导航:首页 > 研究方法 > 应用回归分析方法

应用回归分析方法

发布时间:2022-01-16 12:48:56

A. 回归分析方法

§3.2 回归分析方法
回归分析方法,是研究要素之间具体的数量关系的一种强有力的工具,能够建立反映地理要素之间具体的数量关系的数学模型,即回归模型。
1. 一元线性回归模型
1) 一元线性回归模型的基本结构形式
假设有两个地理要素(变量)x和y,x为自变量,y为因变量。则一元线性回归模型的基本结构形式:

a和b为待定参数;α=1,2,…,n为各组观测数据的下标; εa为随机变量。如果记a^和b^ 分别为参数a与b的拟合值,则得到一元线性回归模型

ÿ 是y 的估计值,亦称回归值。回归直线——代表x与y之间相关关系的拟合直线

2) 参数a、b的最小二ÿ乘估计
参数a与b的拟合值:

,

建立一元线性回归模型的过程,就是用变量 和 的实际观测数据确定参数a和b的最小二乘估计值α^和β^ 的过程。
3) 一元线性回归模型的显着性检验
线性回归方程的显着性检验是借助于F检验来完成的。
检验统计量F:

误差平方和:

回归平方和:

F≈F(1,n-2)。在显着水平a下,若 ,则认为回归方程效果在此水平下显着;当 时,则认为方程效果不明显。

[举例说明]
例1:在表3.1.1中,将国内生产总值(x1)看作因变量y,将农业总产值(x2)看作自变量x,试建立它们之间的一元线性回归模型并对其进行显着性检验。
解:
(1) 回归模型
将y和x的样本数据代入参数a与b的拟合公式,计算得:

故,国内生产总值与农业总产值之间的回归方程为

(2) 显着性检验

在置信水平α=0.01下查F分布表得:F0.01(1,46)=7.22。由于F=4951.098 >> F0.01(1,46)=7.22,所以回归方程(3.2.7)式在置信水平a=0.01下是显着的。

2. 多元线性回归模型
在多要素的地理系统中,多个(多于两个)要素之间也存在着相关影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。
1) 多元线性回归模型的建立
(1) 多元线性回归模型的结构形式
假设某一因变量y受k 个自变量 的影响,其n组观测值为 。则多元线性回归模型的结构形式:

为待定参数, 为随机变量。如果 分别为 的拟合值,则回归方程为

b0为常数, 称为偏回归系数。
偏回归系数 ——当其它自变量都固定时,自变量 每变化一个单位而使因变量xi平均改变的数值。

(2) 求解偏回归系数

,

2) 多元线性回归模型的显着性检验
用F检验法。
F统计量:

当统计量F计算出来之后,就可以查F分布表对模型进行显着性检验。
[举例说明]
例2:某地区各城市的公共交通营运总额(y)与城市人口总数(x1 )以及工农业总产值(x2)的年平均统计数据如表3.2.1(点击展开显示该表)所示。试建立y与x1及x2之间的线性回归模型并对其进行显着性检验。

表3.2.1 某地区城市公共交通营运额、人口数及工农业总产值的年平均数据

城市序号

公共交通营运额y/103人公里 人口数x1/103人 工农业总产值x2
/107元
1 6825.99 1298.00 437.26
2 512.00 119.80 1286.48
... ... ... ...
14 192.00 12.47 1072.27
注:本表数据详见书本P54。
解:
(1) 计算线性回归模型
由表3.2.1中的数据,有

计算可得:

故y与x1 及y2之间的线性回归方程

(2) 显着性检验

故:

在置信水平a=0.01下查F分布表知:F0.01(2,11)=7.21。由于F=38.722> F0.01(2,11)=7.21,所以在置信水平a=0.01下,回归方程式是显着的。

3. 非线性回归模型的建立方法
1) 非线性关系的线性化
(1) 非线性关系模型的线性化
对于要素之间的非线性关系通过变量替换就可以将原来的非线性关系转化为新变量下的线性关系。
[几种非线性关系模型的线性化]

① 于指数曲线 ,令 , ,将其转化为直线形式:
,其中, ;
② 对于对数曲线 ,令 , ,将其转化为直线形式:

③ 对于幂函数曲线 ,令 , ,将其转化为直线形式:
,其中,
④ 对于双曲线 ,令 ,将其转化为直线形式:

⑤ 对于S型曲线 ,将其转化为直线形式:


⑥ 对于幂函数乘积:

令 将其转化为直线形式:

其中, ;
⑦ 对于对数函数和:

令 ,将其化为线性形式:

(2) 建立非线性回归模型的一般方法
① 通过适当的变量替换将非线性关系线性化;
② 用线性回归分析方法建立新变量下的线性回归模型:
③ 通过新变量之间的线性相关关系反映原来变量之间的非线性相关关系。
3) 非线性回归模型建立的实例

非线性回归模型建立的实例

景观是地理学的重要研究内容之一。有关研究表明(Li,2000;徐建华等,2001),任何一种景观类型的斑块,其面积(Area)与周长(Perimeter)之间的数量关系可以用双对数曲线来描述,即

例3:表3.2.2给出了某地区林地景观斑块面积(Area)与周长(Perimeter)的数据。试建立林地景观斑块面积A与周长P之间的双对数相关关系模型。

表3.2.2某地区各个林地景观斑块面积(m2)与周长(m)

序号 面积A 周长P 序号 面积A 周长P
1 10447.370 625.392 42 232844.300 4282.043
2 15974.730 612.286 43 4054.660 289.307
... ... ... ... ... ...
41 1608.625 225.842 82 564370.800 12212.410

注:本表数据详见书本57和58页。

解:因为林地景观斑块面积(A)与周长(P)之间的数量关系是双对数曲线形式,即

所以对表3.2.2中的原始数据进行对数变换,变换后得到的各新变量对应的观测数据如表3.2.3所示。

B. 回归分析法

回归分析法,是在研究矿坑涌水量与其影响因素存在一定相关关系后,提出的一种数理统计方法。矿坑涌水量是在各种自然和人为因素综合作用下有规律地变化着。影响矿坑涌水量变化的因素极其复杂繁多,甚至有些因素我们目前还没有发现,有些因素虽被发现但也无力调控和测定。因此,大量事实告诉我们,矿坑涌水量(称为因变量)与某些影响因素(称为自变量)的关系也存在数学中称之为相关的关系。回归分析法就是利用数学统计的方法,找出矿坑涌水量与影响因素之间的相关关系的数学表达式——回归方程,用求得的回归方程来预测矿坑涌水量。

回归分析法与水文地质比拟法的原理基本相同,都是寻求矿坑涌水量与其主要影响因素之间的关系表达式,并以这种寻找到的数学关系式来预测新的矿坑涌水量。所不同的是数学表达式的来源不同。水文地质比拟法,多数是根据经验提出,用起来方便灵活,缺点是缺乏严密性;回归分析法,是以已经有的实测数据为基础,通过数理统计的方法建立回归方程,其优点是可靠性较水文地质比拟法大一些,但计算较复杂。

应该注意的是,回归方程是一种非确定性的变量关系,严格地讲,它不允许外推。但具体工作中往往又需要外推,因此,回归方程外推的范围不宜过大。当回归方程为直线时,外推深度一般不应超过试验降深的1.5~1.75倍;当回归方程为曲线相关时,虽可适当增大外推范围,但一般也不宜超过2倍。同时,必须根据矿床具体的水文地质条件,检验外推结果是否合理。

几种常用的回归方程如下:

(一)二元直线相关

当矿坑涌水量与主要影响因素之间为直线相关关系时,其数学表达式为

Q=a+bs (4-5)

式中:Q为试验时的涌水量;S为当抽水量为Q时相对应的水位降深;a为常数;b为回归系数,它表示当S每增加1m时涌水量平均增加的水量数值。

a,b可根据试验数据利用最小二乘法求得

双层水位矿床地下水深层局部疏干方法的理论与实践

式中:

为试验时各次涌水量的算术平均值,即

为试验时各次降深的算术平均值,即

;n为试验观测次数。

根据求得的a,b系数值,便可写出回归方程。

(二)三元直线相关

如果矿坑涌水量与两个影响因素存在直线相关时,其数学表达式便为三元直线相关(比如降深S和时间t):

