计算机的发展和普及,它在地质、气象、标准化、生物、图像处理、经济分析等许多领域得到了广泛的应用,也促进了理论的发展。
多元分析发展的初期,主要讨论如何把一元正态总体的统计理论和方法推广到多元正态总体。多元正态总体的分布由两组参数,即均值向量μ(见数学期望)和协方差矩阵(简称协差阵)∑ (见矩)所决定,记为Np(μ,∑)(p为分布的维数,故又称p维正态分布或p 维正态总体)。设X1,X2,…,Xn为来自正态总体Np(μ,∑)的样本,则μ和∑的无偏估计(见点估计)分别是
和
分别称之为样本均值向量和样本协差阵,它们是在各种多元分析问题中常用的统计量。样本相关阵R 也是一个重要的统计量,它的元素为
其中υij为样本协差阵S的元素。S的分布是维夏特分布,它是一元统计中的Ⅹ2分布的推广。
另一典型问题是:假定两个多维正态分布协差阵相同,检验其均值向量是否相同。设样本X1,X2,…,Xn抽自正态总体Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要检验假设H 0:μ1=μ2(见假设检验)。在一元统计中使用t统计量(见统计量)作检验;在多元分析中则用T2统计量,
,其中,
,
·
,T2的分布称为T2分布。这是H.霍特林在1936年提出来的。
在上述问题中的多元与一元相应的统计量是类似的,但并非都是如此。例如,要检验k个正态总体的均值是否相等,在一元统计中是导致F统计量,但在多元分析中可导出许多统计量,最着名的有威尔克斯Λ统计量和最大相对特征根统计量。研究这些统计量的精确分布和优良性是近几十年来多元统计分析的重要理论课题。
多元统计分析有狭义与广义之分,当假定总体分布是多元正态分布时,称为狭义的,否则称为广义的。近年来,狭义多元分析的许多内容已被推广到更广的分布之中,特别是推广到一种称为椭球等高分布族之中。
按多元分析所处理的实际问题的性质分类,重要的有如下几种。 简称回归分析。其特点是同时处理多个因变量。回归系数和常数的计算公式与通常的情况相仿,只是由于因变量不止一个,原来的每个回归系数在此都成为一个向量。因此,关于回归系数的检验要用T2统计量;对回归方程的显着性检验要用Λ统计量。
回归分析在地质勘探的应用中发展了一种特殊的形式,称为趋势面分析,它以各种元素的含量作为因变量,把它们对地理坐标进行回归(选用一次、二次或高次的多项式),回归方程称为趋势面,反映了含量的趋势。残差分析是趋势面分析的重点,找出正的残差异常大的点,在这些点附近,元素的含量特别高,这就有可能形成可采的矿位。这一方法在其他领域也有应用。 由 k个不同总体的样本来构造判别函数,利用它来决定新的未知类别的样品属于哪一类,这是判别分析所处理的问题。它在医疗诊断、天气预报、图像识别等方面有广泛的应用。例如,为了判断某人是否有心脏病,从健康的人和有心脏病的人这两个总体中分别抽取样本,对每人各测两个指标X1和X2,点绘如图 。可用直线A将平面分成g1和g2两部分,落在g1的绝大部分为健康者,落在g2的绝大部分为心脏病人,利用A的垂线方向l=(l1,l2)来建立判别函数
y=l1X1+l2X2,可以求得一常数с,使 y<с 等价于(X1,X2)落在g1,y>с等价于(X1,X2)落在g2。由此得判别规则:若,l1X1+l2X2<c
判,即此人为健康者;若,l1X1+l2X2>C
判,
即此人为心脏病人;若,l1X1+l2X2=c则为待判。此例的判别函数是线性函数,它简单方便,在实际问题中经常使用。但有时也用非线性判别函数,特别是二次判别函数。建立判别函数和判别规则有不少准则和方法,常用的有贝叶斯准则、费希尔准则、距离判别、回归方法和非参数方法等。
无论用哪一种准则或方法所建立的判别函数和判别规则,都可能产生错判,错判所占的比率用错判概率来度量。当总体间区别明显时,错判概率较小;否则错判概率较大。判别函数的选择直接影响到错判概率,故错判概率可用来比较不同方法的优劣。
