A. 物理上相变理论是什么
解释物质的各种相变现象的理论。相变有时是突变(如固液相变),有时也可以是比较平稳的变化(如一定温度以上的气液相变),在二者之间的临界点会发生很多反常的现象,如比热无限增大等,称为临界现象,是相变理论研究的重要课题之一。
1982年诺贝尔物理学奖授予美国纽约州伊萨卡康奈尔大学的K.威耳逊(Kenneth G.Wilson,1936—),以表彰他对与相变有关的临界现象所作的理论贡献。
在日常生活中,也可从经典物理学中,我们知道,物质可以存在于不同的相中。我们还知道,如果改变压强或温度之类的参数,就会发生从某一相到另一相的转变。只要足够地加热,液体就会变成气体,也就是从液相转变为气相。金属达到一定的温度会熔化,永久磁体达到一定温度会失去磁性。
物理学中相变的研究经历了很长的时间。人们对很多系统进行过研究。相变的特点往往是某些物理特性的数值发生突变,也有一些情况是变化比较平稳。例如,在临界点上液态和气态之间的相变,铁、镍、钴之类的金属从铁磁性转变为顺磁性,其变化过程就比较平稳。这些平稳的相变在临界点附近往往会出现一些典型的反常性。当接近临界温度时,有些量会超过极限值。这些反常性通常称为临界现象。当接近临界点时,往往会发生非常大的涨落。
19世纪末、20世纪初就开始对某些特殊系统的临界行为,例如液气之间的相变和铁磁性与顺磁性之间的转变作过定性描述。苏联物理学家朗道在1937年就发表了关于相变的普遍理论,他把早期理论所得结果作为特例纳入他的理论中。二极模型的热力学特性是经常讨论的课题,1968年获诺贝尔化学奖的昂塞格尔(L.Onsager)对此得出了精确解。这为临界现象的进一步认识奠定了基础。朗道理论和以前所有的理论在预言临界点附近的行为时几乎都得到完全一致的结论。然而,当人们对许多系统作了广泛而详细的研究之后,惊奇地发现临界行为和朗道理论的预言相差甚远。用各种不同的理论模型进行数值计算,也显示对朗道理论有很大偏离。美国康奈尔大学的费塞尔(M.E.Fisher)对实验数据的分析,起了指导作用。康奈尔大学另一位物理学家维丹(Widom)和苏联物理学家巴达辛斯基(A.Z.Patashinskii)、波克罗夫斯基(V.L.Pokrovski)以及芝加哥大学的卡达诺夫(L.P.Kadanoff),都在理论上作了重要贡献。卡达诺夫提出了非常重要的新思想,对以后的发展有很大的影响。然而他的理论无法对临界行为进行计算。
B. 化学中的相变是什么意思
研究各种固体组织结构的形成及其稳定性的一门学科.当一组原子或分子的集聚体具有均一的原子或电子组态时,这一集聚体称为相(phase);它具有一系列热力学性质特征,如体积、压力、温度及能量.两相之间具有明显的界限、相界两侧的微观结构、成分(或两者兼而有之)发生不连续变化.当一种固相由于热力学条件(如温度、压力、作用于该固体的电场、磁场等)变化成为不稳定的时候,如果没有对相变的障碍,将会通过相结构(原子或电子组态)的变化,转变成更为稳定或平衡的状态,此即发生“固态相变”.在金属学中,相变常指一种组织在温度或压力变化时,转变为另一种或多种组织的过程,如多晶型转变、珠光体相变等.
人类对材料的使用决定于能够得到和利用某些特定结构的微观组织和分布,借以获得在使用条件下(如应力分布、磁场等)所需要的此种材料的加工或使用性能.这种组织结构包括电子组态、原子键合性质、原子或分子组态、构成的晶体结构及其中的晶体缺陷、晶体的形状和分布(晶粒和金相组织),也包括它们当中的组织缺陷.因此研究固态相变对控制金属、合金以及某些非金属材料性能有极为重要的理论和实践意义.
固态相变的研究包括下列几个方面,并可据以将相变作出不同的分类.