Q=b0+b1S+b2t (4-8)

式中:b0为常数;b1,b2分别为水量Q对自变量S和t的回归系数;S,t为当矿坑涌水量为Q时的两个因素自变量;b0,b1,b2可用最小二乘法确定;

双层水位矿床地下水深层局部疏干方法的理论与实践

根据求得的b0,b1,b2可以写出三元直线方程。

(三)涌水量-降深曲线法(Q-S曲线法)

涌水量-降深曲线法也称涌水量曲线法,其实质就是利用抽(放)水的试验资料,建立涌水量(Q)和降深(S)之间的关系曲线方程,根据试验阶段和未来开采阶段水文地质条件的相似性,合理地把Q-S曲线外推,来预测矿坑涌水量。

大量试验资料证明,涌水量曲线一般有4种类型(图4-1)。

图4-1 涌水量-降深曲线图

(1)直线型

Q=bs

式中:

这种类型的曲线方程,一般表现为地下水流呈层流状态,抽水时水位降深与含水层厚度相比很小。

(2)抛物线型

S=aQ+bQ2 (4-11)

双层水位矿床地下水深层局部疏干方法的理论与实践

(3)幂函数曲线型

双层水位矿床地下水深层局部疏干方法的理论与实践

(4)对数曲线型

Q=a+blgS (4-17)

式中:

双层水位矿床地下水深层局部疏干方法的理论与实践

上述各式中a,b均为待定系数,求出a,b后便可写出涌水量曲线方程。

一般情况下,图4-1中的2号曲线代表的是抛物线型曲线,它表示强富水性含水层在抽水强烈时,地下水抽水井附近出现三维流的情况下的曲线形态;第3,4两种类型曲线一般表示含水层规模较小,补给条件比较差情况下出现的曲线类型。

涌水量曲线方程的形态不但与含水层的规模、性质以及补给径流条件有关,而且与抽水强度的大小和抽水时间长短也有关系。因此,采用Q-S曲线方程法预测矿坑涌水量时,一般要求抽(放)水试验的规模尽量大一些,常采取大口径、大降深群孔抽(放)水试验,以求尽量符合未来的开采状态,充分揭露和显示其尽量多的水文地质条件,尽量波及矿床的各种边界,从而求取最大可能符合实际条件的矿坑涌水量。

C. 应用回归分析spss

这种分析只要你看下书,是比较简单的,我在这里也不好和你怎么操作,比较复杂,第一和第二题是很简单的。
第一题直接在画图中做散点图就可以了
第二题在分析——回归分析——线性回归
第三题其实就是在第二题的分析中加一些设置就可以了

D. 应用回归分析的主要内容

《应用回归分析(第3版)》写作的指导思想是在不失严谨的前提下,明显不同于纯数理类教材,努力突出实际案例的应用和统计思想的渗透,结合统计软件全面系统地介绍回归分析的实用方法,尽量结合中国社会经济、自然科学等领域的研究实例,把回归分析的方法与实际应用结合起来,注意定性分析与定量分析的紧密结合,努力把同行以及我们在实践中应用回归分析的经验和体会融入其中。回归分析是统计学中一个非常重要的分支,在自然科学、管理科学和社会经济等领域有着非常广泛的应用。

E. 回归的回归分析的应用

相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。根据图8-3的散点图,可以建立下面的线性关系:
Y=A+BX+§
式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。
在SPSS软件里可以很容易地实现线性回归,回归方程如下:
y=0.857+0.836x回归直线在y轴上的截距为0.857、斜率0.836,即质量每提高一分,用户满意度平均上升0.836分;或者说质量每提高1分对用户满意度的贡献是0.836分。
上面所示的例子是简单的一个自变量的线性回归问题,在数据分析的时候,也可以将此推广到多个自变量的多元回归,具体的回归过程和意义请参考相关的统计学书籍。此外,在SPSS的结果输出里,还可以汇报R2,F检验值和T检验值。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100%来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显着性水平(significant level)检验回归方程的线性关系是否显着。一般来说,显着性水平在0.05以下,均有意义。当F检验通过时,意味着方程中至少有一个回归系数是显着的,但是并不一定所有的回归系数都是显着的,这样就需要通过T检验来验证回归系数的显着性。同样地,T检验可以通过显着性水平或查表来确定。在上面所示的例子中,各参数的意义如表8-2所示。
表8-2 线性回归方程检验 指标 值 显着性水平 意义R 0.89 “质量”解释了89%的“用户满意度”的变化程度 F 276.82 0.001 回归方程的线性关系显着 T 16.64 0.001 回归方程的系数显着

