1. 常见的收集数据的方法有哪些
收集数据的方法主要有普查和抽样调查两种方式,当对要求数据非常非常准确的时候可以采取普查的方式,抽样调查是在被调查的数据中随机地抽取一些数据组成一个样本,通过对样本中数据的分析去估计全体数据的情况。常见的方法还有问卷调查、查阅资料、实地考查、试验等。
常见的收集数据的方法,主要看你做哪方面的数据分析报告了,根据你分析目的选择数据收集方式,主要有普查和抽样调查两种方式,当对要求数据非常非常准确的时候可以采取普查的方式,抽样调查是在被调查的数据中随机地抽取一些数据组成一个样本,通过对样本中数据的分析去估计全体数据的情况。常见的方法还有问卷调查、查阅资料、实地考查、试验等。
还有观察法
观察法是通过开会、深入现场、参加生产和经营、实地采样、进行现场观察并准确记录(包括测绘、录音、录相、拍照、笔录等)调研情况。主要包括两个方面:一是对人的行为的观察,二是对客观事物的观察。观察法应用很广泛,常和询问法、搜集实物结合使用,以提高所收集信息的可靠性。
根据观察的场景,可以将观察区分为实验室观察和实地观察;根据观察者的参与程序,可分为参与观察和非参与观察;根据观察的准备程度,可分为结构性观察和非结构性观察。不同类型的观察,适用于不同情境,观察者也扮演着不同角色。
2. 数据分析的方法有哪些
数据分析是指通过统计分析方法对收集到的数据进行分析,将数据加以汇总、理解并消化,通过数据分析可以帮助人们作出判断,根据分析结果采取恰当的对策,常用的数据分析方法如下:
将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有列表法和作图法,所谓列表法,就是将数据按一定规律用列表方式表达出来,是记录和处理数据最常用的一种方法;
表格设计应清楚表明对应关系,简洁明了,有利于发现要相关量之间的关系,并且在标题栏中还要注明各个量的名称、符号、数量级和单位等;
而作图法则能够醒目地表达各个物理量间的变化关系,从图线上可以简便求出实验需要的某些结果,一些复杂的函数关系也可以通过一定的变化用图形来表现。
想要了解更多关于数据分析的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。
3. 在我们生活中,都可以用哪些方法收集和整理数据呢
1、抽样调查法。
抽样调查法是指从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法。其中,被研究对象的全部单位称为“总体”;
从总体中抽取出来,实际进行调查研究的那部分对象所构成的群体称为“样本”。在抽样调查中,样本数的确定是一个关键问题。
2、折线图
折线图和带数据标记的折线图 折线图用于显示随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。在有很多数据点并且它们的显示顺序很重要时,折线图尤其有用。
3、归纳法
归纳推理是一种由个别到一般的推理。由一定程度的关于个别事物的观点过渡到范围较大的观点,由特殊具体的事例推导出一般原理、原则的解释方法。
自然界和社会中的一般,都存在于个别、特殊之中,并通过个别而存在。一般都存在于具体的对象和现象之中,因此,只有通过认识个别,才能认识一般。
4、演绎法
演绎推理是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。
运用此法研究问题,首先要正确掌握作为指导思想或依据的一般原理、原则;其次要全面了解所要研究的课题、问题的实际情况和特殊性;然后才能推导出一般原理用于特定事物的结论。
(3)数据的整理收集与分析的方法扩展阅读:
从商业角度来看,从前未知的统计分析模式或趋势的发现为企业提供了非常有价值的洞察力。数据整理技术能够为企业对未来的发展具有一定的预见性。数据整理技术可以分成3类:群集、分类和预测。
群集技术就是在无序的方式下集中信息。群集的一个例子就是对未知特点的群体商业客户的分析,对这一例子输入相关信息就可以很好的定义客户的特点。
分类技术就是指定object,以确定集合。集合通常用上面的技术来形成,可以举一个例子就是把客户按照他们的收入水平分成特定的销售群体。
预测技术就是对某些特定的对象和目录输入已知值,并且把这些值应用到另一个类似集合中以确定期望值或结果。比如,一组戴头盔和肩章的人是足球队的,那么我们也认为另一组带头盔和肩章的人也是足球队的。
4. 数据分析中数据收集的方法有哪些
