‘壹’ 如何开展几何教学
图形与几何是初中数学教学的重要模块之一.在我们的几何教学中,通过几何证明,培养学生的推理能力,我们的教师还是方法多多的.这次新课标的修改又增加了几何直观,让我觉得在几何教学中培养学生的空间观念、几何直观与推理能力,任重道远,下面谈谈自己一些想法;
1、数学来源于生活又服务于生活.初中阶段图形与几何的课程内容中包括相交线、平行线、三角形、四边形、圆,这些都是生活中常见的基本图形,因此在平时的教学中,特别是概念课的教学中常常要对学生提出问题:请你举例生活中你遇得到的三角形、四边形、圆、等图形的实例.尤其是在七年级《图形的认识》的起始章节,提出这样的问题学生觉得贴近生活,又好奇又新鲜,极大的激发了学生的学习兴趣.同时,这让长此以往的训练,时间久了,在学习一个新图形,学生就会主动的从现实世界中去抽象几何图形,提高了学生对几何图形的感知能力.
我们要从学生的生活实际入手,创设一定的数学生活情境引导学生感知、理解实物,引导学生在摸一摸、量一量、议一议的过程中探索图形的特征,使学生在头脑中建立一个个的模型.学生的空间知识来自丰富的现实原型,与现实生活关系非常密切,这些现实生活中丰富的原型是发展学生空间想象的宝贵资源.因此,在教学中,要将空间知识和现实生活联系起来,要引导学生经常运用图形的特征去想象,解决生活中的各种实际问题,发展他们的空间想象力,从而发展学生的空间观念.
2、教会学生识图,培养图感,不时的让学生画图,在教学中多小结基本图形,如平行线间加角平分线得等腰三角形.初一学生尤其要这样做.
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果.几何直观能力主要包括空间想象力、直观洞察能力、用图形语言来思考问题能力.几何直观不仅在图形与几何的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中.下面谈谈我对培养学生几何直观能力的肤浅见解.
‘贰’ 数学立体几何如何教好
怎样教好立体几何
作者: 杨佳
【关键词】 数学教学;立体几何;空间想象能力;生活实际;手工课;画图;基本原则
立体几何在整个高中数学中所处的地位非常重要,因为高考数学要考查学生的一项重要能力,就是空间想象能力和推理能力,而教学立体几何是培养学生空间想象能力和推理能力的重要途径。因此,学生必须学好立体几何基础知识。那么,如何教好立体几何呢?下面,笔者结合教学实践作详细阐述。
一、 要树立立体观念,培养学生的空间想象力
为了培养学生的空间想象能力,学生一开始学习立体几何就要让他们动手做一些实物模型。如,制作正方体、长方体等模型。通过对模型中点、直线和平面之间位置关系的观察,逐步培养学生的空间想象能力和识别能力。同时还要教给学生画直观图的规则,让其掌握实线、虚线的使用方法,为正确画图打好基础。培养学生的画图能力,可从简单的图形如直线和平面的各种位置关系、简单的几何体画起。由对照模型画图,逐步过渡到没有模型摆在面前,也能正确地画出空间图形的直观图,而且能由直观图想象出空间图形。在这个“想图、画图、识图”的过程中,不仅空间想象能力得到提高,抽象思维能力也可以得到很大提高。
二、联系生活实际,培养学生学习立体几何的兴趣
现实生活环境、实物为我们提供了丰富的学习素材,一般的线面关系在我们生活的周围随处可见,所以我们可以把身边的一切实物作为教学模型。例如,天花角柱、门窗黑板、讲台课桌、粉笔书本,这种就地取材的教学模型,不仅方便易得,学生还乐于接受。对于教材安排的一些较抽象的内容与习题,由于部分学生学习过程中空间立体感尚未形成,这部分学生学习起来就非常吃力。此时需要教师引导学生寻找身边的实例,化抽象为具体。
