1. 如何分析变量之间的相关关系
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。于是,着名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
2. spss中的定类变量(自变量)与定距变量(因变量)之间的关系分析。
一般分类自变量与连续因变量的关系分析 也就是用方差分析,特别是像你这个数据 分类自变量只有两类,用均值t检验也可以了。
当然凡可以使用独立样本t检验的 自然也可以采用方差分析,所以你使用方差分析也没错,
从你的结果中看两组的方差不齐,此时在方差分析的选项中有一项是当方差不齐时选用的方法。
建议你直接采用独立样本t检验就好了,结果会输出方差齐性和不齐性两种结果
3. 两变量之间分析方法选用总结
请看下面几个问题,如果你能轻松的知道问题的答案,那么可以不再阅读本文或快速浏览一下本文,如果不是很轻松就能知道答案,那么建议花一点时间读一下本文。
1.一个变量是否对另一个变量有影响?用什么方法?这个方法适合我的数据吗?
2.EDA探索性数据分析除了描述单变量的分布,还能做些什么。
3.在用机器学习做分类或回归问题时,都说数据决定精度的上界,模型只是去逼近这个上界,那么在对数据进行探索时,可以用哪些方法来做。
在看这个案例之前,有下面几个问题,请带着这些问题边看案例边思考:
1.如果你在工作中会怎么做这个分析?
2.他这样分析对吗?
3.如果不对,问题出在哪里,应该怎么修改?
4.如果回答不上来上述1-3问题,再看完这篇文章后,你是否可以回答1-3
要做分析,那么必然要清楚分析的数据是什么类型,不同类型的数据分析方法与处理方式是不同的,因此有必要清楚实际工作中常见的数据类型。
什么是数据?我认为凡是可以电子化记录的都是数据。 因此,数据范围会随着科技进步和计算机发展不断扩充变大。就目前技术水平与计算机发展,个人认为数据可以做如下分类:
对于两个连续型数值变量之间的关系探究,我们比较容易想到相关关系(回归先不探讨),日常工作中,我们常把相关关系和因果关系(常用回归分析探索)弄混,这里简单说一下:
相关变量的关系也可分为两种:
两个变量间相互影响——平行关系
一个变量变化受另一个变量的影响——依存关系
它们对应的分析方法:
相关分析是研究呈平行关系的相关变量之间的关系
回归分析是研究呈依存关系的相关变量之间的关系
回归分析和相关分析都是研究变量之间关系的方法,两种分析方法相互结合和渗透;可以总结为:用相关分析不一定要用回归分析;用回归分析,必先用相关分析探索一下变量之间的关系。
1.绘制散点图
2.计算相关系数并完成相关系数显着性检验
从散点图来看,变量A与变量B之间可能不存在线性相关关系。
可以看到使用pandas中的corr()方法求相关分析是只会给出相关系数,不会给出相关系数对应的显着性水平值的,因此如果想更严谨的话还是使用scipy.stats库比较好。
可以看到,在0.05的置信水平下,认为变量A和变量B是不存在显着相关关系的;但看P=0.099,其实P值不算大,如果在0.1的置信水平下,就可以认为变量A和变量B是存在显着相关关系的,这时是可以说相关系数为多少。
统计检验方法:
1.单因素方差分析(若分类变量下类别水平为2,此时单因素方差分析等价于独立样本T检验,两者可以统计量互相转换)
2.独立样本T检验(仅适用于分类变量下类别水平为2的情况)
因此为了篇幅考虑, 就以单因素方差分析适用案例作为本文的内容。
1.对数据是否符合正态分布和组间方差是否一致做检验(完成单因素方差分析的前提假设)
2.描述性分析;建议使用箱线图来进行
3.采用单因素方差分析判断分类变量是否对连续型变量有显着影响
4.若不同组间有差异,通过多重检验来判断哪个处理间存在差异
在日常工作中,我们经常碰到这样的问题,就是一个分类变量对一个连续型变量是否有影响,以植物生长作为一个案例,探究施肥是否会促进植株生成(植株生长以树高作为指标来衡量),采用控制变量的方法,采取清水作为对照组,实验组以某肥料四个浓度梯度,分别是A,B,C,D,施肥一段时间之后测量树高(要控制其他变量保持一致,比如施肥之前的树高要基本保持一致,生长势基本保持一致等等)。
数据中的teat1-4代表的就是A-D四个化肥浓度。
通过上述分析,可以看到不同化肥水平对应的植株生长存在显着影响,并且通过箱线图和多重检验可以看到,treat3和treat4对应的植株生长是和其他对照组显着差异,treat3和trea4对应的植株生长更好,因此可以建议采用treat3下的化肥水平,treat4的植株生长相较于treat3并没有太明显差异;甚至可以再继续采取一些化肥水平来判断是否当化肥水平超过treat3的水平后,化肥的提升不会再进一步影响植物生长。
统计检验方法:
卡方检验 (卡方检验是针对自变量和因变量都是分类数据,也就是说带有属性的数据)
