Ⅰ 石墨炉原子吸收光谱法测定镉
方法提要
试样经盐酸、硝酸、氢氟酸、高氯酸分解后,加热至冒高氯酸白烟除尽氟后,制备成(1+99)HNO3溶液。加入磷酸二氢铵、硫脲、EDTA二钠盐混合溶液作为基体改进剂,GF-AAS直接测定镉。
方法适用于水系沉积物及土壤中镉的测定。
方法检出限(3s)0.05μg/g,测定范围0.15~5.0μg/g。
仪器及材料
原子吸收光谱仪,带石墨炉及自动进样装置。
石墨管。
氩气(纯度99.9%)。
聚四氟乙烯坩埚(30mL)。
试剂
盐酸。
硝酸。
高氯酸。
氢氟酸。
磷酸二氢铵、硫脲、EDTA二钠盐混合溶液[ρ(NH4H2PO4)=100g/L、ρ(硫脲)=100g/L、ρ(EDTA二钠盐)=20g/L]称取10gNH4H2PO4、10g硫脲及2gEDTA二钠盐,溶于100mL水中。现用现配。
镉标准储备溶液ρ(Cd)=1.00mg/mL称取1.0000g金属镉(纯度99.95%),加入20mL(1+1)HNO3溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
镉标准溶液ρ(Cd)=50.0ng/mL用(1+99)HNO3逐级稀释镉标准储备溶液配制。
校准曲线
吸取0.00mL、0.50mL、2.50mL、5.00mL镉标准溶液(50.0ng/mL),置于25mL比色管中,加2.5mL磷酸二氢铵、硫脲、EDTA二钠盐混合溶液,用(1+99)HNO3稀释至刻度,摇匀。校准曲线的镉浓度分别为0ng/mL、1.00ng/mL、5.00ng/mL、10.0ng/mL。按表84.53仪器工作条件操作测定镉,绘制校准曲线。
表84.53 偏振塞曼原子吸收光谱仪石墨炉工作条件
注:日立180-80为例。
分析步骤
称取0.1~0.5g(精确至0.0001g)试样(粒径小于0.075mm,经室温干燥后,装入磨口小玻璃瓶中备用)置于30mL聚四氟乙烯坩埚中,用水润湿,加入5mLHCl,于电热板上低温加热10min,再加2mLHNO3,继续加热20min,取下。加入2mL(1+1)HClO4和10mLHF,继续加热至冒尽白烟。取下冷却后加入1.0mL(1+3)HNO3,用水冲洗坩埚壁,加热溶解盐类后,移入25mL比色管中,用水稀释至刻度,摇匀。澄清后吸取5.00mL溶液置于另一个25mL比色管中,加入2.5mL磷酸二氢铵、硫脲、EDTA二钠盐混合溶液,用(1+99)HNO3稀释至刻度,摇匀。取部分试液,按校准曲线同样测定,测得镉量。
按下式计算镉的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(Cd)为Cd的质量分数,μg/g;ρ为从校准曲线上查得试样溶液中镉的浓度,ng/mL;ρ0为从校准曲线上查得空白试验溶液中镉的浓度,ng/mL;V1为试样溶液的总体积,mL;V2为分取试样溶液的体积,mL;V3为测定溶液的体积,mL;m为试样的质量,g。
Ⅱ 食品中的铅镉汞采用什么方法测定
食品中铅的检测方法最常用的为:
GB 5009.12-2010 食品安全国家标准 食品中铅的测定
食品中镉的检测方法最常用的有(包括新旧两种方法):
GB/T 5009.15-2003 食品中镉的测定(2015-7-28作废)
GB 5009.15-2014 食品安全国家标准 食品中镉的测定(2015-7-28实施)
食品中汞的检测方法最常用的为(包括新旧两种方法):
GB/T 5009.17-2003 食品中总汞及有机汞的测定(2016-3-21作废)
GB 5009.17-2014 食品安全国家标准 食品中总汞及有机汞的测定(2016-3-21实施)
关于新旧标准:根据产品的生产日期来决定使用新标准还是旧的标准。
还有一些其他不常用的铅镉汞检测方法,只列举部分:SB/T 10922-2012 肉与肉制品中铬、铜、总砷、镉、总汞、铅的测定、SN/T 0448-2011 进出口食品中砷、汞、铅、镉的检测方法、SN/T 2208-2008 水产品中钠、镁、铝、钙、铬、铁、镍、铜、锌、砷、锶、钼、镉、铅、汞、硒的测定等。
Ⅲ 食品中重金属的检测方法有哪些
食品中重金属的检测方法如下:Ⅳ 检测大米中的镉有几种方法哪一种方法测试成本比较低
检测大米中镉的方法有很多,其中的石墨炉原子吸收光谱法、ICP-MS法、以及火焰原子荧光法都可以。至于测试成本,我这里有一个三种方法测试成本对比表。