比如,教学“面面垂直的问题”时,只要将书本打开,竖立在讲台上,学生就可以直观地看到:一条直线垂直于一个平面,那么过这一直线的所有平面都和这个平面垂直。
三、适时开展“手工课”,引导学生画立体几何图
为了培养学生的空间想象力,教师可以适时开展手工课,让学生通过动手操作掌握立体几何体的特征。比如,在教学“几何体表面积”时,首先,课前布置学生用纸板制作各种柱、锥、台模型,上课时让学生亲手把几何体沿着若干条棱剪开后展开得到一个多边形,再运用逆向思维,让学生亲手把几何体还原,认识点、线、面的位置关系。这样,完成了学生的思维从实物到图,再从图到实物的转换。除了学生制作模型,教师也需要动手制作模型。在认识立体几何一个常见几何体“正方体”时,教师必须要用自制的教具进行多次操作演示,才能让学生从内外各个角度认清正方体中的关键线:表面对角线、正方体对角线、各条棱,相邻三表面的对角线围成的面、对角线截面等等,这些线面、面面关系都是高考当中经常考查的内容。
四、明确作图的基本规则,重视画图教学
空间图形是用平行投影原理画出的,空间图形画在纸上,有些量的关系改变了,又有些线被平面遮住了等等,应如何表示必须与学生讲清,必须要求学生熟练地掌握一些基本作图的方法。在教学中,教师应多让学生练习一些基本作图。在教学时,教师应给予示范,并强化基本作图技能的训练。如,在作位置关系比较复杂的图形时,应先画出限制条件多的线和面,再画限制条件少的线和面。证明线面平行时,可以通过“过直线,作平面,找交线”的思路确定要找的直线,使学生对空间模型的认知结构逐步丰富起来。在遇到新问题时,能迅速从复杂图形中识别出基本模型。在画图训练中,还要注意文字语言与图形语言、符号语言与图形语言之间的转换,做好从初中平面几何画图到高中立体几何的画图的转换。
‘叁’ 学好初中几何的好方法
作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。使好多学生在做几何题时感到无从下手,话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。我从自己的经验来谈谈这些问题。实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想.
首先.概念是最基础的知识,这是必背并烂熟于心的.做几何就像在做游戏,游戏规则就是几何的基本概念,定理,公理等,遵循规则就会胜利,违背规则就会出错。所以必须会被概念,定理,公理。有人认为只要理解不用背就可以,其实不然,在做很多题时,有的学生就是因为感念不清而出错。就是死记硬背了,就是不理解,只要老师用到这些知识,也可以明白。
其次,要学会使用几何语言, 几何语言的表现形式有三种:一是图形语言,就是我们研究的几何图形。如角、三角形、梯形等。二是文字语言,就是概念、定理、公理、或一个几何题用文字来表现的语言。三是符号语言:如:“//”“⊥”“△”等。这三种语言在几何中通常是并存的,有时又互相渗透,互相转化。教学中要对学生加强这三种几何语言的基本训练,要求每一位学生不仅能熟练地表达每一种语言,而且能根据解题或证题的需要,准确地将其中一种语言“翻译”成其它语言形式。对于几何语言的学习,要严谨、准确,尤其是三种几何语言的“互译”要熟练掌握,对于图形、文字、符号的使用要融汇贯通,这是学好几何的关键。
再者,要学会画出准确的几何图形,几何图形是学习研究的主要对象,画准图形是解(证)题的基础。画出正确符合题意的图形,往往会给学生留下深刻直观的印象,也给解(证)题带来清晰的思路。相反,不准确的图形,会给思考问题,解决问题带来错觉,甚至把思维引入歧途,把显而易见的问题变得无法入门。所以,要求学生在学习中,严格要求自己,认真地画出规范、准确的几何图形,千万不能怕麻烦或为了省事,不用学习用具而随便、徙手画图。
