Ⅰ 人类基因组计划的内容是什么
人类基因组这个研究,第一次在生命科学里面实现了整体上的遗传信息的解析,基因组功能的研究。基因组就是一个生命体的遗传信息的总和。
生命信息的储存单位,实际上就是我们说的基因,载体是脱氧核糖核酸 DNA。在多细胞的生物里,不同的细胞之间,由不同的 细胞所组成的组织之间,由不同的组织所形成的器官之间都在发生信息的流动。这个就是我们所说的:遗传学的中心法则。基因组就是一个生命体的遗传信息的总和。DNA双螺旋的发现大概是20世纪生命科学最最伟大的突破。ATCG四种不同的碱基构成了纷繁复杂的遗传学语言。
实际上绝大多数的人类疾病都是多基因控制的。人类基因组计划正式启动是1990年,就是要用15年的时间,到2005年完成人类基因组DNA全序列的测定。到今天为止我们也还没有这样的技术,说拿来一条染色体,我们就能直接测序。所以整个人类基因组计划实际上就是由复杂到简单,再由简单又回归复杂的一个过程。在人类基因组测序起步的时候,当时用的DNA序列的分析方法是凝胶电泳为主的方法,基本上还是手工运作的。但是在20世纪90年代以后,新的一个测序技术产生了就是毛细管电泳仪技术。使得测序的速度大大加快。一天就可以有100万个碱基对的的序列被测出。中国也加入这一个测序计划,我们承担了1%的任务。2000年4月份,21号染色体全序列测序草图完成了。
现在我们已经可以做到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。将来要去看病,不光要带病卡,还要带一个自己的芯片。医生用药诊断之前,用芯片看看你可能得什么病。通过对进化不同阶段的生物体基因组学的比较,就可以发现基因组结构组成的功能调节的规律。实际上人类疾病相关的基因,也恰恰是人类基因组结构和功能完整性至关重要的信息。实际上在过去几年当中,对疾病的研究早已成为人类基因组研究
一个重要计划的组成部分。1997年提出了两个计划:一个是肿瘤基因组的解剖计划,还有一个叫环境基因组计划。实际上都是和健康相关的。人类基因组计划对医学的贡献,一个是在诊断方面,另外是在基因治疗方面。对于我们这样发展中国家来说,更应该注重预防。
我们国家的基因组计划,是1994年开始启动的,从功能基因组的角度进行切入。采取结构与功能并重,多学科交叉建立关键技术,进行基因组多样性和疾病基因研究。这是我们一开始的时候一个策略。我们可以很自豪的说:现在除了Y染色体,所有的染色体上面都遍布着中国科学家发现和命名的基因。最近我们启动了一个中华民族基因组-SNP的大规模的研究。这个工作从群体遗传学转向了,我们中国人群特点的、疾病发生发展的遗传学信息的研究。所以,如果现在我们能够把中华民族生命元素变异的系统目录和数据库做出来的话,就能够获得我国生物医学界和制药工业界技术创新的知识产权来造福子孙后代来贡献于全人类。
全文
当然清华是我们国家最高等的学府之一了。所以,今天到这里来,也有点诚惶诚恐。那么主要是来求教的。现在我要给大家介绍的人类基因组这个研究,可以说是第一次,在生命科学里面,实现了某种大科学的概念。也就是说来一个整体上的遗传信息的解析,基因组功能的研究。所以我说现在生物学的特点,已经从70年代、80年代,主要是以分析为主,学科的精细化,分工的细化,这样一个趋势到了一个新的平台上面。这个平台就是大综合,其实我们中国的科学,一开始就是讲究大综合。你看我们的艺术也是这样,我们的写意画就是一种大综合。这个东西方的融合非常重要,把西方严谨的分析,和中国早在几千年前的大综合的思路结合在一起的话,我想有可能带来一些新的突破的机遇。那么这张图我想,恐怕不光是搞生命科学的,就是我们非生命科学的同学们,也都是非常熟悉的,遗传学中心法则。
我们都知道,生命活动它的本质,它是一个信息的流动。有人一直说,我们都是搞生命科学的。但是突然有一个冒出一句话:“什么是生命”?这个倒可以让人思索一番。我个人体会,生命信息它的储存单位,生命的重要特点之一,它有记忆功能。那么它的储存的单位,实际上就是我们说的基因,在绝大部分的生命体我们知道,它的载体是脱氧核糖核酸DNA。但是它的执行单位,主要来说是蛋白质。这里面它用信息的语言,不是一样的,一个是核酸的语言,一个是氨基酸的语言。所以在这个空间信息的流动,需要有一些调控的机制。这个调控大家知道,第一步就是转录。这个时候生命信息的语言,没有发生变化,都是核酸的语言。只是从DNA到了MRNA上面,这个过程我们称为转录。然后语言要发生变化,发生转换,要求来进行翻译了。所以从MRNA上面的生命语言,变成蛋白质的生命语言。当然我们知道这个蛋白质,很多的蛋白质它都具有代谢的活动。生命体和非生命体的重要差别之一就是有代谢和新陈代谢,然后蛋白质可以形成高级空间的构型。那么在这个里面,细胞的不同的部分互相之间作用,细胞核和细胞浆互相在作用。然后在多细胞的生物里,不同的细胞之间、由不同的细胞所组成的组织之间、由不同的组织所形成的器官之间都在发生信息的流动。我想这个就是我们所说的“遗传学的中心法则”。那么基因这个概念,大家都很清楚了或者说基本概念很清楚,确切的定义也许今天还不是非常清楚。
那么基因组是什么意思?基因组就是一个生命体的遗传信息的总和。那么在这里我们就不是单个基因,而是所有的基因。它所编码所有的氨基酸相互之间的这个关系,所以感官性是完全不一样的。DNA双螺旋结构的发现大概是20世纪生命科学最最伟大的突破。那么A、T、C、G四种不同的碱基,构成了纷繁复杂的遗传学语言,生命信息的最基本的符号。这个最基本的符号实在是让我们感到非常简单。大自然就用这四种简单的字符,组成了让我们叹为观止的大千世界的无数生命的多样性的现象。那么它的遗传信息,在绝大多数的生命体,我刚才说的是DNA的分子。那么它的排列组合在那里就决定了,或者说在相当大的程度上决定了生命活动在人体,也就是我们讲的:生、老、病、死等等这些活动。那么我们在讲双螺旋结构的时候,我们都知道,碱基对、DNA是生物的大分子。一般来说我们不是用一个质量单位来表示它的体量,而是用它的长度。那么一个bp,中文叫一个碱基对。但是在基因来说,一个基因常常是要成千上万个碱基对。所以我们引入了“千碱基对”这样的尺度。然后再做到基因组的时候,我们都知道基因组它是非常大的尺度,所以又发明了一些新的尺度单位,像Mb指的是百万碱基对。
这个是基因组计划之前的,我们对人类基因组的一些了解。我们知道人类基因组的长度,一个单倍体的基因组的长度大概是30亿个碱基对。一般的教科书上都说,序列当中编码序列,也就是说我们刚才说的,发生转录表达的,可以被称之为基因的序列。大概实际上是指成熟的MRNA,发生加工以后的MRNA当中的序列,大概小于5%。也就是说,非编码序列占了绝大多数。在人体细胞核里面,遗传信息它是以染色体的方式进行组织的,分布于22个常染色体和2条性染色体。我们都知道以前的生物科学的特点,基本上是师傅带徒弟、作坊式的操作。那么到了80年代中期的时候,我想一个是生命科学的这个科学思维的大大扩展,第二个是技术的这个进步。比方说当时遗传工程已经非常成熟了,当时DNA测序也相对成熟,然后PCR的技术在那里开始产生了。因此使得科学家们,生命科学家们的雄心壮志,在那里萌发了,决心要冲破原来的这种作坊式的被物理学界甚至化学界不太看得起的那种运作方式,搞一点可以称为是大科学的东西。
当然我想科学研究的条件,思维这是一个方面。但是实际上回顾一下科学史的话,很多重大的事件它还是需求在那里拉动的。我们有的科学家批评这样的做法,意思是说我们要注意把基础研究和社会重大需求结合在一起。我觉得实际上这有点失之偏颇的,就是说有各种各样类型的研究:有的是一种自由的探索,那么这个可以非常小心,一个人的脑瓜里都可以产生诺贝尔奖的构思。但是也有一些研究的确是希望能够造福人类的。但是这样的研究提出的挑战,实际上又可以孕育着不知道多少人的诺贝尔奖的思想在里面。那么人类基因组计划,就是这样一个典型。
我们看第一份,可以认为是正式的标书。我们做这个课题,一般来说首先要有标书。那么人类基因组计划的第一个标书,可以被认为是诺贝尔奖获得者Dulbecco 1986年发表在《科学》杂志的一篇短文。它的这个短文的题目是什么呢?《肿瘤研究的转折点——人类基因组研究》。事实上我们知道美国有一位雄心勃勃的年轻总统肯尼迪上台以后,当时他在科学上有两大计划:一个是实现人类登月,还有一个战胜癌症。那么人类登月随着阿波罗计划的比较顺利地实施,1969年人类实现了登月。但是攻克肿瘤的计划是一个失败的。为什么?原来科学家把问题想得太简单了,以为肿瘤就是一两个基因的问题。但实际上绝大多数的肿瘤,都是多基因的问题。它涉及的面是整个基因组的问题,是遗传信息的整体上面紊乱的这样一些问题。就是刚才讲的,我们不要以为好像一个融合基因打到小鼠里面去,就足以引起一个白血病,不是那么简单的。因为如果那样的话,你一打进去就要产生白血病,事实上我们PML罗拉白血病,在受精卵里面注射进这个融合基因以后,需要等待一年的时间才会出现白血病而且不是每一个小时都会发生白血病。所以就提示有其他的决定因素在里面。我们现在知道有时候几个基因一起传染的时候,它发生白血病的速率就会大大加快。
Dulbecco这个文章它就说,如果我们想更多地了解肿瘤,我们从现在开始必须关注细胞的基因组。从哪那个物种着手努力?如果我们想理解人类肿瘤,那就应该从人类开始。人类肿瘤研究将因对DNA的详细知识而得到巨大的推动。实际上绝大多数的人类疾病都是多基因的。人类基因组计划正式起动,现在一般的说法是1990年。那么1990年因为是美国国会通过了正式启动这样一个计划。这个计划雄心勃勃就是要用15年的时间,到2005年完成DNA的全序列的测定。这个投资量是多少呢?30亿美元。当时计算的依据是测一个碱基对大概需要一美元。整个计划在这个地方实际上是一个比较狭义的一个计划,这个计划实际上就是一个测序计划。实际上我们讲测序,读出天书只是理解人类自身的第一步,最重要的是读懂天书。但是即使是这样读出天书一个计划的话,它也要经历很多的磨难,很多的困难。也就是说,到今天为止,我们还没有这样的技术说,拿来一条染色体,我们就能够直接测序,从一头测到另外一头我们没有办法这样做。所以整个人类基因组计划,实际上可以简单地说就是由复杂到简单再由简单又回归复杂,最后大概还是回归到简单。也就是说把不能直接测序的一条染色体拿来给它进行分解,分解成比较小的可以操作的这样的单位。那么怎么分解呢?那就是作图,你可以用遗传学的方法去作图,也可以用物理学的方法来作图。我们知道遗传学作图,就是利用遗传学的标志来确定DNA标志间相对的距离。另外一个概念就是说要构成一些所谓的DNA连续的克隆系,那么这些片断,它互相之间重叠,它可以覆盖整个的染色体,从一端覆盖到另外一端。这样就把一个不能直接拿来测序的单位,就给它解析成比较小的、可以操作的这样一个单位。最后给它重新组合成忠实于原来染色体里面生命信息这个排列的,这样一个状况在这里面,识别全部的人类基因。所以人类基因组就是作图,或者狭义的人类基因组计划,就是作图的计划,遗传图、物理图、序列图,然后基因图。
