导航:首页 > 研究方法 > 决策树分析方法的特点

决策树分析方法的特点

发布时间:2022-11-26 01:49:16

❶ 机器学习中常见的算法的优缺点之决策树

决策树在机器学习中是一个十分优秀的算法,在很多技术中都需要用到决策树这一算法,由此可见,决策树是一个经典的算法,在这篇文章中我们给大家介绍决策树算法的优缺点,希望这篇文章能够更好的帮助大家理解决策树算法。
其实决策树倍受大家欢迎的原因就是其中的一个优势,那就是易于解释。同时决策树可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。但是决策树的有一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家,决策树训练快速并且可调,同时大家无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。
那么决策树自身的优点都有什么呢,总结下来就是有六点,第一就是决策树易于理解和解释,可以可视化分析,容易提取出规则。第二就是可以同时处理标称型和数值型数据。第三就是比较适合处理有缺失属性的样本。第四就是能够处理不相关的特征。第五就是测试数据集时,运行速度比较快。第六就是在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
那么决策树的缺点是什么呢?总结下来有三点,第一就是决策树容易发生过拟合,但是随机森林可以很大程度上减少过拟合。第二就是决策树容易忽略数据集中属性的相互关联。第三就是对于那些各类别样本数量不一致的数据,在决策树中,进行属性划分时,不同的判定准则会带来不同的属性选择倾向;信息增益准则对可取数目较多的属性有所偏好,而增益率准则CART则对可取数目较少的属性有所偏好,但CART进行属性划分时候不再简单地直接利用增益率尽心划分,而是采用一种启发式规则。
通过上述的内容相信大家已经知道了决策树的优点和缺点了吧,大家在学习或者使用决策树算法的时候可以更好的帮助大家理解决策树的具体情况,只有了解了这些算法,我们才能够更好的使用决策树算法。

❷ 决策树的优点

决策树易于理解和实现,人们在在学习过程中不需要使用者了解很多的背景知识,这同时是它的能够直接体现数据的特点,只要通过解释后都有能力去理解决策树所表达的意义。
对于决策树,数据的准备往往是简单或者是不必要的,而且能够同时处理数据型和常规型属性,在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
易于通过静态测试来对模型进行评测,可以测定模型可信度;如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。

❸ 决策树基本概念及算法优缺点

分类决策树模型是一种描述对实例进行分类的树形结构. 决策树由结点和有向边组成. 结点有两种类型: 内部结点和叶节点. 内部节点表示一个特征或属性, 叶节点表示一个类.
决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型.

分类树--对离散变量做决策树

回归树--对连续变量做决策树

优点:
(1)速度快: 计算量相对较小, 且容易转化成分类规则. 只要沿着树根向下一直走到叶, 沿途的分裂条件就能够唯一确定一条分类的谓词.
(2)准确性高: 挖掘出来的分类规则准确性高, 便于理解, 决策树可以清晰的显示哪些字段比较重要, 即可以生成可以理解的规则.
(3)可以处理连续和种类字段
(4)不需要任何领域知识和参数假设
(5)适合高维数据
缺点:
(1)对于各类别样本数量不一致的数据, 信息增益偏向于那些更多数值的特征
(2)容易过拟合
(3)忽略属性之间的相关性

若一事假有k种结果, 对应概率为 , 则此事件发生后所得到的信息量I为:

给定包含关于某个目标概念的正反样例的样例集S, 那么S相对这个布尔型分类的熵为:

其中 代表正样例, 代表反样例

假设随机变量(X,Y), 其联合分布概率为P(X=xi,Y=yi)=Pij, i=1,2,...,n;j=1,2,..,m
则条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性, 其定义为X在给定条件下Y的条件概率分布的熵对X的数学期望

在Hunt算法中, 通过递归的方式建立决策树.

使用信息增益, 选择 最高信息增益 的属性作为当前节点的测试属性

ID3( Examples,Target_attribute,Attributes )

Examples 即训练样例集. Target_attribute 是这棵树要预测的目标属性. Attributes 是除目标属性外供学习到的决策树测试的属性列表. 返回能正确分类给定 Examples 的决策树.

class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

限制决策树层数为4的DecisionTreeClassifier实例

This plot compares the decision surfaces learned by a dcision tree classifier(first column), by a random forest classifier(second column), by an extra-trees classifier(third column) and by an AdaBoost classifier(fouth column).

Output:

A comparison of a several classifiers in scikit-learn on synthetic datasets.
The point of this examples is to illustrate the nature of decision boundaries of different classifiers.

Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers.

This example fits an AdaBoost decisin stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters and plots the decision boundary and decision scores.