相变晶体学──相结构及结构关系 相变晶体学研究相变前后相的结构,这些结构的相互关系,相界面两侧晶体原子排列的匹配的程度,生成相在原来的母相中析出的晶体平面(即惯析面habit plane),以及母相与新相之间的晶体学取向关系(orientation relationship).如果相变时具有热效应,吸热相将具有较高的内能,键合有所减弱,从而影响一个原子的最近邻和次近邻原子的组态.伯格(M. J.Buerger)根据结构变化涉及的是最近邻、次近邻或更远的原子,以及重组时是否需要原子重新组合,将相变进行分类,并指出需要原子位置的重组和键的破坏的相变,如低碳钢从奥氏体中形成铁素体,将需要较高的激活能,相变的速度较小;而当相变时只发生相对位移、转动或键的畸变时,如奥氏体淬火时转变为马氏体,相变将具有较高速度.
研究相变前后的晶体学取向关系(如相互平行的晶面和晶向)对于相变机理的了解是必要的.这种取向关系和新相析出的形态及其在母相上的析出平面(惯析面),对相变后合金的性能有密切关系.
相变的金相学 宏观材料相变产物的性质,特别是对组织敏感的性质如强度、断裂韧度、延性、超塑性等,除了决定于晶体本身结构及所包含的晶体缺陷(继承母相的或相变时产生的)以及它们所具有的性质外,还决定于相变后组成相的晶粒之间的相互关系,它们的形状大小及其在母相中的分布等因素,如钢中珠光体的粗细(即珠光体中渗碳体和铁素体的厚度)将影响钢的性能.相变的这个研究领域,称为相变的金相学.相变后产物的金相组织,即新相的分布与母相的残留量及分布,由母相及新相的晶体结构,相变的动力学(特别是相变的温度、新相形成的速度),以及合金的成分等因素所控制.研究相变的这些方面及其相互关系是控制合金材料组织和性质的重要手段.金相组织及其性质还受母相的成分不均匀性,溶解或偏聚的杂质,析出的夹杂物及其分布,存在的晶体缺陷(如晶粒间界、位错、层错)以及加热、冷却和形变产生的缺陷等的影响.
相变热力学 相变的发生是由于某一个固相在给定的热力学条件下成为不稳定的物系,该固相就会具有通过结构或成分的变化使物系的自由能下降的趋势.从原子或分子的组态变化来考虑,相变可以有三个基本方式:①结构变化,如熔化、凝固、多晶型转变、马氏体相变、块型转变(massive transformation);②成分的变化,如具有溶解度间隔(solubility gap)的物系中一个相分为两种与原来结构相同而成分不同的相;③有序程度的变化,如黄铜的有序化.大多数转变则兼具两种或三种过程.这些变化都伴有相应的自由能变化(见合金热力学).
在相变时,物系的自由能保持连续变化,但其他热力学函数如体积、焓、熵等发生不连续变化.根据 Gibbs自由能(即自由焓G)高阶导数发生不连续的情况(阶数),可以将相变相应地分级:相变时体积及熵变化间断的相变为一级相变,如多晶型相变,它们伴有结构变化和相变潜热.焓、热膨胀与压缩系数发生突变的相变为二级相变,如某些有序无序转变.实际上除了超导转变外,一般相变并不严格符合这些定义,而是介乎两者之间.许多铁磁体的居里点则属于二级相变点.
相变热力学主要研究相变发生的条件,其驱动力来源与大小,相变的终点和相变产物的相对稳定性.由于相变潜热比点阵能小得多,相变点及平衡线的理论计算是复杂而困难的.
相变动力学 研究相变的发生和发展,相变速度和停止过程,以及影响它们的因素.许多相变在临界温度(即两相自由能相等的温度)以下用形核及长大的方式进行.在母相中经过一定孕育时间,产生新相的核,这些核常常以一定速率增多,在一定温度下,每个核以一定速率长大,一直到受阻或自由能条件变为不利.由于新相形核时单位体积的自由能减少,而新相表面的表面自由能增加,矛盾统一的结果是新相的晶核必须具有或超过一定临界尺寸(rc)才是稳定的,称为临界晶核.它们继续长大才能导致体系的自由能下降.