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
5. 数据收集有哪些方法
数据收集的四种常见的方式包括问卷调查、查阅资料、实地考查、试验,几种方法各有各的又是和缺点,具体分析如下。
四是实验。实验设计数据是四种方法中最耗时间的一种,因为它是通过各种各样的实验来得到一个统一的方向,也就是说,在这个过程中,可能有无数次的失败。但是实验得到的数据是最准确的,而且可能会推动某个行业的进步。所以,实验收集数据的优点是数据的准确性很高,而他的缺点就是未知性很大,不管实验的周期还是实验的结果都是不确定性的。
随着科技的发展和大数据时代的到来,收集数据越来越容易,而大家也应该更注重于保护和利用数据。
6. 收集数据通常可以采用的方法有哪三种
1、访问调查:访问调查又称派员调查,它是调查者与被调查者通过面对面地交谈从而得到所需资料的调查方法。
2、邮寄调查:邮寄调查是通过邮寄或其他方式将调查问卷送至被调查者,由被调查者填写,然后将问卷寄回或投放到指定收集点的一种调查方法。
3、电话调查:电话调查是调查人员利用电话通受访者进行语言交流,从而获得信息的一种调查方式。电话调查优点是时效快、费用低;不足是调查问题的数量不能过多。
(6)数据的整理收集与分析的方法扩展阅读:
收集数据的步骤:
1、确定数据分析的目标
没有目标的数据分析才真的是无从下手。有了明确的目标导向后,数据收集的范围和着手点就比较明确了。现实工作当中,一般都是遇到了问题,需要去解决问题的时候,想出来的解决方案就可以成为数据分析的目标。
2、分析需要收集哪些数据
明确了数据分析的目标之后,就需要确定采集哪些数据来分析。目标可以告诉我们范围,比如取消订单的操作场景下会涉及到哪些页面;进一步的要确认这些页面上有哪些表单数据、操作按钮、页面跳转是需要记录操作事件的。
考虑每个数据收集点的成本
数据埋点是有成本的,最直观的就是在性能上会带来比较大的影响,现在也有一些无埋点的采集技术,本人没有做过相应研究,这里只以需要埋点采集的来说明。
7. 数据分析的方法有哪些
数据分析是指通过统计分析方法对收集到的数据进行分析,将数据加以汇总、理解并消化,通过数据分析可以帮助人们作出判断,根据分析结果采取恰当的对策,常用的数据分析方法如下:
将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有列表法和作图法,所谓列表法,就是将数据按一定规律用列表方式表达出来,是记录和处理数据最常用的一种方法;
表格设计应清楚表明对应关系,简洁明了,有利于发现要相关量之间的关系,并且在标题栏中还要注明各个量的名称、符号、数量级和单位等;
而作图法则能够醒目地表达各个物理量间的变化关系,从图线上可以简便求出实验需要的某些结果,一些复杂的函数关系也可以通过一定的变化用图形来表现。
想要了解更多关于数据分析的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。
8. 整理数据的常用方法
1、整理数据的常用方法有:
⑴归纳法: 可应用直方图、分组法、层别法及统计解析法。
⑵演绎法: 可应用要因分析图、散布图及相关回归分析。
⑶预防法: 通称管制图法,包括Pn管制图、P管制图、C管制图、U管制图、管制图、X-Rs管制图。
2、数据整理是对调查、观察、实验等研究活动中所搜集到的资料进行检验、归类编码和数字编码的过程。它是数据统计分析的基础。
3、整理数据的步骤:
⑴原始数据之审核。
⑵分类项目之确定。
⑶施行归类整理。
⑷列表。
⑸绘图。
9. 数据整理录入和统计学分析的流程分为几个步骤
简单的数据统计一般要经历的四个步骤,收集、整理、描述和分析。
1、收集数据、整理数据和描述数据;调查法,统计图列,统计表。
2、全面调查,普查;直接,总体,准确。数据整理是根据统计研究的任务和要求,对统计调查搜集到的大量原始资料进行审核、分组、汇总,使之条理化、系统化,得出能够反映总体综合特征的统计资料的工作过程。
方法
⑴归纳法:可应用直方图、分组法、层别法及统计解析法。
⑵演绎法:可应用要因分析图、散布图及相关回归分析。
⑶预防法:通称管制图法,包括Pn管制图、P管制图、C管制图、U管制图、管制图、X-Rs管制图。
10. 数据收集和分析常用方法
一、头脑风暴法:
常用于“收集需求”过程中,属于群体创新技术。联想是产生新观念的基本过程。在集体讨论问题的过程中,每提出一个新的观念,都能引发他人的联想。相继产生一连串的新观念,产生连锁反应,形成新观念堆,为创造性地解决问题提供了更多的可能性。