三种测大米中镉含量成本对比
从(三种测大米中镉含量成本对比)表中看出从测试成本上看,火焰原子荧光光度计的测试成本低。(ICP-MS是火焰原子荧光法的七倍,石墨炉原子吸收光谱法是火焰原子荧光法的两倍)
Ⅳ 重金属镉检测
多功能重金属专用检测仪
品牌:悯农仪器 型号:GT-HM3
该款仪器可用于土壤、肥料、植株、食品、蔬菜、水果、水质等重金属的检测。
一、检测原理:
(一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。
1、性能可靠,工作稳定性均优于国家标准JJG79-90标准5--6倍,重复性达到光栅类分光光度计指标,采用微处理器技术,单片机控制,触摸按键,操作简便。
2、重金属测试采用联合消化和分项测试技术,简化测试流程,减少测试时间,大大提高测试效率,提高测试精度。
Ⅵ 镉量的测定 石墨炉原子吸收光谱法
1 范围
本方法规定了地球化学勘查试样中镉含量的测定方法。
本方法适用于水系沉积物及土壤试料中镉量的测定。
本方法检出限(3S):0.05μg/g镉。
本方法测定范围:0.15μg/g~5.0μg/g镉。
2 规范性引用文件
下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。
下列不注日期的引用文件,其最新版本适用于本方法。
GB / T 20001.4 标准编写规则 第4部分:化学分析方法。
GB / T 14505 岩石和矿石化学分析方法总则及一般规定。
GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。
GB / T 14496—93 地球化学勘查术语。
3 方法提要
试样经盐酸-硝酸-氢氟酸-高氯酸分解后,加热至冒高氯酸白烟除尽氟后,制备成HNO3(1+99)溶液。加入磷酸二氢铵-硫脲-EDTA二钠盐混合溶液作为基体改进剂。以镉空心阴极灯为光源,辐射出镉元素特征光波,通过石墨炉中试料蒸气时,被蒸气中镉的基态原子所吸收,由辐射光强度减弱的程度,可以求得试料中镉的含量。
4 试剂
除有指定外,其余试剂均为分析纯,水为去离子水或蒸馏水。在空白试验(6.2)中,若已检测到所用试剂中含有大于0.05μg/g的镉量,并确认已经影响试料中低量镉的测定,应净化试剂。
4.1 盐酸(ρ1.19g/mL)
4.2 硝酸(ρ1.40g/mL)
4.3 硝酸(1+1)
4.4 硝酸(1+3)
4.5 硝酸(1+99)
4.6 高氯酸(ρ1.67g/mL)
4.7 高氯酸(1+1)
4.8 氢氟酸(ρ1.13g/mL)
4.9 磷酸二氢铵-硫脲-EDTA二钠盐混合溶液[ρ(磷酸二氢铵)=100g/L—ρ(硫脲)=100g/L—ρ(EDTA二钠盐)=20g/L]混合溶液
称取10g磷酸二氢铵、10g硫脲及2g EDTA二钠盐,溶于100mL水中。用时配制。
4.10 镉标准溶液
4.10.1 镉标准溶液Ⅰ[ρ(Cd)=1.000 mg/mL]称取金属镉[w(Cd)=99.95%]1.0000g(精确至0.0002g),加入20mL硝酸(4.3)溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀备用。
4.10.2 镉标准溶液Ⅱ[ρ(Cd)=20.0μg/mL]吸取5.00mL镉标准溶液Ⅰ(4.10.1)于250mL容量瓶中,用硝酸(4.5)稀释至刻度,摇匀备用。
4.10.3 镉标准溶液Ⅲ[ρ(Cd)=1.0μg/mL]吸取5.00mL镉标准溶液Ⅱ(4.10.2)于100mL容量瓶中,用硝酸溶液(4.5)稀释至刻度,摇匀备用。
4.10.4 镉标准溶液Ⅳ[ρ(Cd)=0.05μg/mL]吸取5.00mL镉标准溶液Ⅲ(4.10.3)于100mL容量瓶中,用硝酸溶液(4.5)稀释至刻度,摇匀备用。
5 仪器及材料
5.1 原子吸收光谱仪(日本日立)
带石墨炉及自动进样装置。工作条件见附录A。
5.2 镉空心阴极灯
5.3 石墨管
5.4 氩气[w(Ar)99.9%]
5.5 聚四氟乙烯坩埚
规格:30mL。
6 分析步骤
6.1 试料
试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶中备用。