临界尺寸的晶核是由原子热运动引起新相组态的起伏所产生,如N表示单位体积母相中的新相形核地点的总数,nc为具有临界尺寸的晶核数,ΔGc为形成临界晶核单位体积的自由能,k是玻耳兹曼(Boltzmann)常数,T 是转变温度,则
nc=N exp(-ΔGc/kT)
临界尺寸的晶核出现后,有的长大,有的缩小,为了获得能够长大的晶核,邻近原子必须向临界晶核表面上跃迁,使其尺寸超过rc.如这种跃迁的激活能为Ea,则形核率R为
R=A exp【(-ΔGc+Ea)/kT】
温度、压力、成分、形变等对形核率都有重要影响.上述形核方式假定形核地点均匀分布于母相之中,称为“均匀形核”.如果母相存在晶体缺陷及界面(包括晶粒间界及孪晶界)、成分偏析、第二相及各种夹杂物,那末它们有可能提供有利的形核条件,使晶核在某些地点优先形成,称为“非均匀形核”.
新相晶体的长大通过临界晶核的增大进行,原子从母相通过界面转移到新相.这种转移可以通过扩散进行,也可用非扩散位移──改变近邻原子位置来完成,或兼而有之.晶核的长大可以由体扩散、界面扩散或沿位错扩散控制,这时长大率,为球状新相的平均尺寸:体扩散为主要原子输运方式时, 垝∝t1/3;为表面或界面扩散所控制时,∝t1/2;为位错扩散控制时,则∝t1/5.如长大由相界面的运动控制时,长大速度VF与长大时间t成线性关系, VF∝t.但此种线性关系并不一定表征长大系界面运动控制,如枝晶长大或共析体的长大与时间也具有线性关系.
新相的形状决定于长大速率的方向性,它受晶面的界面张力、表面或界面杂质吸附、温度和浓度梯度等影响.如生铁中石墨沿基面方向长大,成为片状石墨;如沿垂直于基面方向长大,则成为扇形石墨的复合体,即球状石墨.
新相的生成量则决定于新相的形核数和长大终止的尺寸.在某些情况下,母相可以完全转变为新相(如珠光体相变,见共析分解),或转变一部分(如脱溶分解);也可以由于新相被晶界、新相周围的母相中产生的应力、范性形变、或成分的变化所限制,终止长大,使新相的增加在达到化学平衡以前停止.
相变的进程受许多因素,如温度、静液压、应力和应变、晶体缺陷、形变速度,以及电场、磁场、重力场等影响.它们通过不同机理影响相变进程,如温度影响两相自由能的变化,扩散速度,获得相变激活能的几率等;晶体缺陷则影响新相生核的地点、扩散通道和扩散机理以及新相长大的助力和阻力等等.
没有成分变化的相变,如铁镍合金的马氏体相变,可以在导致相变的外界条件(如温度)反转时发生逆转,但由于来程相变时能量的消耗或晶体中相变阻力的增加(如晶体缺陷增加),可以使逆转出现滞后现象.
相变机理学 研究相变的方式和分类.由于机理不同,相变可以有许多方式:
扩散型相变 相变以形核和扩散长大方式进行,相变中发生基体原子扩散和成分的变化.这种相变可以有各种形式:
①从过饱和固溶体中析出新相即脱溶.析出时,在新的热力学稳定相生成前可以经过各种介稳状态,如铝铜合金中析出稳定的 CuAl2相以前形成原子异相聚集体,Guinier-Preston区.这种相变称为“连续脱溶”(con-tinuous precipitation).
②过饱和相分解时,可以从母相内局部开始,向前扩展.其中一相是经过脱溶及再结晶的母相,另一相为新相,称为“不连续脱溶”(discontinuous precipitation).
③如母相具有二元(或三元)共析成分,则在共析分解温度以下转变为两个(或三个以上)新相,一般具有两相(或三相)相间的共析组织,在钢、铜铝合金中,共析组织经蚀刻后在显微镜下观察具有珠母光泽、称为珠光体,这种相变称为“珠光体相变”.这些分解产物在升温时,通过固溶反应在相变点以上转变成为高温相.
