㈠ 有什么决策方法和层次分析法相似
层次分析法是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
㈡ 数学建模的评价体系 除了层次分析法还有什么方法 !!!!急求.。谢谢大家了
图论、神经网络、熵权法、模糊综和评判、回归分析、因子分析、灰色系统。。。。还有好多啦
㈢ 有哪个方法和AHP类似,也是计算权重,也就是说有什么方法可以替代层次分析法急急急!论文需要
很多方法都可以,具体得看分析需求了,SPSSAU提供多种权重计算方法,及智能分析结果,不懂的地方可以参考帮助手册,权重计算-SPSSAU。
AHP的适用条件更多的是约束指标的个数,关键是需要在计算属性权重的时候得到判断矩阵,所以如果属性个数过多的话可能会导致判断的混乱。多个因素影响排序这就是多属性决策或者说多准则决策,排序方法非常多,包括SAW,TOPSIS,VIKOR,ELECTRE等等,方法很多,各有优劣。
基本原理
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
㈣ 层次分析法软件 专家打分环节可以用其他方法代替吗
专家打分环节,其实就是获得判断矩阵的过程,不知道,你为什么要用其他方法代替?是因为找不到专家来进行打分吗?其实,没有必要,你可以通过经验判断、多人评审、参考文献等其他途径,来对各元素进行两两比较,来得到判断矩阵,判断矩阵的元素只要符合逻辑和常理,并且满足判断矩阵的一致性,就可以了。
㈤ 脆弱性评价除了层次分析法还有哪个比较简单
层次分析法优缺点
(一)优点
1. 系统性的分析方法
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2. 简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3. 所需定量数据信息较少
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。[1]
(二)缺点
1. 不能为决策提供新方案
层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。
2. 定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
对于上述这样一个问题,其实也是有办法解决的。如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。这就引出了层次分析法的第三个不足之处。
3. 指标过多时数据统计量大,且权重难以确定
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。
4. 特征值和特征向量的精确求法比较复杂
在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。
模糊综合评价法优缺点
1、模糊综合评价法的优点
模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价;
评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。
2、模糊综合评价法的缺点
计算复杂,对指标权重矢量的确定主观性较强;
当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改进
㈥ 与层次分析法类似的分析方法有哪些
注:国内普遍能找到的层次分析法的计算方法,算出的一致性检验指标,经常很难(
已在层次单排序时求得),则
层总排序随机一致性比例为
当时,认为层次
.
㈦ 类似层次分析法的数学分析方法。
改进的话是把判断矩阵给改了,然后按照这个矩阵接着做一致性检验,改进的入口点是看出判断矩阵的矛盾。建议你看看系统工程的书
㈧ 层次分析方法
7.4.1 层次分析法基本原理
层次分析法 ( Analytical Hierarchy Process,简称 AHP 法) 是由美国着名运筹学家、匹兹堡大学 T.L.Saaty 教授于 20 世纪 70 年代中期提出的多目标多准则决策方法。它将人的主观判断定性分析进行量化,用数值来显示各替代方案的差异,供决策者参考。层次分析法原理简单,有数学依据,可以对非定量事物作定量分析,对人们的主观判断做客观描述,已在许多领域得到了广泛应用。