试料量 依据元素含量,称取0.18g~0.5g试料,精确至0.0002g。
6.2 空白试验
随同试料分析全过程做双份空白试验。
6.3 质量控制
选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。
6.4 测定
6.4.1 称取试料(6.1)置于聚四氟乙烯坩埚(5.5)中,用水润湿,加入5mL盐酸(4.1),于电热板上低温加热10min,再加2mL硝酸(4.2),继续加热20min,取下。加入2mL高氯酸(4.7)及10mL氢氟酸(4.8),继续加热至冒尽白烟。取下冷却后加入1.0mL硝酸(4.4),用水冲洗坩埚壁,加热溶解盐类后,移入25mL比色管中,用水稀释至刻度,摇匀。澄清后吸取5.0mL溶液于另一个25mL比色管中,加入2.5mL磷酸二氢铵-硫脲-EDTA二钠盐混合溶液(4.9),用硝酸(4.5)稀释至刻度,摇匀。
6.4.2 将试料制备溶液(6.4.1),按附录A的表A.1仪器工作条件,进行测定。从制作的工作曲线上查得试料中的镉量。
6.4.3 工作曲线的绘制 吸取镉标准溶液Ⅳ(4.10.4)0.0mL、0.5mL、2.5mL、5.0mL于25mL比色管中,加2.5mL磷酸二氢铵-硫脲-EDTA二钠盐混合溶液(4.9),用硝酸(4.5)稀释至刻度,摇匀。此工作曲线的镉量分别为(0ng/mL、1.0ng/mL、5.0ng/mL、10.0ng/mL)。按(6.4.2)条步骤进行。测定完成后,以镉量为横坐标,吸光度为纵坐标,绘制工作曲线。
7 分析结果的计算
按下式计算结果:
区域地球化学勘查样品分析方法
式中:ρ——从工作曲线上查得试料溶液中镉的浓度,ng/mL;ρ0——从工作曲线上查得空白试验溶液中镉的浓度,ng/mL;V1——制备溶液的总体积,mL;V2——分取制备溶液的体积,mL;V3——测定溶液的体积,mL;m——试料质量,g。
8 精密度
镉量的精密度见表1。
表1 精密度[w(Cd),10-6]
附 录 A
(资料性附录)
A.1 180-80偏振塞曼原子吸收光谱仪(日本日立)石墨炉工作条件
如表A.1。
表A.1 塞曼原子吸收光谱仪(日本日立)石墨炉工作条件
附 录 B
(资料性附录)
B.1 从实验室间试验结果得到的统计数据和其他数据
如表B.1。
本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。
表B.1中不需要将各浓度的数据全部列出,但至少列出了3个或3个以上浓度所统计的参数。
B.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。
B.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值;x0为一级标准物质的标准值。
B.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差、SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为“重复性变异系数”及“再现性变异系数”。
B.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。
表B.1 Cd统计结果表
附加说明
本方法由中国地质调查局提出。
本方法由武汉综合岩矿测试中心技术归口。
本方法由广东省物料实验检测中心负责起草。
本方法主要起草人:李展强、张汉萍、潘孝林、李锡坤。
本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。
Ⅶ 镉含量化学法怎么测定
可以使用硫化物沉淀法。
在偏酸性溶液中将镉全部以CdS形式沉淀下来,过滤,充分洗涤沉淀。
沉淀溶于NH4Cl-NH3溶液中:CdS
+4
NH3===【Cd(NH3)4】S
用I2标准溶液滴定,淀粉为指示剂,滴定至溶液变深蓝:S2-
+
I2
=
S
+
2
I-
Ⅷ 粮食中的镉用什么方法检测
国标中有测粮食中镉的方法,但相对来说有点复杂,2018年新出了一个测镉标准《T/CAIA/SH013-2021 土壤 镉的测定 火焰原子荧光光谱法》,使用火焰原子荧光法检测一个样品也就是几分钟,前处理也简单,你可以试试!