无扩散型相变 又称马氏体型相变.即相变过程中不发生扩散,只通过材料的一定体积的切变,以很高的速度发生晶体结构变化,各原子或分子只有相对位移.这种相变大多数在降温时发生,但也有在恒温下进行的.它不仅在某些纯金属及许多合金如钢中及无机化合物中发生,也在有机化合物中出现,如聚乙烯在应力作用下的斜方晶系向单斜晶系转变(见马氏体相变).
贝氏体型相变 这是介乎上述两者之间的相变.在这种相变过程中,基体以类似无扩散相变的方式进行,但一部分组元如钢中奥氏体内的碳,发生扩散,从新相的基体脱溶,在新相内析出,或扩散到奥氏体中,或从基体的母相中以形核长大方式析出第二相.由于局部扩散,相变可以在恒温下发生.在温度较低区域,基体的原子运动更接近马氏体(下贝氏体),在较高温度时原子的运动尚有待进一步研究(见贝氏体相变).
“块型”转变 在某些纯金属或合金中,如纯铁和β- 黄铜,母相原子以扩散方式发生结构变化转入新相,而不发生成分变化,新相长大速度很高,并可以越过母相晶粒界.这种热激活多晶型性相变的产物成块状,最早由格雷宁格(A.B.Greninger)在研究铜铝合金β→α相变时发现,后来由马萨尔斯基(T.B.Massalski)等进行了较细致的研究,所以称为Grininger-Massalski或G-M相变.在英文文献中称为”块型”转变(massive transfor-mation).这种相变的机理还有待澄清.
有序无序转变 这种转变一般有三种类型:①位置无序化,固体中原子排列可以完全有序、完全无序或两者之间.在有序态时,一个组元的原子均占有晶胞中一定位置,而无序态时则处于任意位置.②取向无序化.③电子或核自旋无序化,如磁转变(铁磁-顺磁)等(见有序无序转变). 晶体中的缺陷亦可发生位置的有序化,如空位的有序排列.形变后晶体在受热回复时,位错重组为规则排列,导致晶粒中产生晶畦,这种晶畦化现象(polygoniza-tion)也可以认为属于这个类型.
spinodal分解 在二元系合金及玻璃体中,当自由能对成分的二次导数,自由能对成分曲线向下弯时,任何成分起伏将导致自由能下降,这时将自发地发生上坡扩散,形成成分不同的尺寸为几十至几百埃的区域,区域大小随分解温度下降而缩小.吉布斯(J. W.Gibbs)称为亚稳限(the limit of metastability)后来被描述为spinodal,即有两弧相交的尖点的曲线,因而这种转变被称为spinodal分解.有各种译名,也可以称为亚稳分域.
玻璃态及介晶态固体的转变──晶化 (crystalli- zation of amorphous state) 液体过冷形成玻璃体,即非晶态固体,通过其他途径如辐照、气相沉积等也可以形成非晶态.非晶态固体在一定温度下会转变为热力学更为稳定的晶体或微晶.非晶态及微晶的金属和非金属材料具有许多特殊性能,这些性能及晶化都有待进一步研究(见非晶态金属).
某些物质,主要是具有高度不对称形状的长链有机化合物,在完全液化前经过一系列介晶态(mesomorphic或 paracrystalline phase).它们具有晶体的X射线衍射象和液体的不能承受剪切力的流变行为,因此,也称为液晶.在介晶态时,长链分子可以平行排列,但链端与链端的键合削弱,使晶体具有层状性质,称为层列相(smectic phase).在更高温度、层列消失,但保留了链的取向排列,成为向排列(nematic phase),温度继续升高,在一定温度完全液化.有些化合物,可以经过几个层列间相变.
相变机理示意图 对于合金中各类相变,克里斯琴(Christian)曾根据它们的原子运动的异同,图示了它们的关系,附图(见上页)是经过略有增改的示意图.它适用于原子或分子组态发生变化的相变,但不包括电子组态变化的相变.