变量(如上例中的X1和X2)选择的好坏是使用判别分析的最重要的问题,常用逐步判别的方法来筛选出一些确有判别作用的变量。利用序贯分析的思想又产生了序贯判别分析。例如医生在诊断时,先确定是否有病,然后确定是哪个系统有病,再确定是什么性质的病等等。 又称数值分类。聚类分析和判别分析的区别在于,判别分析是已知有多少类和样本来自哪一类,需要判别新抽取的样本是来自哪一类;而聚类分析则既不知有几类,也不知样本中每一个来自哪一类。例如,为了制定服装标准,对 N个成年人,测量每人的身高(x1)、胸围(x2)、肩宽(x3)、上体长(x4)、手臂长(x5)、前胸(x6)、后背(x7)、腰围(x8)、臀围(x9)、下体长(x10)等部位,要将这N个人进行分类,每一类代表一个号型;为了使用和裁剪的方便,还要对这些变量(x1,x2,…,x10)进行分类。聚类分析就是解决上述两种分类问题。
设已知N个观测值X1,X2,…,Xn,每个观测值是一个p维向量(如上例中人的身高、胸围等)。聚类分析的思想是将每个观测值Xi看成p维空间的一个点,在p维空间中引入“距离”的概念,则可按各点间距离的远近将各点(观测值)归类。若要对 p个变量(即指标)进行分类,常定义一种“相似系数”来衡量变量之间的亲密程度,按各变量之间相似系数的大小可将变量进行分类。根据实际问题的需要和变量的类型,对距离和相似系数有不同的定义方法。
按距离或相似系数分类,有下列方法。①凝聚法:它是先将每个观察值{Xi}看成一类,逐步归并,直至全部观测值并成一类为止,然后将上述并类过程画成一聚类图(或称谱系图),利用这个图可方便地得到分类。②分解法:它是先将全部观测值看成一类,然后逐步将它们分解为2类、3类、…、N类,它是凝聚法的逆过程。③动态聚类法:它是将观测值先粗糙地分类,然后按适当的目标函数和规定的程序逐步调整,直至不能再调为止。
若观察值X1,X2,…,Xn之间的次序在分类时不允许打乱,则称为有序分类。例如在地质学中将地层进行分类,只能将互相邻接的地层分成一类,不能打乱上下的次序。用于这一类问题中的重要方法是费希尔于1958年提出的最优分割法。
聚类分析也能用于预报洪水、暴雨、地震等灾害性问题,其效果比其他统计方法好。但它在理论上还很薄弱,因为它不象其他方法那样有确切的数学模型。 又称主分量分析,是将多个变量通过线性变换以选出较少个数重要变量的一种方法。设原来有p个变量x1,x2,…,xp,为了简化问题,选一个新变量z,
,
要求z尽可能多地反映p个变量的信息,以此来选择l1,l2,…,lp,当l1,l2,…,lp选定后,称z为x1,x2,…,xp的主成分(或主分量)。有时仅一个主成分不足以代表原来的p个变量,可用q(<p)个互不相关的呈上述形式的主成分来尽可能多地反映原p个变量的信息。用来决定诸系数的原则是,在
的约束下,选择l1,l2,…,lp使z的方差达到最大。
在根据样本进行主成分分析时又可分为R型分析与Q型分析。前者是用样本协差阵(或相关阵)的特征向量作为线性函数的系数来求主成分;后者是由样品之间的内积组成的内积阵来进行类似的处理,其目的是寻找出有代表性的“典型”样品,这种方法在地质结构的分析中常使用。 它是由样本的资料将一组变量
y2,……yp)
分解为一些公共因子f与特殊因子s的线性组合,即有常数矩阵A使у=Af+s。公共因子f 的客观内容有时是明确的,如在心理研究中,根据学生的测验成绩(指标)来分析他的反应快慢、理解深浅(公共因子);有时则是不明确的。为了寻求易于解释的公共因子,往往对因子轴进行旋转,旋转的方法有正交旋转,斜旋转,极大变差旋转等。
从样本协差阵或相关阵求公共因子的方法有广义最小二乘法、最大似然法与不加权的最小二乘法等。通常在应用中,最方便的是直接利用主成分分析所得的头几个主成分,它们往往是对各个指标影响都比较大的公共因子。 它是寻求两组变量各自的线性函数中相关系数达到最大值的一对,这称为第一对典型变量,还可以求第二对,第三对,等等,这些成对的变量,彼此是不相关的。各对的相关系数称为典型相关系数。通过这些典型变量所代表的实际含意,可以找到这两组变量间的一些内在联系。典型相关分析虽然30年代已经出现,但至今未能广泛应用。