F. 什么是回归分析原理与方法

作经济研究,这是基本的方法和手段。
不知道你想了解些什么,就找了些最简单的,给你,希望有帮助。什么地方不明白再问。
直线回归是用直线回归方程表示两个数量变量间依存关系的统计分析方法,属双变量分析的范畴。
1.
直线回归方程的求法
(1)回归方程的概念:
直线回归方程的一般形式是Ý(音y
hat)=a+bx,其中x为自变量,一般为资料中能精确测定和控制的量,Y为应变量,指在x规定范围内随机变化的量。a为截距,是回归直线与纵轴的交点,b为斜率,意为x每改变一个单位时,Ý的变化量。
(2)直线回归方程的求法
确定直线回归方程利用的是最小二乘法原理,基本步骤为:
1)先求
b,基本公式为b=lxy/lxx=SSxy/SSxx
,其中lxy为X,Y的离均差积和,lxx为X的离均差平方和;
2)再求a,根据回归方程
a等于Y的均值减去x均值与b乘积的差值。
(3)回归方程的图示:
根据回归方程,在坐标轴上任意取相距较远的两点,连接上述两点就可得到回归方程的图示。应注意的是,连出的回归直线不应超过x的实测值范围.
2.
回归关系的检验
回归关系的检验又称回归方程的检验,其目的是检验求得的回归方程在总体中是否成立,即是否样本代表的总体也有直线回归关系。方法有以下两种:
(1)方差分析
其基本思想是将总变异分解为SS回归和SS剩余,然后利用F检验来判断回归方程是否成立。
(2)t检验
其基本思想是利用样本回归系数b与总体均数回归系数ß进行比较来判断回归方程是否成立,实际应用中因为回归系数b的检验过程较为复杂,而相关系数r的检验过程简单并与之等价,故一般用相关系数r的检验来代替回归系数b的检验。
3.
直线回归方程的应用
(1)描述两变量之间的依存关系;
利用直线回归方程即可定量描述两个变量间依存的数量关系
(2)利用回归方程进行预测;
把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制
规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.
应用直线回归的注意事项
(1)做回归分析要有实际意义;
(2)回归分析前,最好先作出散点图;
(3)回归直线不要外延。