在人类基因组计划进行大规模测序的策略有两种,一种就是我刚才说的那种思路,实际上叫逐个克隆。我刚才说了,你把DNA克隆的连续克隆系建起来了,覆盖整条染色体了,然后你就把一个一个的克隆,用得最多的就是叫BAC--细菌的人工染色体,大概100多个KB这样的长度。那么把这个克隆一个一个挑出来,挑出来以后再进行亚克隆。这种亚克隆就是这样的,就可以测序了,测序以后再给它组装起来、还原起来。这样一个策略,是国际上公共领域的测序计划所采取的策略。实际上它是历史的沿革,就是说从作图,遗传、物理作图演化过来的。我们都知道美国的瑟拉尔公司,也知道奎克曼特。那么它搞了一个叫全基因组鸟枪法,在一定作图信息基础上,绕过大片段连续克隆系统的构建而直接将基因组分解成小片段随机测序,然后利用超级计算机来进行组装。能够使得人类基因组,在初步完成作图以后,很快地迈入到测序,尤其是大规模测序。并且使得整个进度朝向人们的预期。这里面有两个重大因素的贡献,不得不承认这里面,工业界的贡献是非常大的。比如说在人类基因组起步的时候,当时用的这个DNA序列的分析方法,还是凝胶电泳仪为主的方法,基本上还是手工运作的。但是在20世纪90年代上半段的时间里面,新的一个测序技术出现了,毛细管电泳仪。另外把自动化的运作和包括工业界的管理这种系统,都引进来。所以使得测序的速度大大加快。你像这样一个测试仪,它的名字就叫做Megabace。什么意思?就是毛细管电泳,它差不多两小时就可以进行读出一个序列,大概能够读到几百个碱基,那么它一天可以做十班,那么它是96道,所以一天可以做960道。每一道按照他们的宣传,都可以达到一个KB的话,实际上是很难做到的,这是最理想的状态下。所以一天就可以有100万个碱基对的产出。但是曾经使学术界感觉比较困惑的另外一个问题,就是说如果我们现在处于一个知识爆炸的这样一个时代,可以说生物信息的爆炸,是最最给人印象深刻的。
我们看在基因组计划起步之前,在公共数据库里边DNA序列增长非常缓慢。然后1990年以后,就是指数增长期。而且这个东西我是统计到去年、2000年两家世界的公共领域,测序计划和瑟拉尔分别宣布完成了所谓的工作草图。这个时候是这样一个情况,现在大概是这样的情况。1999年当时面对着瑟拉尔的强行挑战,它是1998年成立的,号称三年要拿下人类基因组,国际人类基因组计划决定迎接挑战。就由国际上16个组,分担了人类基因组测序的任务,中国也加入这样一个测序计划。当然我们承担的是1%的任务,1%还是很重要的。因为对于一个发展中的国家来说,能够挤入到这种属于发达国家的俱乐部里面,应该说还是很不容易的。有些事情我们想挤也不一定挤得进去的,像空间站的计划,人家还防范你。
在这里我想介绍一下什么叫工作框架图?因为都在说工作框架图,什么叫工作框架图?其实就是一个工作草图。那么它的意思呢?就是说通过对染色体位置明确的BAC(细菌人工染色体)连续克隆系4—5倍覆盖率的测序,获得基因组90%以上的基因序列,其错误率应该低于1%。也就是说你的覆盖面要达到基因组的90%以上。第二个呢,错误率应该低于1%。100个碱基对立面允许你有一个以下的碱基对的错误。虽然这只是一张草图,但是它已经有用途,就是对基因组结构的基本认识,基因的识别和解析、疾病基因的定位克隆、单个核苷酸的多态性的发现等。
那么讲到草图就一定有一个最终完成图了,所以这张图的定义,要求测序所用的克隆能忠实地代表常染色质的基因组结构,覆盖率要达到99.9%以上,然后序列的错误率应该低于万分之一。与工作框架图的关系呢,实际上就是在工作框架图的基础上再加大测序的覆盖率,填补空隙,使得序列的精度增加,能够达到这样一个标准。也就是说,它是草图的下一步。2000年6月25号,当时的测序的情况是怎么样的呢?我们看当时在公共领域就是说各国政府支持的六各国家,美国、英国、德国、日本、法国、中国,六国政府支持的公共领域的计划,当时是覆盖了大概人类基因组的86.8%。其中包含一部分已经完成,就是我们刚才说的最终序列图这样标准的序列大概是20%多一点点,然后66%左右的序列处于所谓的工作草图这样的阶段。那么也可以说,还没有完成。因为我们说要达到90%以上,但是同时瑟拉尔他号称他的覆盖率已经超过了95%。当然他的覆盖率其实包括了所有的公共领域的这个贡献,再加上他的贡献,所以两者相加起来。我想我们应该相信大概90%以上的序列,都是被工作草图以上的这样一个序列的质量所覆盖着。我们看看公共领域测序计划当时的情况,在24条染色体上分布的情况。我们知道,实际上1999年12月份,22号染色体作为人类最小的染色体之一,它的全序列被测定,或者说是它的常染色体,指部分的全序列。我们注意到它的短臂这个地方,就是易染色体区域,实际上非常难测。因为都是大量的空序列,又没有多少基因。2000年4月份21号染色体全序列完成了,也是同样的定义,就是说常染色体的这个部分。我们看这里是用深红的颜色来表示,差不多就是最终完成的。而这种黄颜色表示的是我们刚才说的工作草图,在大部分染色体区域,是工作草图部分。实际上现在我们讲的,完成人类基因组全序列的测定,都是指的常染色体部分,所以有的人说也许人类基因组序列永远也不能被结束。
2001年2月15日,我们知道公共领域在《自然》上,都是有一种分庭抗礼的,兵对兵、将对将的感觉。2月16号就登了瑟拉尔序列,显然,经过新的一轮角逐,比2000年6月份的时候,完成序列的质量又要高得很多。所以这样的话,应该认为,两家加在一起的信息,应该说比我刚才说的一般的定义又要进一步了。所以就产生了一个在工作草图和最终完成图之间的一个中间状态,这个中间状态就叫做高质量的草图。但是就是这样一个高质量的草图,让我们已经基本上知道我人体生命信息的家当到底有多大。弄到最后我们发现我们的家当好像还是比较可怜的,比我们原来的想象,因为我们的基因数量大概只有线虫,只有900多个细胞的一个生命体的大概一倍左右,我们就比那么一个小虫多一倍。从低等生物到高等生物它的基因组的复杂度,与其说是由基因的数量来决定的,还不如说更主要的是由基因的长度来决定的。我们最近完成了一个细菌的测序,叫钩端螺旋体,可以引起传染病的。它平均一个KB就有一个基因,这么小的一个东西,500万个碱基对的一个基因组,有5000个基因。我们人30亿个碱基对,我们不过就3万个,顶多接近4万个这样一个数字。但是你看到了酵母,到了真核细胞的话,那它就是平均大概5到10个KB一个基因。然后到了果蝇的话,虽然它的基因数量好像还没有线虫的多。但是它的基因长度已经达到10个KB以上,然后到了哺乳类一个基因,大概像人类现在是100多个KB才有一个基因。所以替换、剪接这种可能性就大大增加了。另外跟时间和空间,也就是发育阶段和组织特异性表达的调控相关这些序列复杂大大增加了。虽然基因在高等生物可以达到十的五次方数量级,几万到十万个这样的比较高等的生物。但是实际上它的蛋白质的结构域,实际上如果把基因组比成一个大厦的话,组成这个大厦的预制件,这个数量实际上是比较有限的。那么另外有一些高级生物中有更为丰富的结构域组合,神经功能、组织特异发育、调控、止血和免疫系统的基因,在脊椎动物大量扩展。数以百计的人类基因源于脊椎动物进化过程中某个时间点上,细菌基因的横向转移。基因组在不同个体之间差异很大——单核苷酸多态性,单倍体的基因差异为1/1250,能够导致蛋白质变异的不到1%。
这本遗传天书,已经放在我们面前了,接下来就是要读懂它。要读懂它,一定要从大的系统的概念来考虑怎么样读懂。一个这个基因组的信息,和外界的环境,是在那里相互作用。另外这个基因组的信息不是从天上掉下来的,它是通过一个漫长的几十亿年进化的过程发展过来的,所以要用比较的方法去读它。另外要考虑到在个体之间和群体之间又是有变异的,这种变异也受到外界环境的一些调节。所以功能基因组学的研究内容,虽然现在没有一个严格的定义,但是我个人认为,至少包括这几个方面:人类基因组DNA序列变异性研究,其核心的内容是SNP,因为这是最常见的变异类型,当然还有很多其他的变异。然后基因组表达调控的研究,这个是发育阶段组织器官的变异,然后模式生物体的研究,这个里面包括进化的意思,和利用模式生物进行功能研究。当然从事所有这些研究,就像我们进行测序研究一样。生物信息学,它既是一个基本的工具,又是一个新兴的学科。因为最后要把这些信息整合起来,搞成一个我们所说的,系统生物学的话,你一定要用理论的手段,和大规模信息处理的手段。
那么基因组DNA序列变异性的研究,SNP,这种变异类型实际上是所有基因组的共同特征。它在相当大的程度上决定了不同的个体群体,这个是指的人类在疾病的易感性,对环境致病因子反应性和其他性状上面的差别。
在这里我举一个例子,说明这个性状有多么重要。我们就来看一看,我们对药物的反应性。我想我们每一个人、再健康的人,一生当中总要接触一些药物的。现在有一个新的提法叫药物遗传学,指的是大部分药物,在体内代谢的酶会有遗传多态性。像这里,一类是改变基团的一些酶,一类是对基团进行转移的一些酶。它都有很多的多态性,这种多态性的后果是什么呢?它在相当大的程度上决定了我们个体对药物的反应性。比方说这是一个很复杂的程序,但是我想我们主要的信息在这个地方。对于某一个药物来说,最适合它的基因型的,它的疗效可以达到75%,毒性只有1%。同样一个药,如果到了一个最不适合它的一个个体的情况是怎么样?它的疗效只有10%,毒性大于80%。那么基因组表达以及表达的调控的这个研究,这个我想都可以理解。那么指的是在全细胞的水平,如果是在单细胞的生命体是整个生命体的水平,识别基因组的所有转录表达的产物。实际上它是高通量的结构生物学,大批量解析蛋白质的高级结构,是连接基因组功能研究和新药开发研究的桥梁。然后为了在这样大的规模上,在整体水平上获得功能信息,需要一些所谓的并行化的分析手段。就是现在已经做得到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。所以有人说将来要去看病不光要带病卡,还要带一个自己的芯片。医生用药诊断之前先把芯片插进去,看看你可能得什么病,说起来很好,也很吓人的。模式生物体的研究一般的说法大概从单细胞、第一个生命跟外界隔绝以后,到现在的万物之灵的人类,大概是14亿年的进化史。那么通过进化不同阶段的生物体基因组序列的比较,发现基因组结构组成和功能调节的规律。