相变预效应及软模 在扩散相变中,相变发生以前,固溶体中空位或原子聚集、或与位错及其他晶体缺陷结合形成络合体或过渡相.软模(soft mode)是指固体点阵的振动模,由于振动能量量子化的结果,在温度邻近相变点时,其频率平方接近于零.在有些马氏体型相变前、观察到点阵的失稳,即声子模的软化现象.软模也可以在其他相变中观察到:如磁转变(如KCoF3),铁电转变(如SrTiO3),超导转变(如Nb3Sn),金属态-绝缘体相变(如MoO2).这些效应可以用弹性常数、电阻、弥散 X射线衍射、中子散射、喇曼谱、正电子湮没等进行研究,其结果有助于对相变机理的了解.
相变的应用 相变伴随有物理(包括磁学、电学及介电性质)、力学、化学性质,甚至外形(如形状记忆合金)的变化.可通过这些变化进行相变的研究;而利用相变可以控制材料的性能,并可以利用相变时材料性质的变化制成器件.
C. 量子相变是什么
量子相变 是指发生在绝对零度的相变现象。与热相变不同的是,热相变的发生是由于热扰动所造成,而量子相变是经由量子涨落所造成。量子相变的发生代表着在量子多体系统中基态的性质随着外部参数发生突然的骤变。传统上研究量子相变的方法和研究热相变的方法类似,主要根据朗道的对称破缺理论和序参量来决定量子系统的相图。近年来由于量子资讯学的蓬勃发展,有一些物理学家利用量子资讯学来研究量子相变,例如纠缠熵和保真度。
D. 固态相变的分类
固态相变研究各种固体组织结构的形成及其稳定性。
当一组原子或分子的集聚体具有均一的原子或电子组态时,这一集聚体称为相(phase);它具有一系列热力学性质特征,如体积、压力、温度及能量。
相变就是两相之间具有明显的界限、相界两侧的微观结构、成分(或两者兼而有之)发生不连续变化。
根据不同的分类方法有不同的分类,以金属固态相变为例:
按相变的平衡状态
可以分为平衡相变和非平衡相变;
按热力学分类
可分为一级相变和二级相变;
按原子的迁移特征分类
可分为扩散型相变和无扩散型相变。
E. 有哪些可能的方法可以鉴别材料中发生了相变,请举出尽可能多的方法
中药常用的鉴定方法有:来源(原植物、原动物和矿物)鉴定、性状鉴定、显微鉴定及理化鉴定等方法。 1、来源鉴定是应用植(动)物的分类学知识,对中药的来源进行鉴定,确定其正确的学名;应用矿物学的基本知识,确定矿物中药的来源。以保证在应用中品种准确无误。 2、性状鉴定是用眼观、手摸、鼻闻、口尝、水试、火试等十分简便的鉴定方法,来鉴别药材的外观性状。这些方法在我国医药学宝库中积累了丰富的传统鉴别经验,它具有简单、易行、迅速的特点。性状鉴定和来源鉴定一样,除仔细观察样品外,有时亦需核对标本和文献。对一些地区性强或新增的品种,鉴定时常缺乏有关资料和标准样品,可寄送少许样品到生产该药材的省、自治区中药材部门或药品检验所了解情况或请协助鉴定。必要时可到产地调查,采集实物标本,了解生产、加工、销售和使用等情况,以便进行鉴定研究。直观的性状鉴定是很重要的,也是中药鉴定工作者必备的基本功之一。 3、显微鉴定是利用显微镜来观察药材的组织构造、细胞形状以及内含物的特征,用以鉴定药材的真伪和纯度,显微鉴定常配合来源、性状及理化鉴定等方法解决实际问题。当药材的外形不易鉴定,或药材破碎或呈粉末状时,此法较为常用。《中华人民共和国药典》已将显微鉴定应用到很多中药和中成药制剂的鉴别中。进行显微鉴定,鉴定者必须具有植物(动物)解剖的基本知识,掌握制片的基本技术。显微鉴定的方法,因材料和要求的不同而不同。 4、理化鉴定是利用某些物理的、化学的或仪器分析方法,鉴定中药的真实性、纯度和品质优劣程度,统称为理化鉴定。通过理化鉴定分析中药中所含的主要化学成分或有效成分的有无和含量的多少,以及有害物质的有无等。