Ⅸ 设计实验检测土壤中的重金属镉含量
1.筛选
镉(Cd)的测定方法有原子吸收分光光度法和比色法。原子吸收分光光度法具有灵敏度高、选择性好、操作简便、快速的特点,是测定土壤重金属元素的主要方法之一,根据含量的高低可分别采用火焰法或无焰法来进行测定;比色法干扰因素较多,操作较繁琐,目前已很少采用。
2.仪器
原子吸收分光光度计及石墨炉无火焰装置;Cd元素空心阴极灯;仪器使用适宜条件可参照仪器说明书并进行试验。
3.主要试剂
分析中使用的酸和标准物质均为符合国家标准或专业标准的优级纯试剂,其他为分析纯试剂和去离子水。
1)氢氟酸(HF)、硝酸(HNO3)、盐酸(HCl)、高氯酸(HClO4)。
2)碘化钾饱和溶液。
3)抗坏血酸。
4)甲基异丁基酮(MIBK)。
5) Cd标准贮备液:准确称取1.0000g金属Cd(99.99%),加入少量稀HNO3溶解,在水浴上蒸干后,加5 mL 1 mol/L HCl,再蒸干,加HCl和H2O溶解残渣,用H2O稀至1 000 mL,控制溶液酸度为0.5 mol/L,此溶液含Cd 1000 ug/mL。
4.操作步骤
(1)标准曲线
1)火焰法用逐级稀释法配制成含Cd 10.00 ug/mL的标准液,再配制成含Cd 0.00、0.10、0.20、0.30、0.40、0.50、1.00 ug/mL的标准系列,酸度为0.5 mol/L HCl。在原子吸收分光光度计上测定吸光度,以相对吸光度为纵坐标,Cd浓度为横坐标绘制标准曲线。
2)石墨炉无火焰法用逐级稀释法配制成含Cd 100 ug/L的标准液,再配制成含Cd 0.0、2.0、4.0、6.0、8.0、10.0、12.0、16.0、20.0 ug/L 的标准系列,酸度为0.2 mol/L HCl。分别吸取标准系列溶液5.00 mL于25 mL具塞试管中,加4 mL水,加2mL 1mol/L HCl,加0.2 g抗坏血酸,摇溶,再加4 mL饱和碘化钾溶液,激烈振荡0.5 min后,准确加入5.00 mL甲基异丁基酮萃取,激烈振荡1 min,静置分层后测定有机相。在原子吸收分光光度计石墨炉上测定吸光度,以相对吸光度为纵坐标,Cd浓度为横坐标绘制标准曲线。
(2)土壤样品的消化
1) HF-HC1O4-HNO3消化法 称取经105~110℃烘干,过0.149 mm(100目)以上筛孔的土样0.5 g精确至0.0001g)于30 mL聚四氟乙烯坩埚内,加几滴去离子水湿润,加10mLHF,加5mL 1:1 HC1O4-HNO3混合液,加盖低温消化(100℃以下)1h后,去盖,升高温度(低于250℃)继续消化至HC1O4大量冒烟。再加5mL HF和5 mL 1:1 HClO4-HNO3混合液,消化至HClO4冒浓厚白烟时,加盖,使黑色有机碳化物充分分解。待坩埚上的黑色有机物消失后,开盖驱赶白烟到近干,加5mL HNO3消化至白烟基本冒尽且内容物呈干裂状,取下趁热加5 mL 2 mol/L HCI,加热溶解残渣(不能冒烟)。然后转移到25 mL容量瓶中,用去离子水定容,摇匀,并立即将消化液转移至塑料瓶中待测。同时做两份试剂空白。
2)王水-过氯酸法 称取经105~110℃烘干,过0.149 mm(100目)孔筛的土样2g(精确至0.001g),放于100 mL高型烧杯中,用少量水润湿(如系石灰性土壤,可滴加适量HCl至无大量气泡产生),在通风柜中先加7.5 mL浓HCl,继加2.5 mL浓HNO3,放于电热板上低温加热,待激烈反应过后,添加5 mL HClO4,消煮,直至近干(注意不要烧焦),此时残留物为白色或灰白色沉淀,如颜色比较深,可再加5 mL HClO4,继续消化至符合要求为止,在一般情况下,添加两次即已足够,取下烧杯,添加10 mL 1 mol/L HCI,用玻棒搅拌并在搅拌下加热至微沸,冷却过滤至50 mL 容量瓶中,用去离子水洗涤数次,定容待测。