那么基因组计划,我刚才说一个是科学兴趣使然,科学家要探索人类的自身,另外也是社会驱动使然,就是说要战胜人类的疾病。所以最后它的价值的实现,我想还是应该回归到对人类的健康的贡献上面去。那么在这个意义上说,人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。我们看到过去的十年当中,由于人类基因组研究的带动,使得人类疾病相关性的研究有了长足的进步。单基因疾病由于定位克隆和定位候选克隆的新思路,导致了一大批遗传病基因的发现。我们知道传统的对基因的认识,是从表型到基因型。也就是你知道一个蛋白质,你测定了它的氨基酸的序列,然后根据密码址的原理,你推测它的DNA的序列可能是什么。你合成一个探针到基因组当中一调,把基因调出来。比方说血红蛋白病,这是第一个人类发现的分子病,它就是先知道了猪蛋白氨基酸的序列,然后再把它的基因调出来。但是绝大多数的人类疾病,我们不知道它的生化基础是什么东西,特别是在基因组计划之前。比方说像亨氏舞蹈病,我们就知道这个人会手舞足蹈,叫亨氏舞蹈病。比方说像遗传性的结肠癌,我们知道大肠部位大容易长息肉,但是我们不知道那个蛋白质出了问题。你怎么办?怎么来找到它的疾病基因?所以有了一个新的概念,叫反过来的遗传学,是什么呢?先去找它的基因,然后再去看它的表型。一旦拿到基因以后,很容易你马上可以推测它的蛋白质的结构。你可以产生抗体,你可以接下来做很多基因的功能。健康相关的研究是HGP的重要组成部分,1997年相继提出:肿瘤基因组的解剖计划,环境基因组计划。
人类基因组计划对医学的贡献。基因诊断,基因治疗和基因组信息为基础的治疗,发展中国家和发达国家越来越重视疾病的预防,特别是基于基因组信息的疾病预防。我国一贯提倡的是预防为主。如果能够在一个人刚出生的时候进行疾病易感基因的识别,在早期把风险人群挑出来,然后在环境因子、生活方式上实施干预。生物技术发生了深刻的变化,更多地进入到细胞、胚胎和组织的研究水平上来,推动了胚胎和成年期干细胞技术的应用。血液病研究与其他先进学%
Ⅱ 人类基因组计划的主要任务是什么
人类基因组这个研究,第一次在生命科学里面实现了整体上的遗传信息的解析,基因组功能的研究。基因组就是一个生命体的遗传信息的总和。
生命信息的储存单位,实际上就是我们说的基因,载体是脱氧核糖核酸 DNA。在多细胞的生物里,不同的细胞之间,由不同的 细胞所组成的组织之间,由不同的组织所形成的器官之间都在发生信息的流动。这个就是我们所说的:遗传学的中心法则。基因组就是一个生命体的遗传信息的总和。DNA双螺旋的发现大概是20世纪生命科学最最伟大的突破。ATCG四种不同的碱基构成了纷繁复杂的遗传学语言。
实际上绝大多数的人类疾病都是多基因控制的。人类基因组计划正式启动是1990年,就是要用15年的时间,到2005年完成人类基因组DNA全序列的测定。到今天为止我们也还没有这样的技术,说拿来一条染色体,我们就能直接测序。所以整个人类基因组计划实际上就是由复杂到简单,再由简单又回归复杂的一个过程。在人类基因组测序起步的时候,当时用的DNA序列的分析方法是凝胶电泳为主的方法,基本上还是手工运作的。但是在20世纪90年代以后,新的一个测序技术产生了就是毛细管电泳仪技术。使得测序的速度大大加快。一天就可以有100万个碱基对的的序列被测出。中国也加入这一个测序计划,我们承担了1%的任务。2000年4月份,21号染色体全序列测序草图完成了。
现在我们已经可以做到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。将来要去看病,不光要带病卡,还要带一个自己的芯片。医生用药诊断之前,用芯片看看你可能得什么病。通过对进化不同阶段的生物体基因组学的比较,就可以发现基因组结构组成的功能调节的规律。实际上人类疾病相关的基因,也恰恰是人类基因组结构和功能完整性至关重要的信息。实际上在过去几年当中,对疾病的研究早已成为人类基因组研究
一个重要计划的组成部分。1997年提出了两个计划:一个是肿瘤基因组的解剖计划,还有一个叫环境基因组计划。实际上都是和健康相关的。人类基因组计划对医学的贡献,一个是在诊断方面,另外是在基因治疗方面。对于我们这样发展中国家来说,更应该注重预防。
我们国家的基因组计划,是1994年开始启动的,从功能基因组的角度进行切入。采取结构与功能并重,多学科交叉建立关键技术,进行基因组多样性和疾病基因研究。这是我们一开始的时候一个策略。我们可以很自豪的说:现在除了Y染色体,所有的染色体上面都遍布着中国科学家发现和命名的基因。最近我们启动了一个中华民族基因组-SNP的大规模的研究。这个工作从群体遗传学转向了,我们中国人群特点的、疾病发生发展的遗传学信息的研究。所以,如果现在我们能够把中华民族生命元素变异的系统目录和数据库做出来的话,就能够获得我国生物医学界和制药工业界技术创新的知识产权来造福子孙后代来贡献于全人类。
全文
当然清华是我们国家最高等的学府之一了。所以,今天到这里来,也有点诚惶诚恐。那么主要是来求教的。现在我要给大家介绍的人类基因组这个研究,可以说是第一次,在生命科学里面,实现了某种大科学的概念。也就是说来一个整体上的遗传信息的解析,基因组功能的研究。所以我说现在生物学的特点,已经从70年代、80年代,主要是以分析为主,学科的精细化,分工的细化,这样一个趋势到了一个新的平台上面。这个平台就是大综合,其实我们中国的科学,一开始就是讲究大综合。你看我们的艺术也是这样,我们的写意画就是一种大综合。这个东西方的融合非常重要,把西方严谨的分析,和中国早在几千年前的大综合的思路结合在一起的话,我想有可能带来一些新的突破的机遇。那么这张图我想,恐怕不光是搞生命科学的,就是我们非生命科学的同学们,也都是非常熟悉的,遗传学中心法则。
我们都知道,生命活动它的本质,它是一个信息的流动。有人一直说,我们都是搞生命科学的。但是突然有一个冒出一句话:“什么是生命”?这个倒可以让人思索一番。我个人体会,生命信息它的储存单位,生命的重要特点之一,它有记忆功能。那么它的储存的单位,实际上就是我们说的基因,在绝大部分的生命体我们知道,它的载体是脱氧核糖核酸DNA。但是它的执行单位,主要来说是蛋白质。这里面它用信息的语言,不是一样的,一个是核酸的语言,一个是氨基酸的语言。所以在这个空间信息的流动,需要有一些调控的机制。这个调控大家知道,第一步就是转录。这个时候生命信息的语言,没有发生变化,都是核酸的语言。只是从DNA到了MRNA上面,这个过程我们称为转录。然后语言要发生变化,发生转换,要求来进行翻译了。所以从MRNA上面的生命语言,变成蛋白质的生命语言。当然我们知道这个蛋白质,很多的蛋白质它都具有代谢的活动。生命体和非生命体的重要差别之一就是有代谢和新陈代谢,然后蛋白质可以形成高级空间的构型。那么在这个里面,细胞的不同的部分互相之间作用,细胞核和细胞浆互相在作用。然后在多细胞的生物里,不同的细胞之间、由不同的细胞所组成的组织之间、由不同的组织所形成的器官之间都在发生信息的流动。我想这个就是我们所说的“遗传学的中心法则”。那么基因这个概念,大家都很清楚了或者说基本概念很清楚,确切的定义也许今天还不是非常清楚。
那么基因组是什么意思?基因组就是一个生命体的遗传信息的总和。那么在这里我们就不是单个基因,而是所有的基因。它所编码所有的氨基酸相互之间的这个关系,所以感官性是完全不一样的。DNA双螺旋结构的发现大概是20世纪生命科学最最伟大的突破。那么A、T、C、G四种不同的碱基,构成了纷繁复杂的遗传学语言,生命信息的最基本的符号。这个最基本的符号实在是让我们感到非常简单。大自然就用这四种简单的字符,组成了让我们叹为观止的大千世界的无数生命的多样性的现象。那么它的遗传信息,在绝大多数的生命体,我刚才说的是DNA的分子。那么它的排列组合在那里就决定了,或者说在相当大的程度上决定了生命活动在人体,也就是我们讲的:生、老、病、死等等这些活动。那么我们在讲双螺旋结构的时候,我们都知道,碱基对、DNA是生物的大分子。一般来说我们不是用一个质量单位来表示它的体量,而是用它的长度。那么一个bp,中文叫一个碱基对。但是在基因来说,一个基因常常是要成千上万个碱基对。所以我们引入了“千碱基对”这样的尺度。然后再做到基因组的时候,我们都知道基因组它是非常大的尺度,所以又发明了一些新的尺度单位,像Mb指的是百万碱基对。
这个是基因组计划之前的,我们对人类基因组的一些了解。我们知道人类基因组的长度,一个单倍体的基因组的长度大概是30亿个碱基对。一般的教科书上都说,序列当中编码序列,也就是说我们刚才说的,发生转录表达的,可以被称之为基因的序列。大概实际上是指成熟的MRNA,发生加工以后的MRNA当中的序列,大概小于5%。也就是说,非编码序列占了绝大多数。在人体细胞核里面,遗传信息它是以染色体的方式进行组织的,分布于22个常染色体和2条性染色体。我们都知道以前的生物科学的特点,基本上是师傅带徒弟、作坊式的操作。那么到了80年代中期的时候,我想一个是生命科学的这个科学思维的大大扩展,第二个是技术的这个进步。比方说当时遗传工程已经非常成熟了,当时DNA测序也相对成熟,然后PCR的技术在那里开始产生了。因此使得科学家们,生命科学家们的雄心壮志,在那里萌发了,决心要冲破原来的这种作坊式的被物理学界甚至化学界不太看得起的那种运作方式,搞一点可以称为是大科学的东西。
当然我想科学研究的条件,思维这是一个方面。但是实际上回顾一下科学史的话,很多重大的事件它还是需求在那里拉动的。我们有的科学家批评这样的做法,意思是说我们要注意把基础研究和社会重大需求结合在一起。我觉得实际上这有点失之偏颇的,就是说有各种各样类型的研究:有的是一种自由的探索,那么这个可以非常小心,一个人的脑瓜里都可以产生诺贝尔奖的构思。但是也有一些研究的确是希望能够造福人类的。但是这样的研究提出的挑战,实际上又可以孕育着不知道多少人的诺贝尔奖的思想在里面。那么人类基因组计划,就是这样一个典型。