最后,要学会正确的推理,几何的推理证明同代数相比,思维方式有明显区别,几何借助图形思考,言必有据。因此,学习几何推理证明,要注意以下几点:
(1)扎实认真地学好几何基础知识,是学好几何推理证明的前提条件,定义、公理、定理、推论是几何推导的理论依据。所以要深刻理解其含义,彻底弄清其题设和结论。只有这样,才能灵活、正确运用它们来推导证明,解决问题。
(2)要练好三项基本功:正确地识图与作图;会使用三种几何语言的互相“翻译”,具有准确熟练地进行口头、书面的语言表达。
(3)加强在学习中对证明推导的基本结构和格式的训练。
(4)在老师的指导下,注意对证明方法的训练。几何证明方法一般有两种:分析法和综合法,这两种方法结合起来,称为“逆推顺证”,即用分析法寻找证题思路,用综合法书写证题过程。
在初中几何教学或学习中,如果让每个学生都做好了以上几点,对几何的学习就会轻松有趣,事半功倍,就能真正学好几何这门课。
‘肆’ 解决几何问题的方法
在中学几何学习中,数形结合的思想具有重要的作用,教师在教学中运用数形结合思想,能够将几何图形用代数的形式表示,并利用代数方式解决几何问题。数形结合将几何图形与代数公式密切的联系在一起,利用代数语言将几何问题简化,使学生更容易解决问题,是几何教学中的核心思想方法。
例如,研究直线与圆位置关系,可以根据直线方程和圆的方程,找到圆的圆心坐标,通过求解圆心到直线的距离d与圆的半径r之间的大小,来确定直线与圆的位置关系。
化归思想是数学中普遍运用的一种思想,在中学几何教学中,教师常运用这一思想,基本的运用方法就是将几何问题转化为代数问题,利用代数知识将问题解决后,再返回到几何中。或是在对空间曲面进行研究时,将复杂的空间几何图形转化为学生熟悉的平面曲线,便于学生理解和解决。
例如,研究直线与圆位置关系,可以将直线方程和圆的方程联立,转化成一元二次方程,通过判断一元二次方程根的个数,来确定直线与圆的位置关系。
变换思想是能够将复杂问题简单化的一种思想方法,变换思想在运用时,一般仅改变数量关系形式和相关元素位置,问题的结构和性质没有变化。
在几何教学中,教师利用变换思想进行变换,实现二次曲线方程的化简,能够通过方程运算准确的将方程所表示的图形展现出来,在降低学生学习难度的同时,也为用计算机研究几何图形性质等提供了依据。
‘伍’ 数学几何题解题技巧有哪些
熟背概念定理公理之前一定要学透它们的来源,从哪里演化推理得出的结论,然后去理解性背诵,之后从基础开始做题就可以熟悉了方法,方法多了自然而然就产生了技巧。
数学的几何题解题技巧
第一就是要证明两线段相等。
第二个就是全等三角形中对应边相等。
第三个就是同一个三角形,中等角对边等。
第四个就是等腰三角形顶角的平行线和底边的高平分底边。
第五个直角三角形斜边的中点到三顶点距离相等。
(5)几何题的教学方法扩展阅读:
关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
‘陆’ 几何学习方法总结
初中几何先是学角再到边.无非是证角相等,边相等.从而求角的度数,边相等.这个时候就要努力掌握,这是基础性的东西,以后证全等三角形实际上就是这些边角的延伸.
‘柒’ 怎样学好初中几何的方法技巧
第一步,首先像学习其他数学概念一样,要知道每个几何对象的概念(它是作为性质或判定的基础),其次要能自己熟练画出每个概念的图形,最后要能熟练的将性质和判定的文字描述转换为几何语言(即用符号表示出来).如下图
‘捌’ 如何学好几何有哪些方法可以掌握技巧
现在上初高中的同学最头疼的事哪个学科呢?我猜有百分之八十的同学会说是数学吧,而数学之中最头疼的就是几何部分,偏偏这一部分的分值占比比较大,常常就是你的拉分项,那学习几何有技巧可言吗,是有的,下面我们就来说一说具体是什么技巧吧!
