导航:首页 > 研究方法 > 测量距离矢量路由算法的研究方法

测量距离矢量路由算法的研究方法

发布时间:2022-11-24 22:19:17

Ⅰ rip协议的距离向量算法

具体地说,距离向量算法如下所述:
首先,路由器刚启动时,对距离向量路由表( V-D 路由表)进行初始化,该初始化路由表包含所有去往与本路由器直接相连的网络的路径。由于去往直接相连的网络不经过中间路由器,所以初始化的 V-D 路由表中的各路由的距离均为 0 。图 2.1 初始 V-D 路由表的一个示例。

图 2.1 的“信宿网”域含信宿网 IP 地址。

然后,各路由器周期性地向外广播其 V-D 路由表内容。与某路由器直接相连的(位于同一物理网络)的路由器收到该路由表报文后,根据此报文对本地路由表进行刷新。刷新时,路由器逐项检查来自相邻路由器的 V-D 报文,遇到下述表目之一,须修改本地路由表(假设路由器Gi收到路由器Gj的 V-D 报文):

• Gj列出的某表目Gi路由表中没有。则Gi路由表中须增加相应表目,其“信宿”是Gj表目中的信宿,其“路径”为“Gj”(即下一路由器为Gj)。

• Gj去往某信宿的距离值比Gi去往该信宿的距离减 1 还小。

这种情况说明,Gi去往某信宿若经过Gj,距离会更短。则Gi修改本表目,其中“信宿”域不变,“距离”为Gj表目中距离加 1 ,“路径”为“Gj”。

• Gi去往某信宿的路由经过Gj,而Gj去往该信宿的路由发生变化。

这里分两种情况:

• Gj的 V-D 表不再包含去往某信宿的路由,则 GI 中相应路由须删除。

• Gj的 V-D 表中去往某信宿的路由距离发生变化,则Gi中相应表目“距离”须修改,以Gj中的“距离”加 1 取代原来的距离。

图 2.2 中对以上描述给出直观的说明,其中Gi、Gj为相邻路由器。

图 2.2

( a )路由器 G i 原路由表; (b) 路由器 G j 广播的 V-D 报文;( c )路由器 G j 刷新后的路由表

图 2.2 中,“ ”所指示为须刷新的表目,“ ”为引起刷新的表目,“ ”为刷新后的表目。

这里要特别调的是, V-D 算法的路由刷新发生在相邻路由器之间,所以 V-D 报文不一定以广播方式发送出去,一种比较优化的思想是路由器直接向相邻路由器发送 V-D 报文,不必采用广播方式。(

本文来自: 中科软件园(www.4oa.com) 详细出处参考:http://www.4oa.com/Article/html/15/95/345/2005/3641.html

Ⅱ 距离矢量路由算法的算法简介

距离矢量路由(Distance Vector Routing)算法
距离矢量路由算法是这样工作的:每个路由器维护一张路由表(即一个矢量),它以网络中的每个路由器为索引,表中列出了当前已知的路由器到每个目标路由器的最佳距离,以及所使用的线路。通过在邻居之间相互交换信息,路由器不断地更新他们的内部路由表。
举例来说,假定使用延迟作为“距离”的度量标准,并且该路由器发送一个列表,其中包含了他到每一个目标路由器的延时估计值;同时,他也从每个邻居路由器接收到一个类似的列表。假设一个路由器接收到来自邻居x的一个列表,其中x(i)表示x估计的到达路由器i所需要的时间。如果该路由器知道他到x的延时为m毫秒,那么他也知道在x(i)+m毫秒之间内经过x可以到达路由器i。一个路由器针对每个邻居都执行这样的计算,就可以发现最佳的估计值,然后在新的路由器表中使用这个最佳的估计值以及对应的输出路线。