F. 什么是相变什么37度固液就没差别《科学世界》2007.7期关于相变的没看懂!
相变材料的蓄热机理与特点
相变材料具有在一定温度范围内改变其物理状态的能力。以固-液相变为例,在加热到熔化温度时,就产生从固态到液态的相变,熔化的过程中,相变材料吸收并储存大量的潜热;当相变材料冷却时,储存的热量在一定的温度范围内要散发到环境中去,进行从液态到固态的逆相变。在这两种相变过程中,所储存或释放的能量称为相变潜热。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变,形成一个宽的温度平台,虽然温度不变,但吸收或释放的潜热却相当大。
相变材料的分类相变材料主要包括无机PCM、有机PCM和复合PCM三类。其中,无机类PCM主要有结晶水合盐类、熔融盐类、金属或合金类等;有机类PCM主要包括石蜡、醋酸和其他有机物;近年来,复合相变储热材料应运而生,它既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。因此,研制复合相变储热材料已成为储热材料领域的热点研究课题。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。
相变储能建筑材料
相变储能建筑材料兼备普通建材和相变材料两者的优点,能够吸收和释放适量的热能;能够和其他传统建筑材料同时使用;不需要特殊的知识和技能来安装使用蓄热建筑材料;能够用标准生产设备生产;在经济效益上具有竞争性。
相变储能建筑材料应用于建材的研究始于1982年,由美国能源部太阳能公司发起。20世纪90年代以PCM处理建筑材料(如石膏板、墙板与混凝土构件等)的技术发展起来了。随后,PCM在混凝土试块、石膏墙板等建筑材料中的研究和应用一直方兴未艾。1999年,国外又研制成功一种新型建筑材料-固液共晶相变材料,在墙板或轻型混凝土预制板中浇注这种相变材料,可以保持室内温度适宜。另欧美有多家公司利用PCM生产销售室外通讯接线设备和电力变压设备的专用小屋,可在冬夏天均保持在适宜的工作温度。此外,含有PCM的沥青地面或水泥路面,可以防止道路、桥梁、飞机跑道等在冬季深夜结冰。
相变材料与建筑材料的复合工艺
PCM与建材基体的结合工艺,目前主要有以下几种方法:(1)将PCM密封在合适的容器内。(2)将PCM密封后置入建筑材料中。(3)通过浸泡将PCM渗入多孔的建材基体(如石膏墙板、水泥混凝土试块等)。(4)将PCM直接与建筑材料混合。(5)将有机PCM乳化后添加到建筑材料中。国内建筑节能知名企业——北京振利高新技术公司成功地将不同标号的石蜡乳化,然后按一定比例与相变特种胶粉、水、聚苯颗粒轻骨料混合,配制成兼具蓄热和保温的可用于建筑墙体内外层的相变蓄热浆料。试验楼的测试工作正在进行中。同时在开发的还有相变砂浆、相变腻子等产品。
相变材料在建筑围护结构中的应用
现代建筑向高层发展,要求所用围护结构为轻质材料。但普通轻质材料热容较小,导致室内温度波动较大。这不仅造成室内热环境不舒适,而且还增加空调负荷,导致建筑能耗上升。目前,采用的相变材料的潜热达到170J/g甚至更高,而普通建材在温度变化1℃时储存同等热量将需要190倍相变材料的质量。因此,复合相变建材具有普通建材无法比拟的热容,对于房间内的气温稳定及空调系统工况的平稳是非常有利的。
相变材料的选择
用于建筑围护结构的相变建筑材料的研制,选择合适的相变材料至关重要,应具有以下几个特点:(1)熔化潜热高,使其在相变中能贮藏或放出较多的热量;(2)相变过程可逆性好、膨胀收缩性小、过冷或过热现象少;(3)有合适的相变温度,能满足需要控制的特定温度;(4)导热系数大,密度大,比热容大;(5)相变材料无毒,无腐蚀性,成本低,制造方便。