通过卡方检验,可以看到P值趋近于0,小于0.05,我们可以认为男性和女性在收入上是存在显着差异的;结合列联表和做出的图,我们可以看到在高收入人群中,男性占比较大。
现在回顾第一部分的那个案例,研究的是性别和颜色偏好之间的关系,这是两个分类变量之间的关系,应该使用卡方检验而不应该使用单因素方差分析。
在本文中,没有具体交代方法论的原理,如果感兴趣可以自行查阅。现在我们可以思考下AB Test原理到底使用的方法论到底是什么? AB Test怎么选择指标更加合理,怎么设计方案更可行,得到的数据怎么分析才正确,下周会做一个关于AB Test的总结。
参考文献:
https://zhuanlan.hu.com/p/36441826 简单相关性分析(两个连续型变量)
https://www.cnblogs.com/jiaxin359/p/7995073.html 统计学当中关于变量的分类
4. 数据分析变量函数关系的方法
回归分析方法可以!所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式).回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析.此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析.通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理.具体的,你可以查阅一下统计回归方面的书籍.
5. 如何分析两个变量之间的关系应该用何种统计学方法
(1)相关分析,研究现象之间是否存在某种依存关系
(2)回归分析,确定两种或两种以上变量间相互依赖的定量关系
6. 简述变量间的相关分析有哪些方法
《变量间的相关关系》的主要内容为采用定性和定量相结合的方法研究变量之间的相关关系,主要研究线性相关关系.主要概念有“相关关系”、“散点图”、“回归直线和回归直线方程”、“相关系数”等。
变量之间除了函数关系外,还有相关关系。
例:
(1)商品销售收入与广告支出经费之间的关系
(2)粮食产量与施肥量之间的关系
(3)人体内脂肪含量与年龄之间的关系 不同点:函数关系是一种确定的关系;而 相关关系是一种非确定关系。
分类
按相关的形式分为线性相关和非线性相关
1、一种现象的一个数值和另一现象相应的数值在指教坐标系中确定为一个点,称为线性相关。
2、按影响因素的多少分为单相关和复相关
3、如果研究的是一个结果标志同某一因素标志相关,就称单相关。
4、如果分析若干因素标志对结果标志的影响,称为复相关或多元相关。
以上内容参考:网络-相关分析
7. 两个变量关系研究中常用的方法有哪些
两个变量关系研究中常用的方法有很多。
它包括方差分析、 典型相关分析、判别分析、对数线性方程、对数线性模型等。
8. 如何分析两个变量之间的关系
1、首先,大家平时理解的变量是单纬的,而不是你说的多维的。因此,对spss而言,X1、X2、X3、Y1、Y2、Y3分别是6个变量。
2、spss的相关性分析中可以分别统计这6个变量间的相关性。通过他们之间相关性的计算,你或许可以得到你所说的X与Y之间的相关性,但这种相关性只是你推测的定性描述而已,是不能定量描述的。
3、主成分分析,目的是将分析对象的多个维度简化为少数几个维度,方便分析,这样做的前提是维度很多且其中的多个维度之间有较强的相关性。而不是你想象的可以把X1、X2、X3降维成一个变量,因为只有三个维度,已经很少了,这三个维度可以做降维分析的可能性几乎没有。
4、回归分析,只有一个因变量,可以有多个自变量,最终算得因变量与自变量间的回归关系。
估计你只是自己想象了一个例子,实际中一般是不会有这样的分析案例的。
9. 常用的多元分析方法
包括3类:①多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;②判别函数分析和聚类分析,用以研究对事物的分类;③主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。
多元方差分析
是把总变异按照其来源(或实验设计)分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。例如,在分析2×2析因设计资料时,总变异可分为分属两个因素的两个组间变异、两因素间的交互作用及误差(即组内变异)等四部分,然后对组间变异和交互作用的显着性进行F检验。
多元方差分析的优点
是可以在一次研究中同时检验具有多个水平的多个因素各自对因变量的影响以及各因素间的交互作用。其应用的限制条件是,各个因素每一水平的样本必须是独立的随机样本,其重复观测的数据服从正态分布,且各总体方差相等。
多元回归分析
用以评估和分析一个因变量与多个自变量之间线性函数关系的统计方法。一个因变量y与自变量x1、x2、…xm有线性回归关系是指: 其中α、β1…βm是待估参数,ε是表示误差的随机变量。通过实验可获得x1、x2…xm的若干组数据以及对应的y值,利用这些数据和最小二乘法就能对方程中的参数作出估计,记为╋、勮…叧,它们称为偏回归系数。