Ⅲ 距离向量路由算法

距离向量路由算法(Bellman-Ford Routing Algorithm),也叫做最大流量算法(Ford-Fulkerson Algorithm), 相应的图片
其被距离向量协议作为一个算法,如RIP, BGP, ISO IDRP, NOVELL IPX。使用这个算法的路由器必须掌握这个距离表(它是一个一维排列-“一个向量”),它告诉在网络中每个节点的最远和最近距离。在距离表中的这个信息是根据临近接点信息的改变而时时更新的。表中数据的量和在网络中的所有的接点(除了它自己本身)是等同的。这个表中的列代表直接和它相连的邻居,行代表在网络中的所有目的地。每个数据包括传送数据包到每个在网上的目的地的路径和距离/或时间在那个路径上来传输(我们叫这个为“成本”)。这个在那个算法中的度量公式是跳跃的次数, 等待时间,流出数据包的数量,等等。 在距离向量路由算法中,相邻路由器之间周期性地相互交换各自的路由表备份。当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。

路由表的建立和更新
如上图,有三个路由器,A,B和C。路由器A的两个网络接口E0和S0 分别连接在 10.1.0.0和10.2.0.0网段上;路由器B的两个网络接口S0和S1 分别连接在 10.2.0.0和10.3.0.0网段上;路由器C的两个网络接口S0和E0 分别连接在 10.3.0.0和10.4.0.0网段上; 如上图中各路由表的前两行所示,通过路由表的网络接口到与之直接相连的网 络的网络连接,其向量距离设置为0。这即是最初的路由表。 当路由器B和A以及B和C之间相互交换路由信息后,它们会更新各自的路由表。 例如,路由器B通过网络端口S1收到路由器C的路由信息(10.3.0.0,S0,0)和(10.4.0.0,E0,0) 静态路由的具体配置
后,在自己的路由表中增加一条(10.4.0.0,S1,1)路由信息。该信息表示:通过路由器B的网络接 口S1可以访问到10.4.0.0网段,其向量距离为1,该向量距离是在路由器C的基础上加1获得的。 同样道理,路由器B还会产生一条(10.1.0.0,S0,1)路由,这条路由是通过网络端口S0从路由器A 获得的。如此反复,直到最终收敛,形成图中所示的路由表。 概括地说,距离向量算法要求每一个路由器把它的整个路由表发送给与它直接连接的其它路由 器。路由表中的每一条记录都包括目标逻辑地址、相应的网络接口和该条路由的向量距离。当一个路 由器从它的相邻处收到更新信息时,它会将更新信息与本身的路由表相比较。如果该路由器比较出一条 新路由或是找到一条比当前路由更好的路由时,它会对路由表进行更新:将从该路由器到邻居之间的 向量距离与更新信息中的向量距离相加作为新路由的向量距离。
参与运算信息
目的地址:在算法的IP实现中,这指的是主机或的IP 地址。 下一跳地址:到信宿的路由中的第一个路由器。 接口:用于到下一跳物理。 metric值:一个数,指明本路由器到信宿的开销。 定时器:路由项最后一次被修改的时间。 路由标记:区分路由为内部路由协议的路由还是外部路由协议的路由的标记。
运算
路由器间交换的最重要的信息是修改报文,参加路由维护计划的路由器发送当前存在于实体的描述路由库的路由修改报文。仅通过相邻路由器间交换路由信息是可以维护整个系统的最佳路由的,这在接下来的讨论中会逐步得到证明。 距离向量算法总是基于一个这样的事实:路由库中的路由已是目前通过报文交换而得到的最佳路由。同时,报文交换仅限于相邻的实体间,也就是说,实体共享同一个。当然,要定义路由是最佳的,就必须有衡量的办法,这就用到前面所说的“metric”。RIP简单的中,通常用可行路由所经的路由器数简单地计算metric值。在复杂的中,metric一般代表该路由传输报的延迟或其它发送开销。 令D代表从实体i到实体j的最佳路由的metric值,d(i,j)代表从i直接到j的开销,因为开销是可加的,算法中最佳路由如此获取表示: D(i,i)=0, 对所有的i D(i,j)=MIN[d(i,j)+D(k,j), 当i不等于k时 实体i从相邻路由器k收到k到j的开销的估计D,i将D(i,j)加上i到k的开销估计d(i,j),i比较从所有相邻路由器得到的数值,取得最小数,就得到了它到j的最佳路由。

