导航:首页 > 研究方法 > 什么是机器学习方法

什么是机器学习方法

发布时间:2022-11-29 01:22:50

什么是机器学习

机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。

说到人工智能必然要了解机器学习,从信息化软件,到电子商务,然后到高速发展互联网时代,到至今的云计算、大数据等,渗透到我们的生活、工作之中,在互联网的驱动下,人们更清晰的认识和使用数据,不仅仅是数据统计、分析,我们还强调数据挖掘、预测。

机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定或预测”。也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。

我们举个例子,我们都知道支付宝春节的“集五福”活动,我们用手机扫“福”字照片识别福字,这个就是用了机器学习的方法。

我们可以为计算机提供“福”字的照片数据,通过算法模型机型训练,系统不断更新学习,然后输入一张新的福字照片,机器自动识别这张照片上是否有福字。

机器学习是一门多领域交叉学科,涉及概率论、统计学、计算机科学等多门学科。机器学习的概念就是通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。

⑵ 常用机器学习方法有哪些

机器学习中常用的方法有:

(1) 归纳学习

符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。

函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。

(2) 演绎学习

(3) 类比学习:典型的类比学习有案例(范例)学习。

(4) 分析学习:典型的分析学习有解释学习、宏操作学习。

(2)什么是机器学习方法扩展阅读:

机器学习常见算法:

1、决策树算法

决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。

2、朴素贝叶斯算法

朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。

3、支持向量机算法

基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。

⑶ 什么是机器学习

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径。

机器学习有下面几种定义:

(1) 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。

(2) 机器学习是对能通过经验自动改进的计算机算法的研究。

(3) 机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

(3)什么是机器学习方法扩展阅读:

基于学习策略的机器学习分类:

(1) 模拟人脑的机器学习

符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。

神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。

(2) 直接采用数学方法的机器学习

主要有统计机器学习。

统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。

统计机器学习三个要素:

模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。

策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。

算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。

⑷ 什么是机器学习和深度学习是什么关系

机器学习(Machine Learning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。

深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了调整。其目的在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,如文本、图像、声音。

1、应用场景

机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。

深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。

2、所需数据量

机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。

3、执行时间

执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。

4、解决问题的方法

机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而不必进行问题拆分。

⑸ 机器学习的分类

机器学习的分类主要有学习策略、学习方法、数据形式。学习目标等。
从学习策略方面来看,如果比较严谨的讲,那就是可分为两种:
(1) 模拟人脑的机器学习
符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。
(2) 直接采用数学方法的机器学习
主要有统计机器学习。
统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。
算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。
如果从学习方法方面来看的话,主要是归纳学习和演绎学习以及类比学习、分析学习等。
如果是从学习方式方面来看,主要有三种,为监督学习、无监督学习、 强化学习。
当从数据形式上来看的话,为 结构化学习、非结构化学习、
还可从学习目标方面来看,为 概念学习、规则学习、函数学习、类别学习、贝叶斯网络学习。

⑹ 机器学习有哪些学习方法

在继续学,我感觉有一些特定的方式来完成你的思想思维以及思想作为。

⑺ 什么是机器学习

机器学习(MachineLearning),在我看来就是让机器学习人思维的过程。机器学习的宗旨就是让机器学会“人识别事物的方法”,我们希望人从事物中了解到的东西和机器从事物中了解到的东西一样,这就是机器学习的过程。

⑻ 什么是机器学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

⑼ 什么是机器学习,人工智能,深度学习

人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

如下图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。

⑽ 机器学习是什么

提起机器学习,我们不得不给机器学习下一个准确的定义。在直观的层面,如果说计算机科学是研究关于算法的科学,那么机器学习就是研究关于“学习算法”的科学,或者说,不同于一般的显式编程,机器学习就是研究如何使得计算机在无法被显式编程的情况下进行学习的领域,需要注意的是,显式与否都是对于人类而言的——人类能否明确的搞清楚每个决策步骤,对于计算机而言,构成不同算法的代码与指令没有任何区别。
更加精确的说,机器学习的定义如下:
A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
一个(机器学习)的程序就是可以从经验数据E中对任务T进行学习的算法,它在任务T上的性能度量P会随着对于经验数据E的学习而变得更好
由于机器学习必然利用了某些经验,它们常常数据的形式存在,我们称之为数据集,其中的每个数据称为记录。例如我们通过一个人的性别、年龄和身高预测他是否患某种常见疾病,有以下数据:
(性别:男;年龄:18;身高:174;是否得病:否)
(性别:女;年龄:17;身高:164;是否得病:是)
(性别:男;年龄:20;身高:181;是否得病:是)
(性别:女;年龄:16;身高:161;是否得病:是) ……
这可以被称为一个数据集,其中每个人的数据称为记录。在记录中,关于该对象的描述型数据称为属性,由于属性往往有很多个——如上文的年龄,身高等,可以构成属性向量,这些向量张成的空间称为属性空间。而我们的算法需要预测那个量被称为标记(label)——在上文中便是“得病与否”。在有的数据集中存在标记,有的不存在。标记构成的空间称为标记空间,也称为输出空间。
显然,由于我们只能得到整个总体数据的一部分——即训练样本,我们程序得到的模型却不能只适应于这个训练样本,它必须对整个总体数据都有比较好的预测效果。这就是说我们的模型必须具有泛化的能力。
我们训练得到的模型称为一个假设,所有的模型一起构成了假设空间。显然,可能有多种假设空间和训练数据一致——就好像对于一个知识点很少的课堂学习,有不少人能得到很高的分数,但是对于整个总体数据,学习的不同模型显然效果差别很大——真正考验很多难的知识点的考试,考验把上述表面上的学霸分开。
每个假设——也就是训练的模型,必然有其归纳偏好,也就是说,在训练集中没有见过的情况,或者两者皆可的情况,模型会选择哪种。归纳偏好是模型进行泛化的能力基础。

阅读全文

与什么是机器学习方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276