在实际研制过程中,要找到满足这些理想条件的相变材料非常困难。因此,人们往往先考虑有合适的相变温度和有较大相变潜热的相变材料,而后再考虑各种影响研究和应用的综合性因素。
就目前来说,现存的问题主要在相变储能建筑材料耐久性以及经济性方面。耐久性主要体现在三个方面:相变材料在循环过程中热物理性质的退化问题;相变材料易从基体的泄漏问题;相变材料对基体材料的作用问题。经济性主要体现在:如果要最大化解决上述问题,将导致单位热能储存费用的上升,必将失去与其他储热法或普通建材竞争的优势。相变储能建筑材料经过20多年的发展,其智能化功能性的特点勿容置疑。随着人们对建筑节能的日益重视,环境保护意识的逐步增强,相变储能建筑材料必将在今后的建材领域大有用武之地,也会逐渐被人们所认知,具有非常广阔的应用前景。
G. 岩相变化研究
不同的岩相是在不同的特定沉积条件下形成的一些有特色的岩石。由于不同岩相具有不同的颜色、成分、结构和沉积构造,其波谱特征和抗风化能力各异,在遥感图像中便构成不同的影像特征。陆地卫星图像安顺幅,从影像特征可以看到西部三叠系为层理较明显的碳酸盐岩,向东很快变为层理不太明显、色调也比较浅的碎屑岩系,中间为一条南北向深灰色的岩石堤礁,是相变界线。这是我国西南地区三叠系下统飞仙关组地层相变的遥感实例。此外,各种成因类型的松散沉积物在岩相变化的解译中也可起到较好的解译效果。
综上所述,利用影像地层分析来研究地层的划分,追索地层横向变化,进行地层对比,是其他研究方法不能取代的。但也应该看到,影像地层作为地层分析的一种手段,也和地震地层学方法、磁性地层学方法、化学地层学方法一样,有一定的局限性。从目前来看,遥感影像分辨率是有限的 ( 影像与实地之间、地层划分点精度) ,不可能像地面实测剖面分辨率那样精细。由于解译经验、水平的限制,不同解译人员对地层影像的解译也存在差异和多解性。随着遥感传感器的改进,计算机处理技术和影像分辨率的提高,遥感影像地层分析的分辨率和准确率必将不断提高,影像地层分析的应用领域也会不断拓宽,并在实践中将不断发展和日臻完善。
复习思考题
1. 简要说明不同矿物的反射光谱及发射光谱特征。
2. 简要说明三大岩类的反射光谱特征。
3. 影响岩石光谱特征的主要因素有哪些?
4. 简述遥感岩性影像特征的目视解译方法。
5. 分别叙述沉积岩、岩浆岩及变质岩影像的主要判读标志。
6. 结合实例说明主成分分析在岩矿信息提取中的作用。
7. 简述遥感影像地层分析主要内容及影像地层单位的划分。
H. 如何利用比热研究有序,无序转变
某些替代式固溶体,当温度甚低时,不同种类的原子在点阵位置上呈规则的周期性排列,称有序相,而在某一温度以上,这种规律性就完全不存在了,称无序相。固溶体在这一温度(称为相变温度或居里点)发生的这种排列的规律性的产生或丧失,同时伴有结构的对称性的变化,被称为有序—无序相变。例如,对于具有相同原子数的CuZn合金,在460℃以上为体心立方的无序结构,即两种原子占据任一阵点的几率相同;当温度降到460℃时,则开始有较多的Zn原子占据了体心的位置,称部分有序;而当温度甚低时,则所有的Zn原子全部占据了体心位置,成为简单立方的有序结构了。这种有序结构又称为无序结构的超结构。某些三元合金也有类似的情形。