层次分析法是对所需要解决的问题,依据其内容和各因素间的相互关系,将因素按不同层次集合,把复杂的问题条理化、简单化,明确要解决的问题,利用数学手段确定每一层各因素相对重要性的权值,再把上一层信息传递到下一层,最后给出各因素相对重要性总的排序。根据总排序 ( 即权值) ,确定出各因素对目标的影响程度,以此分析确定影响建设工程质量和可能造成工程隐患的原因,实施有效的控制措施。
层次分析法的基本步骤:
1) 对问题进行分析;
2) 建立描述系统功能或特征的内部独立的递阶层次结构;
3) 同属一级的要素以上一级要素为准则进行两两比较,根据判断尺度确定其相对重要性,建立判断矩阵;
4) 对同一级元素的判断矩阵进行层次单排序;
5) 对其判断矩阵进行一致性检验;
6) 计算各要素的层次总排序。
图7.5 层次分析法基本模型
构造各层的判断矩阵,均是建立本层次对上一层次与某一因素有关的因素之间相对重要性程度的矩阵 ( 图7.5) ,矩阵的元素是本层次各个因素相互之间的重要性的量化数值,由人的主观判定给出。
层次分析法本质上是一种决策思维方法,按照 Saaty 提出的模型,其解决问题的基本过程如下:
( 1) 构造层次分析、层次结构模型
首先把决策的复杂系统分解为各种组成因素,将这些因素再按支配关系分解为次级组成因素,如此层层分解,形成一个有序的树状层次结构,称为递阶层次结构,这就建立了不同层次因素之间的相互关系。其中最上层为目标层,最下层为可供选择的决策方案层,中间各层为评价准则层 ( 表7.5) 。
表7.5 标准判断矩阵模型
(2)构造判断矩阵
一个因素被分解为若干个与之有关的下层因素,各下层因素对上层因素的作用大小不同,一般称为权重W,通过各因素的权重两两比较,填入表7.5中,就构成一个判断矩阵。例如图7.5分为3个层次,需要构造O,A1,A23个判断矩阵,分别为O矩阵(影响因素为A1、A2)、A1矩阵(影响因素为B1、B2、B3、B4、B5)、A2矩阵(影响因素为B2、B3、B4、B5)。各矩阵中的影响因素采用权重数值的方法表示对上层因素的重要程度(表7.6至表7.8)。其中权重按1~9标度选取数值表示不同的重要程度(如表7.9)。
表7.6中,aij表示对O来讲,Ai对Aj的相对重要性的数值。aij=Ai/Aj,通常取值为1,2,…,9及其倒数(也有其他的选值标度,见表7.9):1表示Ai与Aj同样重要;3表示Ai比Aj较重要;5表示Ai比Aj重要;7表示Ai比Aj重要得多;9表示Ai比Aj极为重要;1/3表示Aj比Ai较重要;1/5表示Aj比Ai重要,其余类推;2,4,6,8代表介于上述相邻判断中间的取值。任何判断矩阵都应满足aii=1与aij=1/aji(i,j=1,2,…,n)。
表7.6 O矩阵计算
表7.7 A1矩阵计算
表7.8 A2矩阵计算
表7.9 几种常见的正互反型标度
(3)逐层单排序,并进行一致性检验
层次单排序,首先解出判断矩阵O的最大特征值λmax,再利用Aω=λmaxω,解出λmax所对应的特征向量ω,ω经过标准化后,即为同一层次中相应元素对上一层中某因素相对重要性的排序权值。
λmax和ω的计算方法很多,在这里介绍一种简单的近似方法———和法:
第一步:A的元素按列归一化;
第二步:将A的元素按行相加;
第三步:所得到的行和向量归一化得排序向量ω;
第四步:按下列公式计算λmax值:
煤层顶板稳定性评价、预测理论与方法
式中:(Aω)i表示Aω的第i个元素。
得到λmax后,需要进行一致性检验,首先计算O的一致性指标CI,定义:
煤层顶板稳定性评价、预测理论与方法
式中:n———O的阶数,当CI=0,即λmax=n时,O具有完全一致性。CI愈大,O的一致性愈差。
将CI与平均随机一致性指标RI进行比较,令 ,称CR为随机一致性比率。当CR<0.10时,O具有满意的一致性,否则要对O重新调整,直到具有满意的一致性。这样计算出的λmax所对应的特征向量ω,经过标准化后,才可以作为层次单排序的权值。RI取值如表7.10所示。
表7.10 对于1~9阶判断矩阵的RI值
(4)总排序,取得决策结果