多元回归分析的优点
是可以定量地描述某一现象和某些因素间的线性函数关系。将各变量的已知值代入回归方程便可求得因变量的估计值(预测值),从而可以有效地预测某种现象的发生和发展。它既可以用于连续变量,也可用于二分变量(0,1回归)。多元回归的应用有严格的限制。首先要用方差分析法检验自变量y与m个自变量之间的线性回归关系有无显着性,其次,如果y与m个自变量总的来说有线性关系,也并不意味着所有自变量都与因变量有线性关系,还需对每个自变量的偏回归系数进行t检验,以剔除在方程中不起作用的自变量。也可以用逐步回归的方法建立回归方程,逐步选取自变量,从而保证引入方程的自变量都是重要的。
协方差分析
把线性回归与方差分析结合起来检验多个修正均数间有无差别的统计方法。例如,一个实验包含两个多元自变量,一个是离散变量(具有多个水平),一个是连续变量,实验目的是分析离散变量的各个水平的优劣,此变量是方差变量;而连续变量是由于无法加以控制而进入实验的,称为协变量。在运用协方差分析时,可先求出该连续变量与因变量的线性回归函数,然后根据这个函数扣除该变量的影响,即求出该连续变量取等值情况时因变量的修正均数,最后用方差分析检验各修正均数间的差异显着性,即检验离散变量对因变量的影响。
协方差分析兼具方差分析和回归分析的优点
可以在考虑连续变量影响的条件下检验离散变量对因变量的影响,有助于排除非实验因素的干扰作用。其限制条件是,理论上要求各组资料(样本)都来自方差相同的正态总体,各组的总体直线回归系数相等且都不为0。因此应用协方差分析前应先进行方差齐性检验和回归系数的假设检验,若符合或经变换后符合上述条件,方可作协方差分析。
判别函数分析
判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。 判别分析不仅用于连续变量,而且借助于数量化理论亦可用于定性资料。它有助于客观地确定归类标准。然而,判别分析仅可用于类别已确定的情况。当类别本身未定时,预用聚类分析先分出类别,然后再进行判别分析。
聚类分析
解决分类问题的一种统计方法。若给定n个观测对象,每个观察对象有p个特征(变量),如何将它们聚成若干可定义的类?若对观测对象进行聚类,称为Q型分析;若对变量进行聚类,称为R型分析。聚类的基本原则是,使同类的内部差别较小,而类别间的差别较大。最常用的聚类方案有两种。一种是系统聚类方法。例如,要将n个对象分为k类,先将n个对象各自分成一类,共n类。然后计算两两之间的某种“距离”,找出距离最近的两个类、合并为一个新类。然后逐步重复这一过程,直到并为k类为止。另一种为逐步聚类或称动态聚类方法。当样本数很大时,先将n个样本大致分为k类,然后按照某种最优原则逐步修改,直到分类比较合理为止。 聚类分析是依据个体或变量的数量关系来分类,客观性较强,但各种聚类方法都只能在某种条件下达到局部最优,聚类的最终结果是否成立,尚需专家的鉴定。必要时可以比较几种不同的方法,选择一种比较符合专业要求的分类结果。
主成分分析
把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。例如,用p个指标观测样本,如何从这p个指标的数据出发分析样本或总体的主要性质呢?如果p个指标互不相关,则可把问题化为p个单指标来处理。但大多时候p个指标之间存在着相关。此时可运用主成分分析寻求这些指标的互不相关的线性函数,使原有的多个指标的变化能由这些线性函数的变化来解释。这些线性函数称为原有指标的主成分,或称主分量。 主成分分析有助于分辨出影响因变量的主要因素,也可应用于其他多元分析方法,例如在分辨出主成分之后再对这些主成分进行回归分析、判别分析和典型相关分析。主成分分析还可以作为因素分析的第一步,向前推进就是因素分析。其缺点是只涉及一组变量之间的相互依赖关系,若要讨论两组变量之间的相互关系则须运用典型相关。
典型相关分析
先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。 典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。 以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。
10. 一个自变量,一个因变量,因变量有多个指标,用什么分析方法分析自变量与这些维度之间的关系
可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.
因子分析的步骤:菜单栏"分析"——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.
方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量"框内,将自变量选入”固定因子“框内,点确定.
回归分析:分析——回归.选择线性或曲线模型.