一:基础知识的问题
几何证明题最基础的就是几何定理,各个定理的前后证明关系是非常重要的,你需要明白各个定理,哪个只可以正向证明,而不能反向证明。哪些定理可以两项进行证明。明白如何从条件得出结论,最基本的就是依靠这些定理,所以想学好几何的第1步就是要知道这些定一定能够运用。
四:题间联系
数学题的套路都是一样的,你可以把一系列的题都整理出来,对比一下,你发现无非就是那几种题型,所以只要你将这几种题型全部搞清楚,那么这些题在你手中就不再那么难了,可以拿一个笔记本。在开头写上题的类型,然后具体的做题方法步骤。下面找几道这种类型的题作为例题进行讲解。遇到新的题型也写在这个笔记本上。这样你的成绩就会有很大的提高。
这些方法你都学会了吗?希望对你有所帮助,并祝你可以取得好的成绩。
‘玖’ 研究中学几何问题的三种主要方法
研究中学几何问题的三种主要方法是数形结合法、化归思想法、变换思想法。
数形结合法具有重要的作用,教师在教学中运用数形结合的思想,能够将几何图形用代数表示,并利用代数解决几何问题。数形几何将几何图形与代数公式紧密结合,利用代数语言将几何问题简化,使学生容易解决问题,是几何教学中的核心思想。
化归思想法是书序中普遍的一种思想,在中学几何教学中,教师常常运用这一思想。基本方法就是将几何问题转为代数问题,利用代数只是解决问题后,在返回到几何中。或者在对空间曲面进行研究时,将复杂的空间几何图像转化为学生熟悉的平面曲线,便于学生理解和解决。
变换思想法是将复杂问题简化的一种思想方法,变换思想运用时,一般仅改变数量关系和相关元素位置,为题的结构和性质没有变化。在几何教学中,教师利用变换思想进行变换,实现二次方程的化简,能够通过方程运算准确的将方程所表示的图形展现出来,在降低学生学习难度的同时,也为用计算机研究几何图形性质等提供了依据。
‘拾’ 数学几何应该怎么学才有效
在数学知识体系中,几何是占分值很大的一块知识点,所以同学们一定要学好几何。以下是我分享给大家的数学几何的有效学习方法,希望可以帮到你!
数学几何的有效学习方法
一、逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,夯实基础
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1) 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2) 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3) 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
数学几何的有效学习建议
一、熟练掌握每一个知识点
数学中的所有知识点,都是我们解决几何问题的关键。
教学中,我们并不要求每一位学生把这些知识点背诵的滚瓜烂熟,而是要求学生能够熟练并且理解,根据图形记忆知识点,并会灵活运用到习题当中。如果知识点不熟练,我们根本无法探究出来几何题中的入口在哪里,更谈不上灵活运用了。因为数学是一门思维严密的学科,而几何更加体现出了这一点。在解几何题时,每一步,每一环节,都必须要有充足的理由作为根据,这些理由可以是问题所给的条件,也可以是定义、公理、定理、推论等。
二、通过基础题型的训练, 巩固知识点。
我们把基本的知识点都掌握熟练了,并不代表我们已经学会了几何。因为数学题目是灵活多变的,我们关键要学会以不变应万变,能够很熟练地把我们的知识点运用在解几何题的过程当中,这才算真正的掌握住了知识点。
三、认真审题,找准突破口,灵活运用知识点
在知识点掌握比较熟练时,对于最基础的知识题,我们应该感觉很轻松。
因此,要想学好数学中的几何部分,需要积累一定的知识点,然后灵活运用。这就要求我们熟悉常见题型的解题着眼点,把一个大的新问题细化成各个小的新问题,然后运用知识点各个击破,从而得到解决新问题的突破口。在还没有找到一个新问题切实的解决方法时,要善于捕捉可能会帮助你解决新问题的着眼点。
两平行线中的一条垂直,那么也和另一条垂直”的推论,达到了对整个问题的分析,也让我们学到的知识进行了一次融合和贯通。
四、总结归纳,对易错题型重点训练,强化知识点
这项工作,不仅仅是老师的事,更要求学生能够独立进行。
当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,就会有这样一部分学生,天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
数学几何的学习注意事项
(一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。
(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。
(三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。
(四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
猜你喜欢:
1. 正确学习数学的方法
2. 如何培养数学灵感
3. 学习数学最快的方法
4. 小学一年级数学教学方法
5. 学习大学数学的心得