G. 回归分析的应用

相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。根据图8-3的散点图,可以建立下面的线性关系: Y=A+BX+§
式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。
对于经验回归方程: y=0.857+0.836x
回归直线在y轴上的截距为0.857、斜率0.836,即质量每提高一分,用户满意度平均上升0.836分;或者说质量每提高1分对用户满意度的贡献是0.836分。
上面所示的例子是简单的一个自变量的线性回归问题,在数据分析的时候,也可以将此推广到多个自变量的多元回归,具体的回归过程和意义请参考相关的统计学书籍。此外,在SPSS的结果输出里,还可以汇报R2,F检验值和T检验值。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100%来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显着性水平(significant level)检验回归方程的线性关系是否显着。一般来说,显着性水平在0.05以上,均有意义。当F检验通过时,意味着方程中至少有一个回归系数是显着的,但是并不一定所有的回归系数都是显着的,这样就需要通过T检验来验证回归系数的显着性。同样地,T检验可以通过显着性水平或查表来确定。在上面所示的例子中,各参数的意义如表8-2所示。
线性回归方程检验 指标 显着性水平 意义 R2 0.89 “质量”解释了89%的“用户满意度”的变化程度 F 276.82 0.001 回归方程的线性关系显着 T 16.64 0.001 回归方程的系数显着 示例 SIM手机用户满意度与相关变量线性回归分析
我们以SIM手机的用户满意度与相关变量的线性回归分析为例,来进一步说明线性回归的应用。从实践意义讲上,手机的用户满意度应该与产品的质量、价格和形象有关,因此我们以“用户满意度”为因变量,“质量”、“形象”和“价格”为自变量,作线性回归分析。利用SPSS软件的回归分析,得到回归方程如下:
用户满意度=0.008×形象+0.645×质量+0.221×价格
对于SIM手机来说,质量对其用户满意度的贡献比较大,质量每提高1分,用户满意度将提高0.645分;其次是价格,用户对价格的评价每提高1分,其满意度将提高0.221分;而形象对产品用户满意度的贡献相对较小,形象每提高1分,用户满意度仅提高0.008分。
方程各检验指标及含义如下: 指标 显着性水平 意义 R2 0.89 “质量”和“价格”解释了89%的“用户满意度”的变化程度 F 248.53 0.001 回归方程的线性关系显着 T(形象) 0.00 1.000 “形象”变量对回归方程几乎没有贡献 T(质量) 13.93 0.001 “质量”对回归方程有很大贡献 T(价格) 5.00 0.001 “价格”对回归方程有很大贡献 从方程的检验指标来看,“形象”对整个回归方程的贡献不大,应予以删除。所以重新做“用户满意度”与“质量”、“价格”的回归方程如下: 满意度=0.645×质量+0.221×价格
用户对价格的评价每提高1分,其满意度将提高0.221分(在本示例中,因为“形象”对方程几乎没有贡献,所以得到的方程与前面的回归方程系数差不多)。
方程各检验指标及含义如下: 指标 显着性水平 意义 R 0.89 “质量”和“价格”解释了89%的“用户满意度”的变化程度 F 374.69 0.001 回归方程的线性关系显着 T(质量) 15.15 0.001 “质量”对回归方程有很大贡献 T(价格) 5.06 0.001 “价格”对回归方程有很大贡献

H. 什么是回归分析,运用回归分析有什么作用

回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。

(8)应用回归分析方法扩展阅读:

回归分析步骤

1、确定变量

明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2、建立预测模型

依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3、进行相关分析

回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4、计算预测误差

回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5、确定预测值

利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

I. 回归分析法的应用

趋势分析法总体上分四大类:(一)纵向分析法;(二)横向分析法;(三)标准分析法;(四)综合分析法。此外,趋势分析法还有一种趋势预测分析。趋势预测分析运用回归分析法、指数平滑法等方法来对财务报表的数据进行分析预测,分析其发展趋势,并预测出可能的发展结果。以下先简要介绍如何运用趋势线性方程来作趋势预测分析,其它四类方法后面分别介绍。趋势线性方程是作趋势分析时,预测销售和收益所普遍采用的一种方法。公式表示为:y=a+bx.其中:a和b为常数,x表示时期系数的值,x是由分配确定,并要使∑x=0。为了使∑x=0。当时期数为偶数或奇数时,值的分配稍有不同

阅读全文

与应用回归分析方法相关的资料

热点内容
在家弹跳最简单的方法 浏览:811
实验和进一步推理是什么方法 浏览:624
机电设施垂直度测量方法 浏览:675
用什么方法去水果皮屑 浏览:820
铁架子尺寸计算方法 浏览:3
测量一颗豆子的重量用什么方法 浏览:986
蓝牙耳机延迟解决方法 浏览:195
去掉手机屏幕水印有几种方法 浏览:908
日本水光面膜使用方法 浏览:529
英雄联盟屏幕快捷键怎么设置在哪里设置方法 浏览:703
学篮球的方法视频 浏览:581
成都套装门安装方法 浏览:874
原生态治疗不孕不育的方法 浏览:102
快速掩酸菜的方法 浏览:399
鉴别白癜风的方法有哪些 浏览:681
体育科学研究方法研究生用书 浏览:809
35乘52的简便计算方法 浏览:96
纪委快速处置方法 浏览:741
眼睛散光怎么恢复最快的方法 浏览:694
分析产品的方法与技巧 浏览:721