我们看第一份,可以认为是正式的标书。我们做这个课题,一般来说首先要有标书。那么人类基因组计划的第一个标书,可以被认为是诺贝尔奖获得者Dulbecco 1986年发表在《科学》杂志的一篇短文。它的这个短文的题目是什么呢?《肿瘤研究的转折点——人类基因组研究》。事实上我们知道美国有一位雄心勃勃的年轻总统肯尼迪上台以后,当时他在科学上有两大计划:一个是实现人类登月,还有一个战胜癌症。那么人类登月随着阿波罗计划的比较顺利地实施,1969年人类实现了登月。但是攻克肿瘤的计划是一个失败的。为什么?原来科学家把问题想得太简单了,以为肿瘤就是一两个基因的问题。但实际上绝大多数的肿瘤,都是多基因的问题。它涉及的面是整个基因组的问题,是遗传信息的整体上面紊乱的这样一些问题。就是刚才讲的,我们不要以为好像一个融合基因打到小鼠里面去,就足以引起一个白血病,不是那么简单的。因为如果那样的话,你一打进去就要产生白血病,事实上我们PML罗拉白血病,在受精卵里面注射进这个融合基因以后,需要等待一年的时间才会出现白血病而且不是每一个小时都会发生白血病。所以就提示有其他的决定因素在里面。我们现在知道有时候几个基因一起传染的时候,它发生白血病的速率就会大大加快。
Dulbecco这个文章它就说,如果我们想更多地了解肿瘤,我们从现在开始必须关注细胞的基因组。从哪那个物种着手努力?如果我们想理解人类肿瘤,那就应该从人类开始。人类肿瘤研究将因对DNA的详细知识而得到巨大的推动。实际上绝大多数的人类疾病都是多基因的。人类基因组计划正式起动,现在一般的说法是1990年。那么1990年因为是美国国会通过了正式启动这样一个计划。这个计划雄心勃勃就是要用15年的时间,到2005年完成DNA的全序列的测定。这个投资量是多少呢?30亿美元。当时计算的依据是测一个碱基对大概需要一美元。整个计划在这个地方实际上是一个比较狭义的一个计划,这个计划实际上就是一个测序计划。实际上我们讲测序,读出天书只是理解人类自身的第一步,最重要的是读懂天书。但是即使是这样读出天书一个计划的话,它也要经历很多的磨难,很多的困难。也就是说,到今天为止,我们还没有这样的技术说,拿来一条染色体,我们就能够直接测序,从一头测到另外一头我们没有办法这样做。所以整个人类基因组计划,实际上可以简单地说就是由复杂到简单再由简单又回归复杂,最后大概还是回归到简单。也就是说把不能直接测序的一条染色体拿来给它进行分解,分解成比较小的可以操作的这样的单位。那么怎么分解呢?那就是作图,你可以用遗传学的方法去作图,也可以用物理学的方法来作图。我们知道遗传学作图,就是利用遗传学的标志来确定DNA标志间相对的距离。另外一个概念就是说要构成一些所谓的DNA连续的克隆系,那么这些片断,它互相之间重叠,它可以覆盖整个的染色体,从一端覆盖到另外一端。这样就把一个不能直接拿来测序的单位,就给它解析成比较小的、可以操作的这样一个单位。最后给它重新组合成忠实于原来染色体里面生命信息这个排列的,这样一个状况在这里面,识别全部的人类基因。所以人类基因组就是作图,或者狭义的人类基因组计划,就是作图的计划,遗传图、物理图、序列图,然后基因图。
在人类基因组计划进行大规模测序的策略有两种,一种就是我刚才说的那种思路,实际上叫逐个克隆。我刚才说了,你把DNA克隆的连续克隆系建起来了,覆盖整条染色体了,然后你就把一个一个的克隆,用得最多的就是叫BAC--细菌的人工染色体,大概100多个KB这样的长度。那么把这个克隆一个一个挑出来,挑出来以后再进行亚克隆。这种亚克隆就是这样的,就可以测序了,测序以后再给它组装起来、还原起来。这样一个策略,是国际上公共领域的测序计划所采取的策略。实际上它是历史的沿革,就是说从作图,遗传、物理作图演化过来的。我们都知道美国的瑟拉尔公司,也知道奎克曼特。那么它搞了一个叫全基因组鸟枪法,在一定作图信息基础上,绕过大片段连续克隆系统的构建而直接将基因组分解成小片段随机测序,然后利用超级计算机来进行组装。能够使得人类基因组,在初步完成作图以后,很快地迈入到测序,尤其是大规模测序。并且使得整个进度朝向人们的预期。这里面有两个重大因素的贡献,不得不承认这里面,工业界的贡献是非常大的。比如说在人类基因组起步的时候,当时用的这个DNA序列的分析方法,还是凝胶电泳仪为主的方法,基本上还是手工运作的。但是在20世纪90年代上半段的时间里面,新的一个测序技术出现了,毛细管电泳仪。另外把自动化的运作和包括工业界的管理这种系统,都引进来。所以使得测序的速度大大加快。你像这样一个测试仪,它的名字就叫做Megabace。什么意思?就是毛细管电泳,它差不多两小时就可以进行读出一个序列,大概能够读到几百个碱基,那么它一天可以做十班,那么它是96道,所以一天可以做960道。每一道按照他们的宣传,都可以达到一个KB的话,实际上是很难做到的,这是最理想的状态下。所以一天就可以有100万个碱基对的产出。但是曾经使学术界感觉比较困惑的另外一个问题,就是说如果我们现在处于一个知识爆炸的这样一个时代,可以说生物信息的爆炸,是最最给人印象深刻的。
我们看在基因组计划起步之前,在公共数据库里边DNA序列增长非常缓慢。然后1990年以后,就是指数增长期。而且这个东西我是统计到去年、2000年两家世界的公共领域,测序计划和瑟拉尔分别宣布完成了所谓的工作草图。这个时候是这样一个情况,现在大概是这样的情况。1999年当时面对着瑟拉尔的强行挑战,它是1998年成立的,号称三年要拿下人类基因组,国际人类基因组计划决定迎接挑战。就由国际上16个组,分担了人类基因组测序的任务,中国也加入这样一个测序计划。当然我们承担的是1%的任务,1%还是很重要的。因为对于一个发展中的国家来说,能够挤入到这种属于发达国家的俱乐部里面,应该说还是很不容易的。有些事情我们想挤也不一定挤得进去的,像空间站的计划,人家还防范你。
在这里我想介绍一下什么叫工作框架图?因为都在说工作框架图,什么叫工作框架图?其实就是一个工作草图。那么它的意思呢?就是说通过对染色体位置明确的BAC(细菌人工染色体)连续克隆系4—5倍覆盖率的测序,获得基因组90%以上的基因序列,其错误率应该低于1%。也就是说你的覆盖面要达到基因组的90%以上。第二个呢,错误率应该低于1%。100个碱基对立面允许你有一个以下的碱基对的错误。虽然这只是一张草图,但是它已经有用途,就是对基因组结构的基本认识,基因的识别和解析、疾病基因的定位克隆、单个核苷酸的多态性的发现等。
那么讲到草图就一定有一个最终完成图了,所以这张图的定义,要求测序所用的克隆能忠实地代表常染色质的基因组结构,覆盖率要达到99.9%以上,然后序列的错误率应该低于万分之一。与工作框架图的关系呢,实际上就是在工作框架图的基础上再加大测序的覆盖率,填补空隙,使得序列的精度增加,能够达到这样一个标准。也就是说,它是草图的下一步。2000年6月25号,当时的测序的情况是怎么样的呢?我们看当时在公共领域就是说各国政府支持的六各国家,美国、英国、德国、日本、法国、中国,六国政府支持的公共领域的计划,当时是覆盖了大概人类基因组的86.8%。其中包含一部分已经完成,就是我们刚才说的最终序列图这样标准的序列大概是20%多一点点,然后66%左右的序列处于所谓的工作草图这样的阶段。那么也可以说,还没有完成。因为我们说要达到90%以上,但是同时瑟拉尔他号称他的覆盖率已经超过了95%。当然他的覆盖率其实包括了所有的公共领域的这个贡献,再加上他的贡献,所以两者相加起来。我想我们应该相信大概90%以上的序列,都是被工作草图以上的这样一个序列的质量所覆盖着。我们看看公共领域测序计划当时的情况,在24条染色体上分布的情况。我们知道,实际上1999年12月份,22号染色体作为人类最小的染色体之一,它的全序列被测定,或者说是它的常染色体,指部分的全序列。我们注意到它的短臂这个地方,就是易染色体区域,实际上非常难测。因为都是大量的空序列,又没有多少基因。2000年4月份21号染色体全序列完成了,也是同样的定义,就是说常染色体的这个部分。我们看这里是用深红的颜色来表示,差不多就是最终完成的。而这种黄颜色表示的是我们刚才说的工作草图,在大部分染色体区域,是工作草图部分。实际上现在我们讲的,完成人类基因组全序列的测定,都是指的常染色体部分,所以有的人说也许人类基因组序列永远也不能被结束。
2001年2月15日,我们知道公共领域在《自然》上,都是有一种分庭抗礼的,兵对兵、将对将的感觉。2月16号就登了瑟拉尔序列,显然,经过新的一轮角逐,比2000年6月份的时候,完成序列的质量又要高得很多。所以这样的话,应该认为,两家加在一起的信息,应该说比我刚才说的一般的定义又要进一步了。所以就产生了一个在工作草图和最终完成图之间的一个中间状态,这个中间状态就叫做高质量的草图。但是就是这样一个高质量的草图,让我们已经基本上知道我人体生命信息的家当到底有多大。弄到最后我们发现我们的家当好像还是比较可怜的,比我们原来的想象,因为我们的基因数量大概只有线虫,只有900多个细胞的一个生命体的大概一倍左右,我们就比那么一个小虫多一倍。从低等生物到高等生物它的基因组的复杂度,与其说是由基因的数量来决定的,还不如说更主要的是由基因的长度来决定的。我们最近完成了一个细菌的测序,叫钩端螺旋体,可以引起传染病的。它平均一个KB就有一个基因,这么小的一个东西,500万个碱基对的一个基因组,有5000个基因。我们人30亿个碱基对,我们不过就3万个,顶多接近4万个这样一个数字。但是你看到了酵母,到了真核细胞的话,那它就是平均大概5到10个KB一个基因。然后到了果蝇的话,虽然它的基因数量好像还没有线虫的多。但是它的基因长度已经达到10个KB以上,然后到了哺乳类一个基因,大概像人类现在是100多个KB才有一个基因。所以替换、剪接这种可能性就大大增加了。另外跟时间和空间,也就是发育阶段和组织特异性表达的调控相关这些序列复杂大大增加了。虽然基因在高等生物可以达到十的五次方数量级,几万到十万个这样的比较高等的生物。但是实际上它的蛋白质的结构域,实际上如果把基因组比成一个大厦的话,组成这个大厦的预制件,这个数量实际上是比较有限的。那么另外有一些高级生物中有更为丰富的结构域组合,神经功能、组织特异发育、调控、止血和免疫系统的基因,在脊椎动物大量扩展。数以百计的人类基因源于脊椎动物进化过程中某个时间点上,细菌基因的横向转移。基因组在不同个体之间差异很大——单核苷酸多态性,单倍体的基因差异为1/1250,能够导致蛋白质变异的不到1%。