上述的各种方法可以看成广义多元分析的内容,在有些方法中,如加上正态性的假定,就可以讨论一些更深入的问题,例如线性模型中有关线性假设检验的问题,在正态的假定下,就有比较系统的结果。 多元分析也可按指标是离散的还是连续的来区分,离散值的多元分析实质上与列联表分析有很大部分是类似的,甚至是一样的。
非数量指标数量化的理论和方法也是广义多元分析的一个重要的研究课题。
Ⅲ 统计学检验方法有哪些
统计学 各种应用条件、校正条件
应用检验方法必须符合其适用条件,不同设计的数据应选用不同检验方法。 一、第五章 参数估计 P74 总体均数的置信区间 1.正态近似法:
总体标准差σ已知,或σ未知但n>50时 2. t分布法
总体标准差σ未知,且n≤50时
二、第六章 计量资料两组均数t检验P93、P99 (一)t 检验的应用条件
适用于计量资料(单样本、两配对样本、两独立样本),并要求: 1. 样本来自正态分布的总体。W检验(n≤50时),H0:样本来自正态总体,P>0.05时尚不能认为两组资料的分布非正态;
2. 两独立样本均数比较时,两总体方差齐性。Levene检验,H0:方差相等。P>0.05时尚不能认为两组资料方差不齐。
(二)方差不齐或非正态时,两计量资料均数的比较方法 方法1. 仅方差不齐时,可采用近似t检验,即 t′检验。 方法2. 变量变换:对数变换、平方根变换、倒数变换等
方法3. 非参数检验:Wilcoxon符号秩检验(两相关样本P142);Wilcoxon秩和检验、Mann-Whiney-U检验(两独立样本 P145)等
三、第七章 计量资料多组均数的比较-方差分析 (一)方差分析流程 P109
1、多个样本均数比较。若P<0.05,均数不全相等,则进行第2步;
2、作多重比较:LSD-t检验、Dunnett-t检验(多个实验组与一个对照组比较)、SNK-q检验(多个均数间全面比较)
(二)方差分析的应用条件 P114
1、各样本相互独立,服从正态分布;W检验 2、各样本方差齐性。Levene检验
四、分类资料(计数资料)的比较-
Ⅳ 统计分析方法介绍 两种统计分析方法简介
1、统计分析方法包括逻辑思维方法和数量关系分析方法。在统计分析中二者密不可分,应结合运用。
2、逻辑思维方法是指辩证唯物主义认识论的方法。统计分析必须以马克思主义哲学作为世界观和方法论的指导。唯物辩证法对于事物的认识要从简单到复杂,从特殊到一般,从偶然到必然,从现象到本质。坚持辨证的观点、发展的观点,从事物的发展变化中观察问题,从事物的相互依存、相互制约中来分析问题,对统计分析具有重要的指导意义。
3、数量关系分析方法是运用统计学中论述的方法对社会经济现象的数量表现,包括社会经济现象的规模、水平、速度、结构比例、事物之间的联系进行分析的方法。如对比分析法、平均和变异分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法等。
Ⅳ 统计分析方法有哪几种 常用的统计方法有哪些
1、系统聚类分析:是一门多元统计分类法,根据多种地学要素对地理实体进行划分类别的方法。对不同的要素划分类别往往反映不同目标的等级序列,如土地分等定级、水土流失强度分级等。
2、回归分析:在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
3、主成分分析:主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
Ⅵ excel怎样做多重比较统计学分析
方法/步骤
1
“F- 检验:双样本方差分析”分析工具
此分析工具可以进行双样本F - 检验,用来比较两个样本总体的方差。例如,可以对参加游泳比赛的两个队的时间记分进行F- 检验,查看二者的样本方差是否不同。