上述两种消化方法,王水-过氯酸法使土壤中重金属(Cd,Co,Cr,Cu,Ni和Pb)的结果偏低,尤其对土壤背景值的测定影响较大。一般,测定土壤背景值时建议采用HF-HClO4-HNO3认法,测定污染土壤时可采用王水-过氯酸法。
(3)样品的测定
土壤消化液中Cd含量高时,可将待测液直接喷入空气一乙炔火焰中测定;当待测液中Cd含量低时可用石墨炉无火焰法测定,或取适量消化液(5~10 mL)按标准曲线的方法用MIBK萃取后测定。样品溶液与标准曲线同时在原子吸收仪上测定吸光度或元素浓度。
5.结果计算
cd=C1xVxts/W
式中,C(Cd)为土壤镉浓度,ug/g或mg/kg; C1为测得的镉的浓度,ug/mL;V为测定时定容体积,mL;ts为分取倍数;W为样品重量,g。
6.注意事项
1)若萃取液中Cd含量超出标准曲线范围时,不可用甲基异丁基酮稀释测定,而应减少消化液的量,重新萃取,否则将带来较大的误差。
2)高氯酸的纯度对空白值影响很大,直接关系到结果的准确度,因此在消化时所加入的高氯酸的量应保持一致,并尽可能地少加,以便降低空白值。
3)消化时应尽可能将高氯酸白烟驱尽,否则加入碘化钾时会产生大量高氯酸钾的沉淀,但少量沉淀并不影响测定。
4)原子吸收分光光度法的检出限与仪器性能有关。
5)Pb、Cd、Cu、Zn、Cr、Ni和Co等的消解,采用HF-HClO4-HNO3全消解方法,可在同一消化液中测定上述元素,用此法测定的土壤标样GSS 1-8的测定结果可达“可用值±1S”,范围内。此法对于大量样品的分析更为合适,可节省时间。在农田土壤质量普查中,有利于基层分析人员的掌握。
6)土壤中镉测定的国家标准方法(石墨炉原子吸收分光光度法)可参阅(GB/T 17141-1997)。
摘自中国标准物质网
Ⅹ 测试化妆品中是否有汞砷和镉铬用什么分析方法
金属元素的常规分析检测除了六价铬和汞有更独特便捷的方法外 其它基本上都一致 所以我就将金属常用检测方法的原理分为三类分别向你介绍
1 汞(包括类金属砷、硒 这两个指标常用检测方法原理与汞相近)
2 铬(包括六价铬、三价铬、总铬)
3 其它金属元素
1 汞
冷原子吸收法、原子荧光法
冷原子吸收法原理:
用强氧化剂对样品进行消解 消解分两种 一种冷消解 一种热消解 根据样品状态和实验室条件进行选择 这个我不细说 如果有兴趣了解的话我再详细向你介绍 消解的目的之一是将样品中的汞统一氧化为最高价+2价(另一个目的是去除有机物等杂质的干扰) 然后将消解好的样品放置在冷原子吸收测定仪配套使用的吸收瓶内 加入强还原剂 一般选用氯化亚锡 在一瞬间将样品中的汞原子化、蒸气化(还原为0价)并将汞蒸气以空气为载气导入仪器测定单元内 汞原子蒸气对波长253.7nm的紫外光具有强烈的吸收 汞蒸气浓度与吸收值成正比 根据这一特性来测定导入的汞蒸气的含量 进而对样品中的汞定量
原子荧光(AFS)法:
测定前处理(消解)基本相同 主要目的都是将样品中的汞氧化为最高价 然后用硼氢化钾将+2价汞还原为原子态的汞蒸气 以惰性气体为载气将其导入仪器测定单元内 以特制汞高强度空芯阴极灯作为激发光源对其进行照射 将基态汞原子被激发至高能态 一段时间后又回到基态 在这个过程中汞原子会放射出特征波长的荧光 其荧光强度在一定范围内与汞原子浓度成正比 测定这个汞特征波长的荧光强度并通过数据处理就能对样品中的汞定量