Output:

❹ 决策树优缺点

优点:决策过程更接近人的思维, 因此模型更容易解释;能够更清楚地使用图形化描述模型;速度快;可以处理连续性和离散型数据;不需要任何领域知识和参数假设;适合高维数据。

缺点:

对于各特征样本量不均衡的数据, 信息增益更偏向于那些数值更多的特征;不支持在线学习;容易过拟合;一般来说, 决策学习方法的准确率不如其他模型。

应用决策树决策方法必须具备以下条件:

(1)具有决策者期望达到的明确目标。

(2)存在决策者可以选择的两个以上的可行的备选方案。

(3)存在决策者无法控制的两个以上不确定因素。

(4)不同方案在不同因素下的收益或损失可以计算出来。

(5)决策者可以估计不确定因素发生的概率。

❺ 决策树(Decision Tree)

决策树是一种非参数有监督的机器学习方法,可以用于解决回归问题和分类问题。通过学习已有的数据,计算得出一系列推断规则来预测目标变量的值,并用类似流程图的形式进行展示。决策树模型可以进行可视化,具有很强的可解释性,算法容易理解,以决策树为基础的各种集成算法在很多领域都有广泛的应用。

熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。在信息论里面,信息熵代表着一个事件或一个变量等所含有的信息量。 在信息世界,熵越高,则能传输越多的信息,熵越低,则意味着传输的信息越少。

发生概率低的事件比发生概率高的事件具有更大的不确定性,需要更多的信息去描述他们,信息熵更高。

我们可以用计算事件发生的概率来计算事件的信息,又称“香农信息”( Shannon Information )。一个离散事件x的信息可以表示为:
h(x) = -log(p(x))
p() 代表事件x发生的概率, log() 为以二为底的对数函数,即一个事件的信息量就是这个事件发生的概率的负对数。选择以二为底的对数函数代表计算信息的单位是二进制。因为概率p(x)小于1,所以负号就保证了信息熵永远不为负数。当事件的概率为1时,也就是当某事件百分之百发生时,信息为0。

熵( entropy ),又称“香农熵”( Shannon entropy ),表示一个随机变量的分布所需要的平均比特数。一个随机变量的信息熵可以表示为:
H(x) = -sum(each k in K p(k)log(p(k)))
K表示变量x所可能具有的所有状态(所有事件),将发生特定事件的概率和该事件的信息相乘,最后加和,即可得到该变量的信息熵。可以理解为,信息熵就是平均而言发生一个事件我们得到的信息量大小。所以数学上,信息熵其实是事件信息量的期望。

当组成该随机变量的一个事件的概率为1时信息熵最小,为0, 即该事件必然发生。当组成该随机变量的所有事件发生的概率相等时,信息熵最大,即完全不能判断那一个事件更容易发生,不确定性最大。

当一个事件主导时,比如偏态分布( Skewed Probability Distribution ),不确定性减小,信息熵较低(low entropy);当所有事件发生概率相同时,比如均衡分布( Balanced Probability Distribution ),不确定性极大,信息熵较高(high entropy)。

由以上的香农信息公式可知,信息熵主要有三条性质:
- 单调性 。发生概率越高的事件,其所携带的信息熵越低。比如一个真理的不确定性是极低的,那么它所携带的信息熵就极低。
- 非负性 。信息熵不能为负。单纯从逻辑层面理解,如果得知了某个信息后,却增加了不确定性,这也是不合逻辑的。
- 可加性 。即多随机事件同时发生存在的总不确定性的量度是可以表示为各事件不确定性的量度的和。

若两事件A和B同时发生,两个事件相互独立。 p(X=A,Y=B) = p(X = A)*p(Y=B) , 那么信息熵为 H(A,B) = H(A) + H(B) 。但若两事件不相互独立,那么 H(A,B) = H(A) + H(B) - I(A,B) 。其中 I(A,B) 是互信息( mutual information,MI ),即一个随机变量包含另一个随机变量信息量的度量。即已知X的情况下,Y的分布是否会改变。

可以理解为,两个随机变量的互信息度量了两个变量间相互依赖的程度。X 和 Y的互信息可以表示为:
I(X;Y) = H(X) - H(X|Y)
H(X)是X的信息熵,H(X|Y)是已知Y的情况下,X的信息熵。结果的单位是比特。
简单来说,互信息的性质为:
- I(X;Y)>=0 互信息永远不可能为负
- H(X) - H(X|Y) = I(X;Y) = I (Y;X) = H(Y) - H(Y|X) 互信息是对称的
-当X,Y独立的时候, I(X;Y) = 0 互信息值越大,两变量相关性越强。
-当X,Y知道一个就能推断另一个的时候, I(X;Y) = H(Y) = H(X)