这本遗传天书,已经放在我们面前了,接下来就是要读懂它。要读懂它,一定要从大的系统的概念来考虑怎么样读懂。一个这个基因组的信息,和外界的环境,是在那里相互作用。另外这个基因组的信息不是从天上掉下来的,它是通过一个漫长的几十亿年进化的过程发展过来的,所以要用比较的方法去读它。另外要考虑到在个体之间和群体之间又是有变异的,这种变异也受到外界环境的一些调节。所以功能基因组学的研究内容,虽然现在没有一个严格的定义,但是我个人认为,至少包括这几个方面:人类基因组DNA序列变异性研究,其核心的内容是SNP,因为这是最常见的变异类型,当然还有很多其他的变异。然后基因组表达调控的研究,这个是发育阶段组织器官的变异,然后模式生物体的研究,这个里面包括进化的意思,和利用模式生物进行功能研究。当然从事所有这些研究,就像我们进行测序研究一样。生物信息学,它既是一个基本的工具,又是一个新兴的学科。因为最后要把这些信息整合起来,搞成一个我们所说的,系统生物学的话,你一定要用理论的手段,和大规模信息处理的手段。
那么基因组DNA序列变异性的研究,SNP,这种变异类型实际上是所有基因组的共同特征。它在相当大的程度上决定了不同的个体群体,这个是指的人类在疾病的易感性,对环境致病因子反应性和其他性状上面的差别。
在这里我举一个例子,说明这个性状有多么重要。我们就来看一看,我们对药物的反应性。我想我们每一个人、再健康的人,一生当中总要接触一些药物的。现在有一个新的提法叫药物遗传学,指的是大部分药物,在体内代谢的酶会有遗传多态性。像这里,一类是改变基团的一些酶,一类是对基团进行转移的一些酶。它都有很多的多态性,这种多态性的后果是什么呢?它在相当大的程度上决定了我们个体对药物的反应性。比方说这是一个很复杂的程序,但是我想我们主要的信息在这个地方。对于某一个药物来说,最适合它的基因型的,它的疗效可以达到75%,毒性只有1%。同样一个药,如果到了一个最不适合它的一个个体的情况是怎么样?它的疗效只有10%,毒性大于80%。那么基因组表达以及表达的调控的这个研究,这个我想都可以理解。那么指的是在全细胞的水平,如果是在单细胞的生命体是整个生命体的水平,识别基因组的所有转录表达的产物。实际上它是高通量的结构生物学,大批量解析蛋白质的高级结构,是连接基因组功能研究和新药开发研究的桥梁。然后为了在这样大的规模上,在整体水平上获得功能信息,需要一些所谓的并行化的分析手段。就是现在已经做得到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。所以有人说将来要去看病不光要带病卡,还要带一个自己的芯片。医生用药诊断之前先把芯片插进去,看看你可能得什么病,说起来很好,也很吓人的。模式生物体的研究一般的说法大概从单细胞、第一个生命跟外界隔绝以后,到现在的万物之灵的人类,大概是14亿年的进化史。那么通过进化不同阶段的生物体基因组序列的比较,发现基因组结构组成和功能调节的规律。
那么基因组计划,我刚才说一个是科学兴趣使然,科学家要探索人类的自身,另外也是社会驱动使然,就是说要战胜人类的疾病。所以最后它的价值的实现,我想还是应该回归到对人类的健康的贡献上面去。那么在这个意义上说,人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。我们看到过去的十年当中,由于人类基因组研究的带动,使得人类疾病相关性的研究有了长足的进步。单基因疾病由于定位克隆和定位候选克隆的新思路,导致了一大批遗传病基因的发现。我们知道传统的对基因的认识,是从表型到基因型。也就是你知道一个蛋白质,你测定了它的氨基酸的序列,然后根据密码址的原理,你推测它的DNA的序列可能是什么。你合成一个探针到基因组当中一调,把基因调出来。比方说血红蛋白病,这是第一个人类发现的分子病,它就是先知道了猪蛋白氨基酸的序列,然后再把它的基因调出来。但是绝大多数的人类疾病,我们不知道它的生化基础是什么东西,特别是在基因组计划之前。比方说像亨氏舞蹈病,我们就知道这个人会手舞足蹈,叫亨氏舞蹈病。比方说像遗传性的结肠癌,我们知道大肠部位大容易长息肉,但是我们不知道那个蛋白质出了问题。你怎么办?怎么来找到它的疾病基因?所以有了一个新的概念,叫反过来的遗传学,是什么呢?先去找它的基因,然后再去看它的表型。一旦拿到基因以后,很容易你马上可以推测它的蛋白质的结构。你可以产生抗体,你可以接下来做很多基因的功能。健康相关的研究是HGP的重要组成部分,1997年相继提出:肿瘤基因组的解剖计划,环境基因组计划。
人类基因组计划对医学的贡献。基因诊断,基因治疗和基因组信息为基础的治疗,发展中国家和发达国家越来越重视疾病的预防,特别是基于基因组信息的疾病预防。我国一贯提倡的是预防为主。如果能够在一个人刚出生的时候进行疾病易感基因的识别,在早期把风险人群挑出来,然后在环境因子、生活方式上实施干预。生物技术发生了深刻的变化,更多地进入到细胞、胚胎和组织的研究水平上来,推动了胚胎和成年期干细胞技术的应用。血液病研究与其他先进学%
Ⅲ HGP(Human Genome Project)的主要内容是什么
HGP的主要任务是人类的DNA测序,遗传图谱、物理图谱、序列图谱 、基因图谱,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。
1986年,诺贝尔奖得主杜尔贝科(R. Dulbecco)在《科学》(Science)周刊撰文回顾肿瘤研究的进展,指出要么依旧采用“零敲碎打”的策略,要么从整体上研究和分析人类基因组。
研究历史:
对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模。1984年在Utah州的Alta,White R and Mendelsonhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景。
1985年5月在加州Santa Cruz由美国DOE的Sinsheimer RL主持的会议上提出了测定人类基因组全序列的动议,形成了美国能源部的“人类基因组计划”草案。
Ⅳ 人类基因组计划的研究进展
完成人类基因组序列完成图
⑴ 从当前物理图谱生成的克隆产生完成的序列,覆盖基因组的常染色质区域大于96%。大约1Gb的完成序列已经实现。剩下的也已经形成草图,所有的克隆期望达到8~10倍的覆盖率,大约2001年中期(99.99%的正确率),使用已经建立的和日益自动化的协议。
⑵ 检测另外的库来关闭gaps。使用FISH技术或其他方法来分析没有闭合的Gaps大小。22,21条染色体用这种方式。2003年已经完成。
⑶ 开发新的技术来关闭难度较大的gaps,大约几百个。
基因组序列工作框架图(Working draft):通过对染色体位置明确的BAC连续克隆系4-5倍覆盖率的测序(在BAC克隆水平的覆盖率不应低于3倍),获得基因组90%以上的序列,其错误率应低于1%。工作框架图可用于基因组结构的认识、基因的识别和解析、疾病基因的定位克隆,SNP的发现等。
草图的作用
1、草图,许多疾病相关的基因被识别
2、SNP(人与人之间的区别),草图提供了一个理解遗传基础和人类特征进化的框架。
3、草图后,研究人员有了新的工具来研究调节区和基因网络。
4、比较其它基因组可以揭示共同的调控元件,和其他物种共享的基因的环境也许提供在个体水平之上的关于功能和调节的信息。
5、草图同样是研究基因组三维压缩到细胞核中的一个起点。这样的压缩可能影响到基因调控
6、在应用上,草图信息可以开发新的技术,如DNA芯片、蛋白质芯片,作为传统方法的补充,目前,这样的芯片可以包含蛋白质家族中所有的成员,从而在特定的疾病组织中可以找到那些是活跃的。
2001年2月12日,美国Celera公司与人类基因组计划分别在《科学》和《自然》杂志上公布了人类基因组精细图谱及其初步分析结果。其中,政府资助的人类基因组计划采取基因图策略,而Celera公司采取了“鸟枪策略”。至此,两个不同的组织使用不同的方法都实现了他们共同的目标:完成对整个人类基因组的测序的工作;并且,两者的结果惊人的相似。整个人类基因组测序工作的基本完成,为人类生命科学开辟了一个新纪元,它对生命本质、人类进化、生物遗传、个体差异、发病机制、疾病防治、新药开发、健康长寿等领域,以及对整个生物学都具有深远的影响和重大意义,标志着人类生命科学一个新时代的来临。
众多发现
1、分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp;其中G+C含量偏低,仅占38%,而2号染色体中G+C的含量最多;到目前仍有9%的碱基对序列未被确定,19号染色体是含基因最丰富的染色体,而13号染色体含基因量最少等等(具体信息可参见cmbi 特别报道:生命科学的重大进展)。
2、目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。
3、基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更'有效',人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。这将对我们目前的许多观念产生重大的挑战,它为后基因组时代中生物医学的发展提供新的非凡的机遇。但由于基因剪切,EST数据库的重复以及一些技术和方法上的误差,将来亦可能人类的基因数会多于4万。
4、人类单核苷酸多态性的比例约为1/1250bp,不同人群仅有140万个核苷酸差异,人与人之间99.99%的基因密码是相同的。并且发现,来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一,从而说明人类不同“种属”之间并没有本质上的区别。
5、人类基因组中存在“热点”和大片荒漠。在染色体上有基因成簇密集分布的区域,也有大片的区域只有“无用DNA” ——不包含或含有极少基因的成分。基因组上大约有1/4的区域没有基因的片段。在所有的DNA中,只有1%-1.5%DNA能编码蛋白,在人类基因组中98%以上序列都是所谓的“无用DNA”,分布着300多万个长片断重复序列。这些重复的“无用”序列,决不是无用的,它一定蕴含着人类基因的新功能和奥秘,包含着人类演化和差异的信息。经典分子生物学认为一个基因只能表达一种蛋白质,而人体中存在着非常复杂繁多的蛋白质,提示一个基因可以编码多种蛋白质,蛋白质比基因具有更为重要的意义
6、男性的基因突变率是女性的两倍,而且大部分人类遗传疾病是在Y染色体上进行的。所以,可能男性在人类的遗传中起着更重要的作用。
7、人类基因组中大约有200多个基因是来自于插入人类祖先基因组的细菌基因。这种插入基因在无脊椎动物是很罕见的,说明是在人类进化晚期才插入我们基因组的。可能是在我们人类的免疫防御系统建立起来前,寄生于机体中的细菌在共生过程中发生了与人类基因组的基因交换。