砷、硒甚至其它的金属元素也都能用原子荧光法检测 方法原理与汞一样 只是前处理有些差异 但是常规环境监测中一般只用这种方法检测汞、砷、硒 这种方法的缺点是每测定一种元素都需要相对应的空芯阴极灯 很麻烦
2 铬(六价铬、三价铬、总铬)
六价铬 二苯碳酰二肼分光光度法
在酸性环境下 六价铬与二苯碳酰二肼反应生成紫色化合物(具体反应原理以及化学反应式据说仍不为大众所知 只有极少数的机构或个人掌握着) 此紫外化合物在540nm可见光处有强烈吸收 紫色化合物浓度与吸收值成正比 由此可以推算成六价铬的含量 对样品中的六价铬进行定量
总铬 二苯碳酰二肼分光光度法
检测原理与六价铬一样 只不过前面加了一个预处理的步骤 用强氧化剂对样品进行消解 将样品中各种价态的铬氧化成最高价+6价 再执行六价铬的测定步骤就OK了
三价铬 二苯碳酰二肼分光光度法
原理依旧一样 用总铬的测定结果减去六价铬的测定结果 得到的就是三价铬的测定结果 不过这种算法只是环境监测中的一个经验算法 在某些情况下不一定对 例如样品中存在铬单质(0价)
其实 不论是六价铬、三价铬、还是总铬 都是铬元素 铬也算得上是一种常规金属 因此适用于其它金属的广泛测定方法 例如上面提到的原子荧光(AFS)以及下面将提到的原子吸收(AAS)、电感耦合等离子光谱法(ICP)都适用于总铬的测定 但是缺点是很难分辨铬元素在样品中的价态分布 这不能满足环境监测中对铬元素测定的要求(主要监测六价铬)
3 其它金属元素
原子吸收(AAS) 电感耦合等离子光谱法(ICP) 很多元素的检测也有分光光度法 由于方法局限性较大 使用并不广泛 所以这里不细说
原子吸收:
除非是状况特别好的样品 否则的话第一个步骤都是对样品进行前处理-氧化剂消解 消解的目的主要是:一将待测元素氧化为最高价 二去除有机物等杂质干扰 消解好后用载气(多使用惰性气体)将样品导入原子化发生器 金属元素在热解石墨炉或火焰炉中被加热原子化 成为基态原子蒸汽 对被测金属元素所对应的空心阴极灯发射的特征辐射进行选择性吸收 在一定浓度范围内 其吸收强度与试液中被的含量成正比 根据这一原理 对样品中的被测元素进行定量
这种方法适用于所有金属元素 但是缺点和原子荧光法一样 每测定一种元素都需要相对应的空芯阴极灯 很麻烦
电感耦合等离子体光谱法:
由于仪器的进样、检测单元易受到有机物或者其它固化、易固化杂质的干扰 所以仪器检测前的消解是必不可少的 消解好后 以惰性气体为载体通过进样系统的作用将待测样品雾化后以气溶胶的形式进入到仪器创造的等离子体火焰中 在极高温的等离子体火焰作用下 待测样品无条件地被原子化甚至离子化 并被激发发光 利用光谱发生器将激发光分解为光谱 对光谱进行分析 在光谱中 不同的元素对应不同的波长 根据这个特性对元素进行定性 每一个波长的光强与样品含量成正比 根据这个特性对样品进行定量
这种方法的优点是 无论你需不需要 都可同时检测多种金属和非金属元素(一般为30-50种 高端的为70余种 从理论上来说 惰性元素外的元素都可检测 据说国外已经实现)
缺点是 仪器非常昂贵 很娇嫩 抗干扰能力差 无法对元素进行价态分析 在不加装其它检测器的情况下检出限较低 有些元素在这方面比较突出 比如汞 这也许是汞的检测更多使用别的方法的原因吧
总的来说 除了汞更多使用别的方法外之外 金属元素的检测方法原理都是很接近的