2
“t- 检验:成对双样本均值分析”分析工具
此分析工具及其公式可以进行成对双样本进行t - 检验,用来确定样本均值是否不等。此t -检验并不假设两个总体的方差是相等的。当样本中出现自然配对的观察值时,可以使用此成对检验,例如对一个样本组进行了两次检验,抽取实验前的一次和实验后的一次。
3
“t- 检验:双样本等方差假设”分析工具
此分析工具可以进行双样本t - 检验。此t- 检验先假设两个数据集的方差相等,故也称作齐次方差t - 检验。可以使用t - 检验来确定两个样本均值实际上是否相等。
4
“t- 检验:双样本异方差假设”分析工具
此分析工具及其公式可以进行双样本t –检验。此t - 检验先假设两个数据集的方差不等,故也称作异方差t - 检验。可以使用t - 检验来确定两个样本均值实际上是否相等。当进行分析的样本组不同时,可使用此检验。如果某一样本组在某次处理前后都进行了检验,则应使用“成对检验”。
5
“z- 检验:双样本均值分析”分析工具
此分析工具可以进行方差已知的双样本均值z-检验。此工具用于检验两个总体均值之间存在差异的假设。例如,可以使用此检验来确定两种汽车模型性能之间的差异情况。
6
“抽样分析”分析工具
此分析工具以输入区域为总体构造总体的一个样本。当总体太大而不能进行处理或绘制时,可以选用具有代表性的样本。如果确认输入区域中的数据是周期性的,还可以对一个周期中特定时间段中的数值进行采样。例如,如果输入区域包含季度销售量数据,以四为周期进行取样,将在输出区域中生成某个季度的样本。
7
“傅立叶分析”分析工具
此分析工具可以解决线性系统问题,并能通过快速傅立叶变换(FFT)分析周期性的数据。此工具也支持逆变换,即通过对变换后的数据的逆变换返回初始数据。
8
“回归分析”分析工具
此工具通过对一组观察值使用“最小二乘法”直线拟合,进行线形回归分析。本工具可用来分析单个因变量是如何受一个或几个自变量影响的。例如,观察某个运动员的运动成绩与一系列统计因素的关系,如年龄、身高和体重等。在操作时,可以基于一组已知的体能统计数据,并辅以适当加权,对尚未进行过测试的运动员的表现作出预测。
9
“描述统计”分析工具
此分析工具用于生成对输入区域中数据的单变值分析,提供有关数据趋中性和易变性的信息。
“排位和百分比排位”分析工具
此分析工具可以产生一个数据列表,在其中罗列给定数据集中各个数值的大小次序排位和相应的百分比排位。用来分析数据集中各数值间的相互位置关系。
“ 随机数发生器”分析工具
此分析工具可以按照用户选定的分布类型,在工作表的特定区域中生成一系列独立随机数字。可以通过概率分布来表示主体的总体特征。例如,可以使用正态分布来表示人体身高的总体特征,或者使用双值输出的伯努利分布来表示掷币实验结果的总体特征。
“相关系数”分析工具
此分析工具及其公式可用于判断两组数据集(可以使用不同的度量单位)之间的关系。可以使用“相关系数”分析工具来确定两个区域中数据的变化是否相关,即,一个集合的较大数据是否与另一个集合的较大数据相对应(正相关);或者一个集合的较小数据是否与另一个集合的较小数据相对应(负相关);还是两个集合中的数据互不相关(相关性为零)。
“协方差”分析工具
此分析工具及其公式用于返回各数据点的一对均值偏差之间的乘积的平均值。协方差是测量两组数据相关性的量度。可以使用协方差工具来确定两个区域中数据的变化是否相关,即,一个集合的较大数据是否与另一个集合的较大数据相对应(正协方差);或者一个集合的较小数据是否与另一个集合的较小数据相对应(负协方差);还是两个集合中的数据互不相关(协方差为零)。
“移动平均”分析工具
此分析工具及其公式可以基于特定的过去某段时期中变量的均值,对未来值进行预测。移动平均值提供了由所有历史数据的简单的平均值所代表的趋势信息。使用此工具可以预测销售量、库存或其它趋势。
“直方图”分析工具