利用同一层次中所有层次单排序结果,计算针对上一层次而言本层次所有元素重要性的权值,这就是层次总排序。设上一层次所有元素A1,A2,…,Am的总排序已经完成,其权值分别为a1,a2,…,am,与aj对应的本层次元素B1,B2,..,Bn单排序的结果为b1j,b2j,…,bnj(当Bk与Aj无关时,bki=0), ajbij=1,总排序值仍为标准化向量(表7.11)。
表7.11 B层总排序权值
层次总排序一致性指标为:
式中:CIj为与aj对应的B层次中判断矩阵的一致性指标。
层次总排序随机一致性指标为:
式中:RIj———与aj对应的B层次中判断矩阵的随机一致性指标。
层次总排序随机一致性比率为:
当CR≤0.10时,认为总排序的计算结果具有满意一致性。
7.4.2 影响因素权重的确定
由于影响煤层顶板稳定性的因素众多而又复杂,而且绝大多数影响因素只是对其稳定性的定性评价,给进一步分析造成了困难。不管是传统的稳定系数法、数值分析法,还是新近采用的模糊数学、相似模拟等方法,都需要大量影响稳定因素的定量指标。在顶板稳定性评价中,影响因素指标由定性化到半定量化、定量化的分析,也是这个领域发展的必然趋势。本书以对兖州煤田顶板稳定性的层次分析法进行评价为例,说明其使用方法与步骤。通过对兖州煤田主采煤层顶板稳定性各影响因素的分析,结合层次分析法的独特性及其适宜性,各因素的综合影响结果进分析研究是比较合理的方法,以下就严格按照层次分析法的研究步骤,对兖州煤田主采煤层顶板稳定性的影响因素进行讨论。
(1)建立问题的递阶层次结构
按顶板稳定性影响因素之间的关系,构成图7.6所示的递阶层次结构。
图7.6 顶板稳定性影响因素的递阶层次模型
目标层A:为最上一层主采煤层顶板稳定性。
基本层B:分顶板沉积条件B1、顶板构造情况B2、顶板岩石力学性质B3和其他因素B4四大类。
基本层中每一个因素又分为不同的分支层。
顶板沉积条件:分为岩层组合方式C1、沉积岩性统计C2、层理发育情况C3;
顶板构造情况:分为区域构造展布C4、小构造统计特征C5、结构面发育情况C6;
顶板岩石力学性质:分为结构面的影响C6、岩石力学指标C7、岩石物理性质C8;
其他因素:包括地震的影响C9、开采技术条件C10。
(2)构造两两比较矩阵
基本层因素,运用1~9标度(表7.12),两两比较得到判断矩阵(表7.13);对于基本层的分支层,用相同方法构造出两两比较判断矩阵(表7.14至表7.17)。
表7.12 比较标度的取值方法
表7.13 A矩阵计算
表7.14 B1矩阵计算
表7.15 B2矩阵计算
表7.16 B3矩阵计算
表7.17 B4矩阵计算
(3)权值分配
根据判断矩阵得出各因素的权值大小,计算并进行一致性和随机性检验,最后可得各类、各项影响因素指标的两级权重分配(表7.18)。
表7.18 各类、各项不同影响因素指标的权重分配
续表
采用AHP法确定煤层顶板各项影响因素指标的权值,合理地反映了各项因素对顶板稳定性的影响程度。权值的合理确定,为准确分析研究区的顶板稳定性打下了良好的基础。
7.4.3 层次分析法在煤层顶板稳定性评价中的应用———以兖州煤田为例
(1)单因素分区
首先对影响煤层顶板稳定性的3个最基本因素进行分析,根据各分支因素的权值大小,得到3个基本因素分区图:沉积分区图(图7.7)、构造分区图(图7.8)和岩石力学性质分区图(图7.9)。
1)根据沉积方面影响因素,按照权重大小对研究区顶板进行沉积分区(图7.7),共分出4种基本类型:厚层砂岩沉积区、砂-粉砂岩沉积区、粉砂-泥岩沉积区、泥岩沉积区。
·厚层砂岩沉积区,主要分布在煤田北部和南部,老顶砂岩发育较厚,以中、粗砂岩为主,大部分为硅质胶结,少量泥质胶结。顶板岩层以煤层-老顶组合为主,直接顶不发育或以薄层覆于煤层之上。约占井田面积的30%,工程性质属沉积稳定区。
·砂-粉砂岩沉积区,主要分布在煤田中部和南部,以细砂岩、粉砂岩沉积为主,分层厚度中等。顶板岩层组合以细砂岩和粉砂岩互层为特征,约占井田面积的25%。工程性质属沉积较稳定区。
·粉砂-泥岩沉积区,主要分布在煤田中部,与砂-粉砂岩沉积间隔分布。岩性以粉砂岩及泥岩为主,顶板岩层组合以泥岩-粉砂岩、泥质粉砂岩和粉砂质泥岩互层等,分层厚度较薄,约占井田面积的30%,工程性质属沉积较不稳定区。
·泥岩沉积区,在井田全区均有分布,分块面积不大,呈零星分散状展布。以泥岩、粘土岩、粉砂质泥岩为主,夹有煤线及软弱层,且分层厚度一般较薄。约占井田面积的15%。工程性质属沉积不稳定区。