Ⅳ 求距离向量算法,实现路由表的自动更新,用vb编程实现的

vb不好弄,用c吧

Ⅳ 距离矢量的介绍

距离矢量(Distance Vector)是两个路由算法中的一个。另一类是链路状态路由选择。基本上,路由协议基于距离矢量算法根据目的地的远近来决定最好的路径,当链路状态协议是可以使用更高级的方法根据链路的变化,例如带宽,延迟,可靠性和负载。距离矢量协议根据距离的远近来决定最好的路径。距离可能用跳数或一个metrics运算的组合来代表一个距离值。

Ⅵ 距离矢量路由算法

距离适量的工作方式就是每个人都通告自己本地和学到的路由,然后其他人就选距离最小的度量,也就是基于传闻的路由协议。

Ⅶ 距离矢量路由算法

第一步 c可以到 B(5,0,8,12,6,2)D(16,12,6,0,9,10)E (7,6,3,9,0,4)各自延迟6,3,5则B(5+6,0+6,8+6,12+6,6+6,2+6)D(16+3,12+3,6+3,0+3,9+3,10+3)E (7+5,6+5,3+5,9+5,0+5,4+5) 即为B(11,6,14,18,12,8) D(19,15,9,3,12,13)E(12,11,8,14,5,9) 把BDE括号的各自元素对应做一下比较 找出三个里面最小的一个 即就是C的新路由表(11,6,8,3,5,8)
第二步 看看C依次到达ABCDEF的距离 ;C到A 可以有三条路c-b-a=【c到b是5+原路由需要2+4】=11
c-d-a=3+16=19 c-e-a=5+7=12
则C到A的期望=(11+19+12)/3=14
依次算C到B期望=(6+15+12)/3 C到C的期望=0 CD =(18+3+14)/3=12 CF=(8+13+9)/3=10
最后答案为C的路由期望(14,11,12,10)

Ⅷ 距离矢量路由算法 (计算机网络题

通过B到个点的距离为:(11,6,14,18,12,8),因为B到A的距离为5,C到B的距离为6所以C到A的距离更新为5+6=11,C到B的距离没变为6,C通过B到C的距离为6+8=14,C通过B到D的距离为6+12=18,C通过B到E距离6+6=12,C通过B到F距离为6+2=8。

通过D到个点的距离为:(19,15,9,3,12,13),通过D到A的距离为3+16=19,通过D到B的距离为3+12=15,通过D到C的距离为6+3=9,通过D到D的距离为3,通过D到E的距离为3+9=12,通过D到F的距离为3+10=13。

通过E到个点的距离为:(12,11,8,14,5,9),通过E到A的距离为5+7=12,通过E到B的距离为5+6=11,通过E到C的距离为5+3=8,通过E到D的距离为5+9=14,通过E到Eden距离为5,通过E到F的距离为9。

取到达每一目的地的最小值(C除外)得到: (11, 6,0,3, 5,8)就得出了新的路由表。输出的路线输出线路是: (B,,B, -,D,E, B)。

(8)测量距离矢量路由算法的研究方法扩展阅读:

路由算法的度量标准:

路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。

通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。

路径长度:

路径长度是最常用的路由。一些路由协议允许网管给每个网络连接人工赋以代价值,这种情况下,路由长度是所经过各个链接的代价总和。

可靠性:

可靠性,在路由算法中指网络连接的可依赖性(通常以位误率描述),有些网络连接可能比其它的失效更多,网路失效后,一些网络连接可能比其它的更易或更快修复。

路由延迟:

路由延迟指分组从源通过网络到达目的所花时间。很多因素影响到延迟,包括中间的网络连接的带宽、经过的每个路由器的端口队列、所有中间网络连接的拥塞程度以及物理距离。

带宽

带宽指连接可用的流通容量。在其它所有条件都相等时,10Mbps的以太网链接比64kbps的专线更可取。虽然带宽是链接可获得的最大吞吐量,但是通过具有较大带宽的链接做路由不一定比经过较慢链接路由更好。

负载:

负载指网络资源,如路由器的繁忙程度。负载可以用很多方面计算,包括CPU使用情况和每秒处理分组数。持续地监视这些参数本身也是很耗费资源的。

通信代价:

通信代价是另一种重要的metric,尤其是有一些公司可能关心运作费用甚于关心性能。即使线路延迟可能较长,他们也宁愿通过自己的线路发送数据而不采用昂贵的公用线路。

参考资料来源:网络-路由算法

Ⅸ 距离矢量路由协议如何计算最佳路径

尊敬的用户您好:
距离矢量路由选择协议通过判断距离查找到达远程网络的最佳路径。数据包通过一个路由器,为一跳。使用跳数量最少的到达远程网络的路径被认为是最佳路径。矢量表指明远程网络的方向。RIP和IGRP都是距离矢量路由选择协议,他们发送整个路由表到直接相邻的路由器。
中国电信提供最优质的网络通讯服务,老友换新机,网龄抵现金,百兆宽带免费体验,超清电视iTV,电信活动可以直接通过营业厅查询。

Ⅹ 路由算法的类型有

静态路由算法

1.Dijkstra算法(最短路径算法)

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权回路。

Dijkstra算法执行步骤如下:

步骤一:路由器建立一张网络图,并且确定源节点和目的节点,在这个例子里我们设为V1和V2。然后路由器建立一个矩阵,称为“邻接矩阵”。在这个矩阵中,各矩阵元素表示权值。例如,[i,j]是节点Vi与Vj之间的链路权值。如果节点Vi与Vj之间没有链路直接相连,它们的权值设为“无穷大”。

步骤二:路由器为网路中的每一个节点建立一组状态记录。此记录包括三个字段:

前序字段———表示当前节点之前的节点。

长度字段———表示从源节点到当前节点的权值之和。

标号字段———表示节点的状态。每个节点都处于一个状态模式:“永久”或“暂时”。

步骤三:路由器初始化(所有节点的)状态记录集参数,将它们的长度设为“无穷大”,标号设为“暂时”。

步骤四:路由器设置一个T节点。例如,如果设V1是源T节点,路由器将V1的标号更改为“永久”。当一个标号更改为“永久”后,它将不再改变。一个T节点仅仅是一个代理而已。

步骤五:路由器更新与源T节点直接相连的所有暂时性节点的状态记录集。

步骤六:路由器在所有的暂时性节点中选择距离V1的权值最低的节点。这个节点将是新的T节点。

步骤七:如果这个节点不是V2(目的节点),路由器则返回到步骤5。

步骤八:如果节点是V2,路由器则向前回溯,将它的前序节点从状态记录集中提取出来,如此循环,直到提取到V1为止。这个节点列表便是从V1到V2的最佳路由。

2.扩散法

事先不需要任何网络信息;路由器把收到的每一个分组,向除了该分组到来的线路外的所有输出线路发送。将来会有多个分组的副本到达目的地端,最先到达的,可能是走了“最优”的路径常见的扩散法是选择性扩散算法。

3.LS算法

采用LS算法时,每个路由器必须遵循以下步骤:

步骤一:确认在物理上与之相连的路由器并获得它们的IP地址。当一个路由器开始工作后,它首先向整个网络发送一个“HELLO”分组数据包。每个接收到数据包的路由器都将返回一条消息,其中包含它自身的IP地址。

步骤二:测量相邻路由器的延时(或者其他重要的网络参数,比如平均流量)。为做到这一点,路由器向整个网络发送响应分组数据包。每个接收到数据包的路由器返回一个应答分组数据包。将路程往返时间除以2,路由器便可以计算出延时。(路程往返时间是网络当前延迟的量度,通过一个分组数据包从远程主机返回的时间来测量。)该时间包括了传输和处理两部分的时间——也就是将分组数据包发送到目的地的时间以及接收方处理分组数据包和应答的时间。

步骤三:向网络中的其他路由器广播自己的信息,同时也接收其他路由器的信息。

在这一步中,所有的路由器共享它们的知识并且将自身的信息广播给其他每一个路由器。这样,每一个路由器都能够知道网络的结构以及状态。

步骤四:使用一个合适的算法,确定网络中两个节点之间的最佳路由。

阅读全文

与测量距离矢量路由算法的研究方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276