在数据科学中,互信息常用于特征筛选。在通信系统中互信息也应用广泛。在一个点到点的通信系统中,发送信号为X,通过信道后,接收端接收到的信号为Y,那么信息通过信道传递的信息量就是互信息 I(X,Y) 。根据这个概念,香农推导出信道容量(即临界通信传输速率的值)。

信息增益( Information Gain )是用来按照一定规则划分数据集后,衡量信息熵减少量的指数。

那数据集的信息熵又是怎么计算的呢?比如一个常见的0,1二分类问题,我们可以计算它的熵为:
Entropy = -(p(0) * log(P(0)) + p(1) * log(P(1)))
当该数据集为50/50的数据集时,它的信息熵是最大的(1bit)。而10/90的数据集将会大大减少结果的不确定性,减小数据集的信息熵(约为0.469bit)。

这样来说,信息熵可以用来表示数据集的纯度( purity )。信息熵为0就表示该数据集只含有一个类别,纯度最高。而较高的信息熵则代表较为平衡的数据集和较低的纯度。

信息增益是提供了一种可以使用信息熵计算数据集经过一定的规则(比如决策树中的一系列规则)进行数据集分割后信息熵的变化的方法。
IG(S,a) = H(S) - H(S|a)
其中,H(s) 是原数据集S的信息熵(在做任何改变之前),H(S|a)是经过变量a的一定分割规则。所以信息增益描述的是数据集S变换后所节省的比特数。

信息增益可以用做决策树的分枝判断方法。比如最常用CART树( Classification and Regression Tree )中的分枝方法,只要在python中设置参数 criterion 为 “entropy” 即可。

信息增益也可以用作建模前的特征筛选。在这种场景下,信息增益和互信息表达的含义相同,会被用来计算两变量之间的独立性。比如scikit-learn 中的函数 mutual_info_classiif()

信息增益在面对类别较少的离散数据时效果较好,但是面对取值较多的特征时效果会有 偏向性 。因为当特征的取值较多时,根据此特征划分得到的子集纯度有更大的可能性会更高(对比与取值较少的特征),因此划分之后的熵更低,由于划分前的熵是一定的,因此信息增益更大,因此信息增益比较偏向取值较多的特征。举一个极端的例子来说,如果一个特征为身份证号,当把每一个身份证号不同的样本都分到不同的子节点时,熵会变为0,意味着信息增益最大,从而该特征会被算法选择。但这种分法显然没有任何实际意义。

这种时候,信息增益率就起到了很重要的作用。
gR(D,A)=g(D,A)/HA(D)
HA(D) 又叫做特征A的内部信息,HA(D)其实像是一个衡量以特征AA的不同取值将数据集D分类后的不确定性的度量。如果特征A的取值越多,那么不确定性通常会更大,那么HA(D)的值也会越大,而1/HA(D)的值也会越小。这相当于是在信息增益的基础上乘上了一个惩罚系数。即 gR(D,A)=g(D,A)∗惩罚系数 。

在CART算法中,基尼不纯度表示一个随机选中的样本被分错类别的可能性,即这个样本被选中的概率乘以它被分错的概率。当一个节点中所有样本均为一种时(没有被分错的样本),基尼不纯度达到最低值0。

举例来说,如果有绿色和蓝色两类数据点,各占一半(蓝色50%,绿色50%)。那么我们随机分类,有以下四种情况:
-分为蓝色,但实际上是绿色(❌),概率25%
-分为蓝色,实际上也是蓝色(✔️),概率25%
-分为绿色,实际上也是绿色(✔️),概率25%
-分为绿色,但实际上是蓝色(❌),概率25%
那么将任意一个数据点分错的概率为25%+25% = 50%。基尼不纯度为0.5。

在特征选择中,我们可以选择加入后使数据不纯度减少最多的特征。

噪音数据简单来说就是会对模型造成误导的数据。分为类别噪声( class noise 或 label noise )和 变量噪声( attribute noise )。类别噪声指的的是被错误标记的错误数据,比如两个相同的样本具有不同的标签等情况。变量噪声指的是有问题的变量,比如缺失值、异常值和无关值等。

决策树其实是一种图结构,由节点和边构成。
-根节点:只有出边没有入边。包含样本全集,表示一个对样本最初的判断。
-内部节点:一个入边多个出边。表示一个特征或是属性。每个内部节点都是一个判断条件,包含数据集中从根节点到该节点所有满足条件的数据的集合。
-叶节点:一个入边无出边。表示一个类,对应于决策结果。