2)依据研究区断层及褶皱的展布情况,按已采区揭露的顶板小断层分布特点,得出煤层顶板构造发育分区图(图7.8)。将顶板类型分为4种:构造极发育区、构造发育区、构造中等发育区和构造不发育区。
图7.7 沉积类型分区图
·构造不发育区,区内小构造数量有限,断续展布,主要集中分布在井田北部及西部地区,分布在远离构造密集的地带。约占全区面积的20%左右。
·构造中等发育区,小构造数量不多,连通性不良,独个产出,这种类型全区基本均匀分布,属较稳定顶板,与较不稳定顶板成过渡带分布。约占全区面积的30%左右。
·构造发育区,多指大构造附近区域,许多伴生小构造发育,相互贯穿连通,破坏岩体的完整性,岩石力学性质降低,是顶板冒落和破坏的主要因素,约占全区的20%。
·构造极发育区,指大构造和小构造极发育的地区,彼此相互交叉,组合成更为复杂的型式。小断层密集成带,顶板岩层破碎,节理裂隙较多。一般大构造出现的地方往往小构造也很密集,因为在区域构造力的作用下,大构造逐渐形成过程中,小构造伴生出现,使岩体的不稳定程度和范围都相应增加。这种类型约占全区面积的30%。
图7.8 构造发育分区图
3)根据顶板岩层岩石力学性质特点,以及各影响因素分析,对煤层顶板按岩石力学性质进行分区,共分为4种类型:极高强度区、高强度区、中等强度区和低强度区(图7.9)。
·极高强度区,顶板岩层的抗压强度大于56MPa,仅分布在井田中部和南部,面积较小。约占井田面积的5%。
·高强度区,顶板岩层的抗压强度为52~56MPa,井田北部、西部和南部大部分地区属于此类。约占井田面积的60%。
图7.9 岩石力学性质分区图
·中等强度区,顶板岩层的抗压强度为48~52MPa,主要分布在井田最北部、中西部以及东南部地区。约占井田面积的20%。
·低强度区,顶板岩层的抗压强度<48MPa,零星分布在全井田范围内,主要受沉积和构造等多方面的影响,岩石力学性质低。约占井田面积的15%。
(2)多因素综合分区
利用层次分析法确定影响因素权值后,对研究区进行综合分区。依据沉积条件、构造发育特点和岩石力学特征,按照基本因素权重大小进行复合叠加,把兖州煤田主采煤层顶板基本类型分为4种:顶板非常稳定区、顶板稳定区、顶板中等稳定区和顶板不稳定区(图7.10)。
图7.10 兖州煤田主采煤层顶板稳定性综合分区图
顶板非常稳定区,主要位于井田中北部,从沉积、构造、岩石力学等方面分析,均属于稳定情况,岩性主要以中粗砂岩为主,构造极少发育,岩石力学强度高,抗压强度>56MPa。综合分析,顶板工程性质好,约占井田面积的20%。
顶板稳定区,主要位于井田的西部、西南以及东北部,岩性主要以细砂岩、粉砂岩及薄层互层为特征,含少量泥岩,构造发育中等,局部小构造密集,岩石力学性质处于高强度区与中等强度区的过渡地段,岩体抗压强度介于48~56MPa之间。综合分析,顶板工程性质较好,约占井田面积的40%。
顶板中等稳定区,主要位于井田西南部,中部及东南部地区,南北向条带状分布,岩性以粉砂岩、泥岩、粘土岩为主,构造属极发育区、发育区或中等发育区,局部小构造密集发育,主要为大型断裂的两侧或邻近地区,岩石力学性质处于中等强度。综合分析,顶板工程性质较差,约占井田面积的30%。
顶板不稳定区,主要位于井田北部及东部小块区域,岩性以泥岩、泥质粉砂岩和粉砂岩为主,构造极发育,岩层裂隙较多,岩石力学性质较差,岩体抗压强度<48MPa。综合分析,顶板工程性质很差,约占井田面积的10%。
中等稳定区和不稳定区煤层顶板属于灾害性顶板,在开采过程中需要及时进行管理和维护,防止出现顶板事故。非常稳定区和稳定区顶板属于安全性顶板,在开采过程中必须按照技术要求及时进行放顶工作。
㈨ 层次分析法中“专家打分”环节可以用什么方法替代
自己当专家,或者找同学让他们分别打分,最后算平均值
㈩ 请问现代汉语 层次分析法的缺点如何完善 可否以其他分析方法辅助,解决
“层次分析法”可以了解句法结构的层次性,却无法确定一个句子的具体句型。
而还有一种“成分分析法”是研究各类词充当什么句子成分的,着眼于句子成分的确定和结构方式的判别。
“成分分析法”(符号图示法)和“层次分析法”(框式图解法)具有互补性,正因为如此,目前句法分析时往往既进行成分分析,又进行层次分析,即把两者结合起来。
希望我的答案会对您有帮助!