原子在点阵位置上的分布情况常用序参量表示,它表示出在任意距离的两个位置上原子分布的相关性。当此二位置处在有限距离时的序参量称为短程序。当此二位置间的距离无限大时,则称为长程序。如对CuZn合金,长程序与占据了晶胞中心的Zn原子的百分数成正比,最近邻短程序与最近邻的Zn-Cu原子对的百分数成正比。序参量是温度的函数,在一般情况下,在完全有序时,它趋于1;在完全无序时,它为零。附图表示及随温度变化的两种情况。由图可知,在相变点,长程序可以跳跃地或连续地变为零,它们分别对应于一级相变及二级相变(见固体中的相变)。而在相变点以上,却仍然存在有一定的短程序。这种在相变点以上存在的具有一定的短程序的小区域,是某些固溶体在相变点以下发生的有序化过程的核心,且当这样的两个有序区域长大而相接触时,则有可能形成反相畴(见面缺陷)。
有序-无序相变
X 射线、中子和电子衍射和漫散射是研究有序-无序相变的最通常而最有效的方法。此外,相变可导致物理性质如比热容、电阻率、弹性常数、磁性和范性等的变化,这些性质的测量以及显微观察等都可用于研究这个相变过程。
有序—无序相变是合作现象中较简单的一种,对这种相变进行了各种方法和各种近似程度的计算。这些研究又被其他类型的如填隙式固溶体的有序—无序相变、有序—无序型的铁电相变以及铁磁相变等理论所借鉴。现在,有序—无序相变的内容已推广包括了位置的、分子取向的和电子或核自旋的有序—无序相变等三种情形。并且,由于临界现象的研究吸引了人们的很大兴趣,有序—无序相变这一长期被研究着的课题仍然受到注意。
I. 马氏体相变的研究
几十年来马氏体相变的研究,从表象逐步深入到相变的本质,但是对一些根本性问题还认识得不很完整。马氏体相变时母相和新相成分相同,因此可以把合金作为单元系进行相变的热力学研究。用热力学处理来计算Ms 温度以及验证相变过程的工作还处于发动阶段。虽然从实验上可以得到相变的惯习(析)面、取向关系以及应变量,但相变过程中原子迁动的过程尚未了解。晶体学的表象理论,应用数学(矩阵)处理,预测马氏体相变过程的形状改变是均匀点阵形变、不均匀形变和刚性转动的结果;这只在Au-Cd、Fe3Pt及高镍钢和高铝钢中得到验证,对大多数合金还不完全与实验结果相符合。在某些马氏体相变前观察到物理性质异变(如弹性模量下降)揭示了相变前母相点阵振动(声学模)的软化,预相变和软模已为人们所注意。马氏体相变研究历史较久,工业上应用较广,也开始对金属和非金属的马氏体相变进行统一的研究。
J. 固体物理学的相变
在固体物理学中相变占有重要地位。它涉及熔化、凝聚、凝固、晶体生长、蒸发、相平衡、相变动力学、临界现象等,19世纪J.吉布斯研究了相平衡的热力学。后来P.厄任费斯脱在1933年对各种相变作了分类。一级相变,其特征是有明显的体积变化和潜热,有“过冷”或“过热”的亚稳态。在相变点两相共存。固体-液体相变是一级相变。另一类是二级相变,其特征是没有体积变化和潜热,不会有过冷或过热的状态。在相变点两相不共存,但某些物性却有跃变。铁磁体的顺磁-铁磁相变,超导体的超导-正常相变都是二级相变。朗道在1937年提出二级相变的唯象理论,用序参量描写相变点附近的有序态。这个理论用于超导电性、液氦超流性、铁电体、液晶的相变都取得成功。60年代以后,人们对发生相变点的临界现象做了大量研究,总结出标度律和普适性。L.卡达诺夫在1966年指出在临界点粒子之间的关联效应起重要作用。K.威耳孙在1971年采用量子场论中重正化群方法,论证了临界现象的标度律和普适性,并计算了临界指数,取得成功。 铁电体和反铁电体中位移型的结构相变,同居里点附近某个点阵波模式的频率反常变小或趋于零的现象,即所谓软模效应,有密切的关系。某些固体其特征物性沿一定方向周期变化,此周期与点阵的周期可能通约或不可通约,分别形成有公度相和无公度相。此外,关于混沌相的由来和性质,二维体系相变的新特点等都是人们很重视的课题(见固体中的相变)。