决策树的生成主要分为三个步骤:
1. 节点的分裂 :当一个节点不够纯(单一分类占比不够大或者说信息熵较大)时,则选择将这一节点进行分裂。
2. 决策边界的确定 :选择正确的决策边界( Decision Boundary ),使分出的节点尽量纯,信息增益(熵减少的值)尽可能大。
3. 重复及停止生长 :重复1,2步骤,直到纯度为0或树达到最大深度。为避免过拟合,决策树算法一般需要制定树分裂的最大深度。到达这一深度后,即使熵不等于0,树也不会继续进行分裂。

下面以超级知名的鸢尾花数据集举例来说明。
这个数据集含有四个特征:花瓣的长度( petal length )、花瓣的宽度( petal width )、花萼的长度( sepal length )和花萼的宽度( sepal width )。预测目标是鸢尾花的种类 iris setosa, iris versicolor 和 iris virginica 。

建立决策树模型的目标是根据特征尽可能正确地将样本划分到三个不同的“阵营”中。

根结点的选择基于全部数据集,使用了贪婪算法:遍历所有的特征,选择可以使信息熵降到最低、基尼不纯度最低的特征。

如上图,根节点的决策边界为' petal width = 0.8cm '。那么这个决策边界是怎么决定的呢?
-遍历所有可能的决策边界(需要注意的是,所有可能的决策边界代表的是该子集中该特征所有的值,不是以固定增幅遍历一个区间内的所有值!那样很没有必要的~)
-计算新建的两个子集的基尼不纯度。
-选择可以使新的子集达到最小基尼不纯度的分割阈值。这个“最小”可以指两个子集的基尼不纯度的和或平均值。

ID3是最早提出的决策树算法。ID3算法的核心是在决策树各个节点上根据 信息增益 来选择进行划分的特征,然后递归地构建决策树。
- 缺点
(1)没有剪枝
(2)只能用于处理离散特征
(3)采用信息增益作为选择最优划分特征的标准,然而信息增益会偏向那些取值较多的特征(例如,如果存在唯一标识属性身份证号,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。)

C4.5 与ID3相似,但对ID3进行了改进:
-引入“悲观剪枝”策略进行后剪枝
-信息增益率作为划分标准
-将连续特征离散化,假设 n 个样本的连续特征 A 有 m 个取值,C4.5 将其排序并取相邻两样本值的平均数共 m-1 个划分点,分别计算以该划分点作为二元分类点时的信息增益,并选择信息增益最大的点作为该连续特征的二元离散分类点;
-可以处理缺失值

对于缺失值的处理可以分为两个子问题:
(1)在特征值缺失的情况下进行划分特征的选择?(即如何计算特征的信息增益率)
C4.5 中对于具有缺失值特征,用没有缺失的样本子集所占比重来折算;
(2)选定该划分特征,对于缺失该特征值的样本如何处理?(即到底把这个样本划分到哪个结点里)
C4.5 的做法是将样本同时划分到所有子节点,不过要调整样本的权重值,其实也就是以不同概率划分到不同节点中。

(1)剪枝策略可以再优化;
(2)C4.5 用的是多叉树,用二叉树效率更高;
(3)C4.5 只能用于分类;
(4)C4.5 使用的熵模型拥有大量耗时的对数运算,连续值还有排序运算;
(5)C4.5 在构造树的过程中,对数值属性值需要按照其大小进行排序,从中选择一个分割点,所以只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时,程序无法运行。

可以用于分类,也可以用于回归问题。CART 算法使用了基尼系数取代了信息熵模型,计算复杂度更低。

CART 包含的基本过程有 分裂,剪枝和树选择
分裂 :分裂过程是一个二叉递归划分过程,其输入和预测特征既可以是连续型的也可以是离散型的,CART 没有停止准则,会一直生长下去;
剪枝 :采用“代价复杂度”剪枝,从最大树开始,每次选择训练数据熵对整体性能贡献最小的那个分裂节点作为下一个剪枝对象,直到只剩下根节点。CART 会产生一系列嵌套的剪枝树,需要从中选出一颗最优的决策树;
树选择 :用单独的测试集评估每棵剪枝树的预测性能(也可以用交叉验证)。

(1)C4.5 为多叉树,运算速度慢,CART 为二叉树,运算速度快;
(2)C4.5 只能分类,CART 既可以分类也可以回归;
(3)CART 使用 Gini 系数作为变量的不纯度量,减少了大量的对数运算;
(4)CART 采用代理测试来估计缺失值,而 C4.5 以不同概率划分到不同节点中;
(5)CART 采用“基于代价复杂度剪枝”方法进行剪枝,而 C4.5 采用悲观剪枝方法。