8、发现了大约一百四十万个单核苷酸多态性,并进行了精确的定位,初步确定了30多种致病基因。随着进一步分析,我们不仅可以确定遗传病、肿瘤、心血管病、糖尿病等危害人类生命健康最严重疾病的致病基因,寻找出个体化的防治药物和方法,同时对进一步了解人类的进化产生重大的作用。
9、人类基因组编码的全套蛋白质(蛋白质组)比无脊椎动物编码的蛋白质组更复杂。人类和其他脊椎动物重排了已有蛋白质的结构域,形成了新的结构。也就是说人类的进化和特征不仅靠产生全新的蛋白质,更重要的是要靠重排和扩展已有的蛋白质,以实现蛋白质种类和功能的多样性。有人推测一个基因平均可以编码2-10种蛋白质,以适应人类复杂的功能。
模式生物:酵母(yeast)、大肠杆菌(Escherichia coli)、果蝇(Drosophila melanogaster)、线虫(Caenorhabditis elegans)、小鼠(Mus musculus)、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。
目前基因组学的研究出现了几个重心的转移:一是将已知基因的序列与功能联系在一起的功能基因组学研究;二是从作图为基础的基因分离转向以序列为基础的基因分离;三是从研究疾病的起因转向探索发病机理;四是从疾病诊断转向疾病易感性研究。
在后基因组时代,如果在已完成基因组测序的物种之间进行整体的比较、分析,希望在整个基因组的规模上了解基因组和蛋白质组的功能意义,包括基因组的表达与调控、基因组的多样化和进化规律以及基因及其产物在生物体生长、发育、分化、行为、老化和治病过程中的作用机制都必须发展新的算法以充分利用超级计算机的超级计算能力。
美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。
在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。
科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。 人类基因组计划中还包括若干个模式生物体基因组计划,中国重点支持的水稻基因组研究计划亦可划入这一范畴。模式生物体一直就是生命科学领域研究的基本模型,加之它们与人类相比基因组结构简单、单位DNA长度上基因密度高, 易于基因的识别,而且从低等至高等的各个模式生物是研究基因分子进化的绝佳材料。各模式生物体之间的比较性研究将有助于人类基因的结构与功能的阐明。对于在整体水平研究基因的功能,模式生物体更有着无法取代的地位。
中国的基因组研究工作起步较晚,而且是基础差、底子薄、资金少,与国际上这几年HGP的惊人速度相比,中们的差距很大,并且这种差距有进一步加大的可能。中国生命科学界应在如下几个方面共同努力:
⒈ 尽快收集和利用中国宝贵的多民族基因组资源和遗传病家系材料, 并阻止这些资源盲目流向国外。
⒉ 集中人力、物力和财力,建立互相配套的、集分子遗传学、 自动化技术和信息技术为一体的中心,才能卓有成效地开展工作。
⒊ 根据中国国情和原有工作基础,做到有所为有所不为, 走“短平快”和出奇制胜的道路,直接楔入基因组研究中最为关键的部分-基因识别,如走“cDNA计划”道路,尽可能地克隆一大批新基因,在人类8万~10 万个基因中占有一定的份额。同时,由于基因组DNA测序是一项劳动和技能密集性工作,如能引进技术, 培训一支高水平的技术队伍,完全有可能将人类基因组测序的一部分工作吸引到中国。
⒋ 充分利用国际基因数据库中已有信息,建立生物信息技术, 推进中国基因组研究工作,并在基因组转录顺序的认识及基因功能推测方面多做工作。
⒌ 多渠道筹措资金,在维护知识产权的前提下开展国际间合作。
历史已将中国当代科学家推上了人类基因组计划这一国际合作和竞争的大舞台,他们责无旁贷地要为供养自己的国家和人民负责,为21世纪中国的科学、技术和产业负责,唯有高瞻远瞩地认清当前的形势和不辞劳苦、不计得失地拼搏,才有可能在国际人类基因组计划中占有一席之地,有着交换和分享数据的资本,共同品尝人类基因组这一全人类的“圣餐”。
中国1994年启动HGP,现已完成南北方两个汉族人群和西南、东北地区12个少数民族共733个永生细胞系的建立,为中华民族基因保存了宝贵的资源,并在多民族基因组多样性的研究中取得了成就,在致病基因研究中有所发现。定名为中华民族基因组结构和功能研究的HGP为“九五”国家最大的资助研究项目之一(700万元),为中国在下世纪国际HGP科学的新一轮竞争中占据有利地位打好了基础。
Ⅳ 人类基因组计划的相关研究
1、生命科学工业的形成
由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。
世界上一些大的制药集团纷纷投资建立基因组研究所。Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。Glaxo-Wellcome 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。
大型化学工业公司向生命科学工业转轨。孟山都公司早在1985年就开始转向生命科学工业。至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。
传统的农业和食品部门也出现了向生物技术和制药合并的趋势。Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶Ⅲ,一群羊的酶产量相当于投资1.15亿美元工厂的产量。据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。
能源、采矿和环境工业也已在分子水平上向基因组研究汇合。例如,用产甲烷菌Methanobacterium 作为一种新能源。用抗辐射的细菌Deinococcus radiorans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。
2、功能基因组学
人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。
⑴基因组的表达及其调控
1)基因转录表达谱及其调控的研究
一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。
研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。网络概念对于生理和病理条件下的基因表达调控都是十分重要的。一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。
2)蛋白质组学研究
蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。
蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。
3)生物信息学的应用
目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。
⑵基因组多样性的研究
人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。
1)对人类DNA的再测序
可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料相结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。
2)对其它生物的测序
对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。
认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。对序列差异性的研究则有助于认识产生大自然多样性的基础。在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。
⑶开展对模式生物体的研究
1)比较基因组研究
在人类基因组的研究中,模式生物体的研究占有极其重要的地位。尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。
目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。
2)功能缺失突变的研究
识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。在这方面,基因剔除方法(knock-out)是一项特别有用的工具。目前。国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Network)的研究网络。美国、加拿大和日本也启动了类似的计划。
随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。蛋白质水平的剔除术也许是说明基因功能最有力的手段。利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。
总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。
通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。该计划在人类科学史上又竖起了一座新的里程碑!这是一项改变世界,影响人类生活的壮举,随着时间的推移,它的伟大意义将愈显昭彰。
人类基因组计划之塞雷拉人类基因组计划
在国际人类基因组计划(以下简称“国际计划”)启动八年后的1998年,美国科学家克莱格·凡特创办了一家名为塞雷拉基因组(Celera Genomics)的小私立公司,开展自己的人类基因组计划。与国际人类基因组计划相比,公司希望能以更快的速度和更少的投资(3亿美元,仅为国际计划的十分之一)来完成。塞雷拉基因组的另起计划被认为对人类基因组计划是一件好事,因为塞雷拉基因组的竞争促使国际人类基因组计划不得不改进其策略,进一步加速其工作进程,使得人类基因组计划得以提前完成。