在不受任何限制的情况下,集体讨论问题能激发人的热情。人人自由发言、相互影响、相互感染,能形成热潮,突破固有观念的束缚,最大限度地发挥创造性地思维能力。
在有竞争意识情况下,人人争先恐后,竞相发言,不断地开动思维机器,力求有独到见解,新奇观念。心理学的原理告诉我们,人类有争强好胜心理,在有竞争意识的情况下,人的心理活动效率可增加50%或更多。
二、德尔菲技术:
常用于“收集需求”过程中,属于群体创新技术。这一方法的步骤是:
(1)根据问题的特点,选择和邀请做过相关研究或有相关经验的专家。
(2)将与问题有关的信息分别提供给专家,请他们各自独立发表自己的意见,并写成书面材料。
(3)管理者收集并综合专家们的意见后,将综合意见反馈给各位专家,请他们再次发表意见。如果分歧很大,可以开会集中讨论;否则,管理者分头与专家联络。
(4)如此反复多次,最后形成代表专家组意见的方案。
德尔菲法的典型特征
(1)吸收专家参与预测,充分利用专家的经验和学识;
(2)采用匿名或背靠背的方式,能使每一位专家独立自由地作出自己的判断;
(3)预测过程几轮反馈,使专家的意见逐渐趋同。
优点:能充分发挥各位专家的作用,集思广益,准确性高。能把各位专家意见的分歧点表达出来,取各家之长,避各家之短。
缺点:德尔菲法的主要缺点是过程比较复杂,花费时间较长。
三、帕累托图:
常用于“实施质量控制”过程中。帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。它是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。可以用来分析质量问题,确定产生质量问题的主要因素。标准帕累托图按等级排序的目的是指导如何采取纠正措施:项目班子应首先采取措施纠正造成最多数量缺陷的问题。从概念上说,帕累托图与帕累托法则一脉相承,该法则认为相对来说数量较少的原因往往造成绝大多数的问题或缺陷。
排列图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率.分析线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左到右排列,通过对排列图的观察分析可以抓住影响质量的主要因素.
帕累托法则往往称为二八原理,即百分之八十的问题是百分之二十的原因所造成的。帕累托图在项目管理中主要用来找出产生大多数问题的关键原因,用来解决大多数问题。
X(经典帕累托图)
四、控制图:
常用于“规划质量、实施质量控制”过程中,就是对生产过程的关键质量特性值进行测定、记录、评估并监测过程是否处于控制状态的一种图形方法。根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。它是统计质量管理的一种重要手段和工具。
它是一种有控制界限的图,用来区分引起的原因是偶然的还是系统的,可以提供系统原因存在的资讯,从而判断生产过于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用来控制生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
7点规则:如果遇到连续7点数据落在平均线的同一侧。那么,应当考虑是否存在特殊原因。因为,一个点落在平均线一侧的概率是1/2。连续两点落在同一侧的概率是1/2中的1/2=1/4。连续三点落在同一侧的概率是1/4中的1/2=1/8。如此下去,连续七点落在同一侧的概率是(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)=1/128=0.0078。这个概率值是千分之8。这个概率应当讲是很小的。当我们在生产抽样的时候,这样小的概率是不应当被抽到的。现在被抽到了,说明不正常了,就有可能发生了特殊原因。
五、SWOT分析:
常用于“识别风险”过程中,其中,S代表strength(优势),W代表weakness(弱势),O代表opportunity(机会),T代表threat(威胁)。其中,S、W是内部因素,O、T是外部因素。这种分析常用于企业内部分析方法,即根据企业自身的既定内在条件进行分析,找出企业的优势、劣势及核心竞争力之所在。
近来,SWOT分析已广被应用在许多领域上,如学校的自我分析、个人的能力自我分析等方面。比如,在利用SWOT对自己进行职业发展分析时,可以遵循以下五个步骤:
第一步,评估自己的长处和短处每个人都有自己独特的技能、天赋和能力。在当今分工非常细的环境里,每个人擅长于某一领域,而不是样样精通。(当然,除非天才)。举个例子,有些人不喜欢整天坐在办公室里,而有些人则一想到不得不与陌生人打交道时,心里就发麻,惴惴不安。请作个列表,列出你自己喜欢做的事情和你的长处所在。同样,通过列表,你可以找出自己不是很喜欢做的事情和你的弱势。找出你的短处与发现你的长处同等重要,因为你可以基于自己的长处和短处上,作两种选择;或者努力去改正常的错误,提高你的技能,或是放弃那些对你不擅长的技能要求的学系。列出你认为自己所具备的很重要的强项和对你的学习选择产生影响的弱势,然后再标出那些你认为对你很重要的强弱势。
第二步,找出您的职业机会和威胁。我们知道,不同的行业(包括这些行业里不同的公司)都面临不同的外部机会和威胁,所以,找出这些外界因素将助您成功地找到一份适合自己的工作,对您求职是非常重要的,因为这些机会和威胁会影响您的第一份工作和今后的职业发展。如果公司处于一个常受到外界不利因素影响的行业里,很自然,这个公司能提供的职业机会将是很少的,而且没有职业升迁的机会。相反,充满了许多积极的外界因素的行业将为求职者提供广阔的职业前景。请列出您感兴趣的一两个行业,然后认真地评估这些行业所面临的机会和威胁。
第三步,提纲式地列出今后3-5年内您的职业目标。仔细地对自己做一个SWOT分析评估,列出您5年内最想实现的四至五个职业目标。这些目标可以包括:您想从事哪一种职业,您将管理多少人,或者您希望自己拿到的薪水属哪一级别。请时刻记住:您必须竭尽所能地发挥出自己的优势,使之与行业提供的工作机会完满匹配。
第四步,提纲式地列出一份今后3-5年的职业行动计划。这一步主要涉及到一些具体的内容。请您拟出一份实现上述第三步列出的每一目标的行动计划,并且详细地说明为了实现每一目标,您要做的每一件事,何时完成这些事。如果您觉得您需要一些外界帮助,请说明您需要何种帮助和您如何获取这种帮助。例如,您的个人SWOT分析可能表明,为了实现您理想中的职业目标,您需要进修更多的管理课程,那么,您的职业行动计划应说明要参加哪些课程、什么水平的课程以及何时进修这些课程等等。您拟订的详尽的行动计划将帮助您做决策,就像外出旅游前事先制定的计划将成为您的行动指南一样。
第五步,寻求专业帮助。能分析出自己职业发展及行为习惯中的缺点并不难,但要去以合适的方法改变它们却很难。相信您的朋友、上级主管、职业咨询专家都可以给您一定的帮助,特别是很多时候借助专业的咨询力量会让您大走捷径。有外力的协助和监督也会让您更好的取得效。
六、敏感性分析:
常用于“实施定量风险分析”过程中,敏感性分析的作用是确定影响项目风险的敏感因素。寻找出影响最大、最敏感的主要变量因素,进一步分析、预测或估算其影响程度,找出产生不确定性的根源,采取相应有效措施。敏感性分析有助于确定哪些风险对项目具有最大的潜在影响。它把所有其他不确定因素保持在基准值的条件下,考察项目的每项要素的不确定性对日标产生多大程度的影响。敏感性分析最常用的显示方式是龙卷风图。龙卷风图有助于比较具有较高不确定性的变量与相对稳定的变量之间的相对重要程度。
七、预期货币价值:
又称风险暴露值、风险期望值,是定量风险分析的一种技术,常和决策树一起使用,它是将特定情况下可能的风险造成的货币后果和发生概率相乘,此项目包含了风险和现金的考虑。正值表示机会,负值表示风险。每个可能结果的数值与发生机率相乘后加总即得到。
例:一专案投资100万,有50%机率会延误而罚款20万则EMV值为多少?
答:100+(-20*50%)=90
八、蒙特卡罗法:
用于定量风险分析,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。项目管理中蒙特卡罗模拟方法的一般步骤是:
1.对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;
2.计算机根据上述输入,利用给定的某种规则,快速实施充分大量的随机抽样
3.对随机抽样的数据进行必要的数学计算,求出结果
4.对求出的结果进行统计学处理,求出最小值、最大值以及数学期望值和单位标准偏差
5.根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线(通常是基于正态分布的概率累积S曲线)
6.依据累积概率曲线进行项目风险分析。