(1)决策树易于理解和解释,可以可视化分析,容易提取出规则
(2)可以同时处理分类型和数值型数据
(3)可以处理缺失值
(4)运行速度比较快(使用Gini的快于使用信息熵,因为信息熵算法有log)

(1)容易发生过拟合(集成算法如随机森林可以很大程度上减少过拟合)
(2)容易忽略数据集中属性的相互关联;
(3)对于那些各类别样本数量不一致的数据,在决策树中,进行属性划分时,不同的判定准则会带来不同的属性选择倾向。

写在后面:这个专辑主要是本小白在机器学习算法学习过程中的一些总结笔记和心得,如有不对之处还请各位大神多多指正!(关于决策树的剪枝还有很多没有搞懂,之后弄明白了会再单独出一篇总结哒)

参考资料链接:
1. https://machinelearningmastery.com/what-is-information-entropy/
2. https://zhuanlan.hu.com/p/29679277
3. https://machinelearningmastery.com/information-gain-and-mutual-information/
4. https://victorzhou.com/blog/gini-impurity/
5. https://sci2s.ugr.es/noisydata
6. https://towardsdatascience.com/understanding-decision-trees-once-and-for-all-2d891b1be579
7. https://blog.csdn.net/weixin_36586536/article/details/80468426
8. https://zhuanlan.hu.com/p/85731206

❻ 简述决策树模型有哪些重要特征

(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。

决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。

分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。
决策树易于理解和实现,人们在在学习过程中不需要使用者了解很多的背景知识,这同时是它的能够直接体现数据的特点,只要通过解释后都有能力去理解决策树所表达的意义。

对于决策树,数据的准备往往是简单或者是不必要的,而且能够同时处理数据型和常规型属性,在相对短的时间内能够对大型数据源做出可行且效果良好的结果。

易于通过静态测试来对模型进行评测,可以测定模型可信度;如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。

❼ 决策树的优缺点是什么啊

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。

决策树的优缺点:
优点:

1) 可以生成可以理解的规则。

2) 计算量相对来说不是很大。

3) 可以处理连续和种类字段。

4) 决策树可以清晰的显示哪些字段比较重要

缺点:

1) 对连续性的字段比较难预测。

2) 对有时间顺序的数据,需要很多预处理的工作。

3) 当类别太多时,错误可能就会增加的比较快。

4) 一般的算法分类的时候,只是根据一个字段来分类。

❽ 决策树分析介绍 关于决策树分析的介绍

1、决策树分析法是指分析每个决策或事件(即自然状态)时,都引出两个或多个事件和不同的结果,并把这种决策或事件的分支画成图形,这种图形很像一棵树的枝干,故称决策树分析法。

2、一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图。

❾ 决策树对于常规统计方法的优缺点是什么

决策树对于常规统计方法的优缺点:
优点:
1、可以生成可以理解的规则;
2、计算量相对来说不是很大;
3、可以处理连续和种类字段;
4、决策树可以清晰的显示哪些字段比较重要。
缺点:
1、对连续性的字段比较难预测;
2、对有时间顺序的数据,需要很多预处理的工作;
3、当类别太多时,错误可能就会增加的比较快;
4、一般的算法分类的时候,只是根据一个字段来分类。
决策树法具有许多优点:条理清晰,程序严谨,定量、定性分析相结合,方法简单,易于掌握,应用性强,适用范围广等。人们逐渐认识到,在投资方案比较选择时考虑时间因素,建立时间可比原则和条件的重要性。当今的社会经济活动中,竞争日趋激烈,现代企业的经营方向面临着许多可供选择的方案,如何用最少的资源,赢得最大的利润以及最大限度地降低企业的经营风险,是企业决策者经常面对的决策问题,决策树法能简单明了地帮助企业决策层分析企业的经营风险和经营方向。必然地,随着经济的不断发展,企业需要做出决策的数量会不断地增加,而决策质量的提高取决于决策方法的科学化。企业的决策水平提高了,企业的管理水平就一定会提高。

❿ 决策树在系统功能描述中的作用和特点

决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,引致不同结果,从而选择最优结结果。作用:第一可以控制决策带来的风险;二利用概率论,得出最优结果,给予决策则最佳决策判断;第三对目标类尝试进行最佳的分割特点:条理清晰,程序严严谨,定量、定性分析相结合,方法简单,易于掌握,应用性强,适用范围广等1)可以生成可以理解的规则; 2)计算量相对来说不是很大; 3) 可以处理连续和种类字段; 4) 决策树可以清晰的显示哪些字段比较重要。

阅读全文

与决策树分析方法的特点相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276