塞雷拉采用了更快速同时更具风险的技术全基因组霰弹枪测序法。霰弹枪测序法的思想是将基因组打断为数百万个DNA片断,然后用一定的算法将片断的序列信息重新整合在一起,从而得到整个基因组序列。为了提高这一方法的效率,1980年代,测序和片断信息整合达到了自动化。这一方法虽然已被用于序列长达6百万个碱基对的细菌基因组测序,但对于人类基因组中3千万个碱基对的序列测定,这一技术能否成功在当时还未有定论。
基因的智慧财产权之争
塞雷拉基因组一开始宣称只寻求对200至300个基因的专利权保护,但随后又修改为寻求对“完全鉴定的重要结构”的总共100至300个靶基因进行知识产权保护。1999年,塞雷拉申请对6500个完整的或部分的人类基因进行初步专利保护;批评者认为这一举动将阻碍遗传学研究。此外,塞雷拉建立之初,同意与国际计划分享数据,但这一协定很快就因为塞雷拉拒绝将自己的测序数据存入可以自由访问的公共数据库而破裂。虽然塞雷拉承诺根据1996年百慕达协定每季度发表他们的最新进展(国际计划则为每天),但不同于国际计划的是,他们不允许他人自由发布或无偿使用他们的数据。
2000年,美国总统克林顿宣布所有人类基因组数据不允许专利保护,且必须对所有研究者公开,塞雷拉不得不决定将数据公开。这一事件也导致塞雷拉的股票价格一路下挫,并使倚重生物技术股的纳斯达克受到重挫;两天内,生物技术板块的市值损失了约500亿美元。
后人类基因组计划
后基因组计划就是人类完成人类基因组计划(结构基因组学)以后的若干领域,实际上是指完成顺序后的进一步计划,其实质内容就是生物信息学与功能基因组学。其核心问题是研究基因组多样性,遗传疾病产生的原因,基因表示调控的协调作用,以及蛋白质产物的功能。
人类基因组研究的目的不只是为了读出全部的DNA序列,更重要的是读懂每个基因的功能,每个基因与某种疾病的种种关系,真正对生命进行系统地科学解码,从此达到从根本上了解认识生命的起源、种间、个体间的差异的原因,疾病产生的得机制以及长寿、衰老等困扰着人类的最基本的生命现象目的。
Ⅵ 人类基因组图谱的介绍
由美国国立人类基因组研究所(nhgri)和能源部(doe)领导的ihgsc不久前宣布,人类基因组测序工作已圆满完成,其发表在2004年10月21日nature(2004,431:931)上的分析
报告对2001年2月发表的初步分析报告进行了补充。这篇最新分析报告不但为世人展现了一张精度大于99%、误差小于10万分之一的精确版人类基因组图谱,而且还进一步纠正了蛋白编码基因的数量,仅为2万~2.5万个,而非原先估计的3万~3.5万个。新基因组图谱 准确率达99.999%
旨在破译人类基因组常染色质遗传密码的人类基因组计划(hgp)自1990年启动至2003年结束,历时共13年, 该计划由ihgsc来完成。ihgsc是由法国、德国、日本、中国、英国和美国等6个国家20个研究所的科学家组成的开放性国际协作组织,全球2800余名科学家参加了ihgsc的工作。
2001年2月,ihgsc宣布,人类基因组草图已经完成。以今天的眼光来看,草图显然存在很多重要的不足,例如,仅测出了约90%的常染色质基因组序列,而且序列之间存在147821个未检测出的空缺等等。
在2001-2003年之间,ihgsc的不懈努力终于将此草图转化为今天这张既高度精确又相当完整的人类基因组图。此外,在这段时间内,还陆续发表了关于第2、6、7、9、10、13、14、19、20、21、22号染色体和y染色体的详细评注和分析,其余12条染色体的资料不久也将发表。
现在的基因组序列(buiid35)共包含28.5亿个核苷酸,它近乎完整,涵盖了99%以上的常染色质基因组序列;准确率为99.999%,也就是说误差率只有1个碱基/10万个碱基对,比最初制订的目标精确了10倍。
序列的连续性亦获得了显着改善,常染色质基因组序列中仅存在341个空缺。现在,平均每一段连续序列含有3850万个碱基对,约比2001年版草图的81500个碱基对长475倍。这些没有中断的已知序列可以在很大程度上帮助科学家寻找目标基因及其邻近的调节目标基因活性的序列,并显着减少他们寻找疾病相关性短而少见的序列的工作量和费用。在剩余的341个空缺中,很多与片段的重复(segmentalplications)相关,需要采用新的方法才能将其填满。
ihgsc所完成的测序工作不仅完整而且精确,足以进行一些对敏感性要求较高的科学分析,例如基因数目的研究,疾病相关性重复片段的研究,以及进化过程中基因“生”或“死”
的研究。该基因组序列的资料已于2003年4月被载入免费公用数据库。“完成”并非意味着现在的人类基因组图就是完美无缺的。虽然与2001版草图相比,空缺已经从近15万个减少至341个,但是人类基因组序列的这些顽固空缺已很难用现有的技术来填补。填补这些空隙需要做进一步的研究,并需要采用新的技术。
美国马萨诸塞州麻省理工学院和哈佛大学broad研究所所长lander说:“已完成的人类基因组序列在准确率、完整性和连续性方面远远超过了我们的预期目标。它反映出全球数百名科学家为了一个共同目标——为21世纪的生物医学奠定扎实的基础——而进行大协作的奉献精神。”
仅有2万~2.5万个蛋白编码基因
ihgsc最新分析所得出的最出人意料的结果就是,人类基因组只含有2万~2.5万个蛋白编码基因。
nhgri所长collins说:“仅仅在10年以前,大多数科学家还认为,人类基因组大约含有10万个蛋白编码基因。3年前,当我们对人类基因组序列草图进行分析时,我们估计人类约有3万~3.5万个蛋白编码基因,这在当时已经使很多人感到震惊。而刚刚结束的分析结果发现人类的蛋白编码基因数比预计的还要少得多,这使我们对人类基因组的真实情况有了更准确的了解。全世界的科学家都可以从免费公用数据库中获得该高度精确的人类基因组序列,这就使他们有可能对人类遗传学及其影响人类健康和疾病的机制进行更精确的研究。”
人类基因组分析的主要目的之一就是确定人类的全部基因。基因是编码特定蛋白质的一段dna序列,是遗传的基本功能单位。目前的研究结果显示,人类基因组有19599个已经获得确定的蛋白编码基因,另外还有2188段可能为蛋白编码基因的dna序列。
英国wellcometrustanger研究所rogers说:“由于2001年版人类基因组草图不够完善,因此导致了一些早期基因模型是错误的。基因鉴定仍是一项艰巨的任务。除了其他生物的基因组序列、更好的计算机化模型和其他手段的改进外,人类基因组测序工作的完成必将为基因鉴定工作提供极大的帮助。”
人类基因重复片段高达5.3%
科学家们认为,已完成的人类基因组序列不但确定了更为确切的人类基因数量,而且与2001版基因组序列草图相比,质量也有显着的提高,并且使人们对某些现象有了征(胸腺发育不良)。美国圣路易斯市华盛顿大学基因组测序中心前主任、西雅图市华盛顿大学基因组系主任waterston说:“以前只有基因组序列草图的时候,要对重复片段进行研究几乎是不可能的。通过全世界科学家坚持不懈的努力,现在我们已经可以对人类基因组中这一重要而快速进化的部分进行研究了。”
重复片段覆盖了5.3%的人类基因组,显着多于大鼠的基因组(约为3%)或小鼠的基因组(在1%~2%之间)。重复片段为人们开启了一个了解人类基因组是如何进化的以及人类基因组目前正在经历什么样的变化的窗口。人类基因组如此高的重复片段百分比表明,在最近4000万年内,人类的遗传物质经历了快速的功能变革和结构改变。这大概就是人类具有独特的特征,从而有别于其非人类灵长类动物祖先的原因。
ihgsc在分析中发现,重复片段在不同的人类染色体之间的分布差异很大。y染色体就是一个最极端的例子,其重复片段占总长度的25%以上。有些重复片段往往群集于每
条染色体的中部(着丝粒)或末端(端粒)附近。科学家们推测,基因组可能将着丝粒和端粒处的重复片段用作一个进化实验室,来生成具有新功能的基因。揭示基因的“生”与“死”
已完成的人类基因组序列准确度很高,这使科学家有可能了解在人类进化过程中基因的“生”和“死”。科学家在人类基因组中发现了1000多个新基因,这些基因是大约7500万年前人类与啮齿类动物向不同方向进化以后产生的。这些基因多数是最近通过基因重复产生的,与免疫、嗅觉和生殖功能有关,例如,人类基因组中最近重复的两个基因家族分别编码两组蛋白质,妊娠特异性β1糖蛋白和绒毛膜促性腺激素β蛋白,这两组蛋白质可能与人类独特的较长的妊娠期相关。
此外,科学家们还利用已完成的人类基因组序列发现并鉴定了33个几乎没什么变化的基因,但是由于它们在近期发生了1个或1个以上突变而导致了其功能丧失(或称为“死亡”)。科学家通过将这些基因与大鼠和小鼠基因组中的对应基因(鼠类中这些对应基因的功能仍保持)进行对照比较后,确定了这些无功能基因(又称为假基因)在人类基因组的确切位置。有趣的是,科学家们还发现,上述33个假基因中的10个似乎与编码嗅觉感受器的蛋白相关,这就有助于解释为什么人类的功能性嗅觉感受器较少,从而导致了人类的嗅觉比啮齿类动物差。axel和buck不久前就因在嗅觉分子生物学方面所做出的杰出贡献而获得了2004年诺贝尔生理学或医学奖。
然后,科学家将这33个假基因和黑猩猩的基因组序列草图进行了对照比较,以确定这些基因在大约500万年前类人猿进化为人类前是否还是有功能的。分析结果显示,33个假基因中的27个在人类中和在黑猩猩中均无功能,但有5个假基因虽在人类中无功能,但在黑猩猩中还是有功能的。美国休斯顿baylor医学院人类基因组测序中心主任gibbs说:“对这些人类基因组中的假基因以及黑猩猩基因组中仍有功能的对应基因的确定,为将来的研究项目打下了坚实的基础。”gibbs等目前正在进行另一种非人类灵长类动物——恒河猴基因组的测序工作。
Ⅶ 人类的全部基因组是如何测试出来的
我们身体每一个细胞中都有一组长达32亿组碱基对的遗传指令。
要解读这些指令是一项无比艰巨的任务,但对我们了解自身有着深远的意义。
人类基因组计划这种及时分享数据的做法并不常见。科学家们更倾向于在他们可以分析并且发布结果的时候再公布研究数据。
然而,人类基因组计划的这种做法 加速了研究过程,并且促成了研究领域一项 空前的国际合作。自此,在公共和私人领域的 研究得到深入开发,使很多与基因相关的疾病 得以被检测出来,同时测序方法也被不断完善。
如今,一个人的全部基因测序 只需要几天就能完成。
但是,能够解读基因只是第一步而已。要了解大多数基因的功能以及它们是如何被控制的,我们还有很漫长的路要走。
这些工作将要交给我们下一代充满进取心的研究者来完成了。
欢迎关注微信公众号infoVision,更多精彩科普小动画等着你!