在给定工作表中数据单元格区域和接收区间的情况下,计算数据的个别和累积频率,用于统计有限集中某个数值元素的出现次数。例如,在一个有20名学生的班级里,可以确定以字母打分(如A、B-等)所得分数的分布情况。直方图表会给出字母得分的边界,以及在最低边界与当前边界之间某一得分出现的次数。出现频率最多的某个得分即为数据组中的众数。
“指数平滑”分析工具
此分析工具及其公式基于前期预测值导出相应的新预测值,并修正前期预测值的误差。此工具将使用平滑常数a,其大小决定了本次预测对前期预测误差的修正程度。
“Anova:单因素方差分析”分析工具
此分析工具通过简单的方差分析(anova),对两个以上样本均值进行相等性假设检验(抽样取自具有相同均值的样本空间)。此方法是对双均值检验(如t-检验)的扩充。
“Anova:可重复双因素分析”分析工具
此分析工具是对单因素anova 分析的扩展,即每一组数据包含不止一个样本。
“Anova:无重复双因素分析”分析工具
此分析工具通过双因素anova 分析(但每组数据只包含一个样本),对两个以上样本均值进行相等性假设检验(抽样取自具有相同均值的样本空间)。此方法是对双均值检验(如t-检验)的扩充。
Ⅶ 统计学分析方法有哪些
常用的有:简单线性回归,多重线性回归,logistic回归,聚类,判别,主成分分析,因子分析,方差分析,时间序列分析,典则变量分析。
Ⅷ 方差分析中方差齐性时常用的多重比较检验方法有哪些
1、图基法(Tukey's Method)又称T多重比较法,是用来比较均值 和 (g≠h)的所有可能的两两差异的一种联立检验( a simultaneous test) ( Tukey,1953)。目标是为所有两两比较构建100(1-α)%的置信区间。
这种方法的基础是学生化的极差分布( studentized range distribution)。令r为从均值为μ、方差为σ2的正态分布中得到的一些独立观察的极差(即最大值减最小值),令v为误差的自由度数目(多重比较中为N-G)。
2、谢弗法( Scheffé's method) 又称S多重比较法,也为多重比较构建一个100(1 -α) %的联立置信区间( Scheffé,1953,1959)。区间由下式给出:
表示自由度为G-1和N-G的F分布的100(1 -α)百分数点。
谢弗法更具有普适性,因为所有可能的对比都可用它来检验统计显着性,
而且可为参数的相应线性函数构建置信区间
(8)实验统计学多重分析的两种方法扩展阅读
图基法和谢弗法的比较
作为两种主要的多重比较方法,图基法和谢弗法各有其优缺点,总结如下:
1、谢弗法可应用于样本量不等时的多重比较,而原始的图基法只适用于样本量相同时的比较。
2、在比较简单成对差异( simple pairwise differences)时,图基法最具效力,给出更窄的置信区间,虽然它对于广义比对( general contrasts) 也可适用。
3、与此相比,对于涉及广义比对的比较,谢弗法更具效力,给出更窄的置信区间。
4、如果F检验显着,那么谢弗法将从所有可能的比对(contrasts)中至少检测出一对比对是统计显着的。
5、谢弗法应用起来更为方便,因为F分布表比图基法中使用的学生化极差分布更容易得到。
6、正态性假定和同方差性假定对于图基法比对于谢弗法更加重要
Ⅸ 统计分析方法有哪几种
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
Ⅹ 统计学中常用的数据分析方法有哪些
1、描述统计
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。
2、假设检验
参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
3、信服分析
介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。