Ⅷ 简述人类基因组计划的主要内容和意义
主要内容:
HGP的主要任务是人类的DNA测序,遗传图谱、物理图谱、序列图谱 、基因图谱,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。
意义:
1、HGP对人类疾病基因研究的贡献
人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基
2、HGP对医学的贡献
基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。
因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。
(8)人类基因组分析方法扩展阅读:
人类基因组计划 - 成果
1860至1870年:奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。
1909年 :丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。
1944年 :3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。
1953年 :美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。
1969年 :科学家成功分离出第一个基因。
Ⅸ 人类基因组怎样形成的
人类基因组,又译人类基因体,是智慧人种的基因组。共组成24个染色体,分别是22个体染色体、X染色体与Y染色体,含有约30亿个DNA碱基对。碱基对是以氢键相结合的两个含氮碱基,以A、T、C、G四种碱基排列成碱基序列。其中一部分的碱基对组成了大约20000到25000个基因。
全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列。发现人类的基因数量比原先预期的更少,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的1.5%。
现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。
人类只有一个基因组,大约有5万~10万个基因。
随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状况将会提高,21世纪的医学基础将由此奠定。
利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级作物。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。
人类基因组计划人类基因组计划(HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体10万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055~1056)。文中指出:“如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。……从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA的详细知识而得到巨大推动。”
什么是基因组·基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。
为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。
测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。
在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。
HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。
HGP的主要任务是人类的DNA测序,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。
1.遗传图谱
遗传图谱又称连锁图谱,它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cm)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。
第一代标记:经典的遗传标记,例如ABO血型位点标记,HLA位点标记。20世纪70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2~3个片段,信息量有限。
第二代标记:1985年,小卫星中心、可变串联重复VNTR可提供不同长度的片段,其重复单位长度为6~12个核苷酸,1989年微卫星标记系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。
第三代标记:1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10~9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。
2.物理图谱
物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。
用部分酶解法测定DNA物理图谱包括两个基本步骤:
(1)完全降解:选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。
(2)部分降解:以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。
完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。
基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。
3.序列图谱
随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。
HGP对人类的重要意义
1.HGP对人类疾病基因研究的贡献
人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。
2.HGP对医学的贡献
基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。
3.HGP对生物技术的贡献
(1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。
(2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。
(3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。
4.HGP对制药工业的贡献
筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟——药物作用“口袋”。
个体化的药物治疗:药物基因组学。
5.HGP对社会经济的重要影响
生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药)。
6.HGP对生物进化研究的影响
生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300万~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”。
7.HGP带来的负面作用
侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。
Ⅹ 人类基因组图谱的解析
参加绘制人类基因组图谱的美、英、日、法、德、中6国科学家2月12日公布了更加准确、清晰、完整的人类基因组图谱。这是在去年完成“工作框架图”的基础上,经过整理、分类和排列后得到的。明天,国际权威科学刊物《自然》将以60多页的篇幅刊登题为《人类基因组的初步测定和分析》的学术论文,对图谱绘制中的许多发现和数据进行介绍。这是人类首次全面介绍人类基因组工作框架图的“基本信息”。据悉,《自然》杂志网站已提前发布论文。同一期杂志还将发表多篇相关论文,涉及人类基因组图谱的绘制方法、染色体端粒图谱、Y染色体图谱、生殖细胞形成过程中染色体交换基因序列的方式、人体单核苷多态性数据等,公众可以在互联网上免费取阅有关原始数据。
基因研究起源于孟德尔遗传规律的发现
20世纪初孟德尔遗传规律的重新发现,激发了人类探索遗传信息的价值及内涵的兴趣。在过去的一百年中,这些探索极大地推动了生物学的发展。科学家将这些进步分为四个阶段:
第一阶段是遗传的细胞基础——染色体的发现。 第二阶段是遗传的分子基础——DNA双螺旋结构的提出。 第三阶段是遗传的信息基础的提出。科学家发现了细胞读取基因中信息的机制,借助重组DNA技术,可以同样读取基因中的信息。 第四阶段是测定一个基因乃至整个基因组。这一努力已取得丰硕的成果。到目前为止已经测定了599种病毒与类病毒,205种自然存在的质粒,185种细胞器,31种真细胞,7种古细菌,一种真菌,两种动物与一种植物。 二十世纪八十年代早期,对人类基因组计划就形成了两个重要共识:全面认识基因组可以极大地加速生物医学研究,可以使研究人员全面地、没有偏差地解决问题。1990年美国能源部与国立卫生院启动这一计划,英国、法国、日本也建立基因组中心开展研究。九十年代后期,人类基因组计划加速,德国和中国相继加入这一计划。中国是1999年9月加入这一国际协作组,负责测定人类基因组全部序列的1%,成为参与这一计划的惟一发展中国家。 人类基因竟然与老鼠蝇虫有许多相似之处
科研人员曾经预测人类约有14万个基因,但新的研究却将人类基因总数锁定在2.6383万到3.9114万个之间。也就是说,人类蛋白编码基因总数只是线虫和果蝇基因数目的两倍,只是基因更复杂些。人类蛋白质有61%与果蝇同源,43%与线虫同源,46%与酵母同源。人类17号染色体上的全部基因几乎都可以在小鼠11号染色体上找到。数百个基因可能是由细菌在脊椎动物进化的某个环节水平转移而来的。 在人类基因组上大约1/4的区域是长长的、没有基因的片段。基因密度在第17、第19和第22号染色体上最高,在X染色体、第4、第18号和Y染色体上相对贫瘠。另有35.3%的基因组包含重复的序列,第19号染色体57%是重复的。染色体中心粒旁与端粒附近区域存在大量的近期片断性重复。男性减数分裂的突变率是女性的两倍,染色体的远端及短臂重组率较高。研究还发现,地球上人与人之间99.99%的基因密码是相同的。来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一。 过去10年来,科学家们已绘制出40余种物种的基因组图谱。人类基因组是第一个精确测定的脊椎动物的基因组,也是目前为止测定的最大基因组。比以前测定的任何一种生物的基因组都大25倍以上,是以前测定所有基因组总和的8倍。这是人类自身的基因组信息。
绘制生物医学研究的元素周期表
基因只占人类DNA的很小一部分,但却代表着人类基因组的主要生物学功能。绘制人类基因组图谱最终的目标是编译出全部人类基因及其编码的蛋白清单,使之成为生物医学研究的元素周期表。基因可以分为编码RNA的基因以及蛋白编码基因,工作框架图是确定人类基因组中心蛋白编码基因。 人类基因组计划为医学进步带来空前机遇,对医学将产生不可估量的、深远的影响,将导致疾病的分子机制的阐明,进而根据这些机制,设计出诊断与治疗的方法。 人类基因组图谱最重要的应用之一,就是将许多生物化学功能未知的疾病基因定位。人体23对染色体由约30亿个碱基对组成,包含数万个基因。找出30亿个碱基对在DNA链上的准确位置,进而识别分析出各种基因及其功能,将使人类最终征服癌症、心脏病、阿尔茨海默氏症等多种顽疾。目前科学家通过克隆的方法,至少定位了30种疾病基因,利用基因组的数据,一些常见的染色体缺失综合症的机制将得以揭示。随着下一步对人体各种致病基因展开全面大搜索,以及对各种基因功能及基因之间相互作用了解的加深,科学家们将在分子水平上深入了解疾病的根本发病机理,将为各种疾病的诊断、防治和新药的开发提供有力武器。了解全部人类的基因与蛋白还可为寻找合适的药物靶点提供便利。此外,人类基因组计划的推进,将会促进生命科学与信息科学、材料科学等相结合,带动一批新兴高技术产业的发展。
树起探索生命奥秘的新里程碑
人类基因组工作框架图是一个动态的产品,数据每天都在更新,终极目标是绘制完成图。国际协作组将人类基因组计划分为两个阶段,第一阶段是在2000年6月完成的“工作框架图”;第二阶段目前正在进行,即在2001年绘制出人类基因组的完成图。这一任务进展迅速,人类基因组大约有32亿碱基,已经有10亿碱基的序列达到了完成图标准。尽管要绘制完成图还有很多工作要做,但这些信息已经可以使人们对人类基因组有一个总体的认识。 人类基因组图谱初步分析结果是人类探索生命奥秘这一伟大工程的新里程碑,为本世纪人们全面了解这些信息的奥秘奠定了基础。中国科学院院士、我国“863”计划生物技术领域首席科学家强伯勤教授认为,这“说明生命科学已经发展到了更深的阶段,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。”据预测,在未来10至20年里,科学家还将解读大量生物的遗传密码,与此同时,还要完善全部人类基因与蛋白质的清单,对调控区域进行大规模的研究与分析等,基因组研究重点将进入确定基因结构与功能等应用研究阶段,生命科学因此将迎来新的大发展。