⑴ 个人识别的方法
简介
个人识别方法主要有四种:其一为直接辨认法,即通过亲友、群众辨认尸体及随身物件确认尸体身源;其二为法医物证学方法,即通过检测尸体及嫌疑人的血型、DNA型等个人遗传标记,经同一认定后确认尸体身源;其三为法医学亲子鉴定方法,即通过检测尸体、嫌疑死者父亲和/或母亲某些遗传标记,看是否符合孟德尔遗传规律来判断是否有亲子关系,从而间接确认尸体身源;其四为其他技术方法如通过指纹、嗅味等同一认定来确认死者身源。现分述如下:
直接辨认法
此方法因直接、简便而成为最常用的方法。即通过直接观察、辨认尸体和随身物品看死者或某物品是否熟识而确认死者身源。辨认依据主要为年龄、性别、身高、头发、营养发育、面貌、肤色、衣着服饰、个人随身物品及其他明显的个人生理、病理特征如体毛、胎记、手术瘢痕、假牙、妊娠、疾病、先天畸形、残疾状态。辨认方法包括尸体、物品直接辨认和照片辨认两种,以前者结果可靠性大,绝大多数完整、新鲜、衣着整齐的尸体可通过此方法确认[1]。但对高度腐败尸体、碎尸及尸体上无明显个人特征者误差较大。由于个体特征偶合性,即使是新鲜尸体,也不能以某一项个人特征确认死者身源,必须综合考查其他特征并结合其他识别方法来确认[2]。
法医物证学方法
此方法为直接确认,故较可靠,也是法医检案中常用方法之一。即通过运用法医血清学、牙科学、人类学的检测技术和方法检验来自无名尸体的血液、血痕、组织块、毛发、牙齿、骨骼等生物学检材,并与嫌疑人(调查所得)生物学检材(如血痕、毛发)进行比较,根据同一认定原则确认死者身源。
一. 法医血清学方法
此方法是通过检测来自无名尸体的血液、血痕、其它体液、人体组织脏器、毛发、牙齿、骨骼等生物学检材的血型、DNA多态性等个人遗传特征,并与嫌疑人检材相应遗传特征相比较分析,经同一认定后即可判断无名尸体是嫌疑人,若不相同,则可排除。
1. 血型检测
血型是人类的个体特征之一,由来自父母双亲的遗传基因决定,按孟德尔遗传规律从亲代传给子代,具稳定性强、特异性好的特点,故可用于个人识别。血型检测是法医学个人识别最常用方法之一,主要通过检测来自无名尸体的血液、血痕、其它体液、组织脏器、毛发、牙齿、骨骼的血型抗原物质,确定无名尸体的血型类别。自1901年奥地利学者Landsteiner发现人类第一个血型系统即ABO血型系统之后,血型研究发展很快,新的血型抗原系统不断被发现并广泛应用于临床输血、器官移植、遗传生化、法医学个人识别等领域。近年来随着医学、生物学、生物化学、遗传学的飞速发展,学者们发现除红细胞血型外,其他人体细胞、组织如白细胞、血小板、血清蛋白、唾液、精液等也具有遗传学多态性,使血型概念大大扩展,法医学个人识别能力也得到极大提高。一些主要血型组合率便可达到天文数字,从理论上看,除单卵双生子外,地球上每一个人的血型都不相同[3]。
常规血型检验虽然能解决许多案件的调查和证据提供问题,而且从理论上讲,其表型可达到人各不同、终身不变的识别能力。但实际应用中血型检验常受多种条件的限制,如因检材量少或陈旧、腐败使血型物质变性、抗原型消失、酶活性下降等,使实际检案中能检测的血型系统不足20种,因此利用血型排除同一个体是肯定的,而认定同一个体却是相对的。近年来随着单克隆抗体、酶免疫、放射免疫技术、等电聚焦技术的应用,血型检测灵敏度大大提高,但检案中运用时因操作繁琐、技术性强、成本高而难以普及。
2. DNA检测与分析
80年代,随着分子生物学的进展和重组DNA技术的建立,法医物证鉴定得到快速发展,法医学DNA分型技术应运而生。1985年,英国累斯特大学Jeffreys等建立了DNA指纹技术。应用放射性核素标记的多基因座探针与人基因组DNA的限制酶消化产物作分子杂交,成功地制作成高度个体特异性的多基因座DNA指纹图。研究证实无关个体的DNA指纹图相同的偶合率为小于2.4×10-11[4]。除同卵双生子外,几乎没有两个个体DNA指纹图完全相同,从而使法医学个体识别能力从排除达到同一认定水平。随后,单位点DNA探针杂交技术、短串联重复序列(STR)的发现及聚合酶链反应(PCR)技术的应用,使法医物证鉴定的灵敏度达到超微量水平[5]。目前广泛应用于无名尸体、碎尸案的个人识别和认定[6-8]。随着中国DNA数据库建设的逐渐开展,利用网络系统进行查询比对,将使该技术在侦查破案中个人识别的作用会有新的突破。
二. 法医牙科学方法
牙齿是人体最坚硬的组织之一,受遗传、地区、年龄、食物、营养、卫生习惯、疾病、外伤等影响具有一定个体特异性。牙髓中含有大量细胞,可检测其血型、DNA型,因此可用于个人识别。而且牙齿耐高温、抗腐败能力强,在高度腐败尸体、白骨化无名尸体、火灾、焚烧炭化尸体个人识别中,牙齿常为重要的法医学物证。
对无名尸体的牙齿进行检验常运用牙科学方法进行,通过观察牙齿类别、大小、形态、萌出及脱落时间、磨耗度等分析死者年龄[9]、性别[10-11]等特征,结合血型检测、DNA分型[12]结果,并与嫌疑人牙齿照片、病历记载及血型、DNA型比较分析,可认定尸体身源,从而为侦查活动提供重要线索。
三. 法医人类学方法
无名尸体、碎尸案检验常涉及人体骨骼、毛发、皮肤纹理等内容,上述组织有明显种属及个人特征,随年龄增长出现明显规律性变化和性别差异,因此可应用人类学的理论与技术,推定是否为人体组织及其性别、年龄、身长等个人特征,为个人识别提供依据[13]。特别是骨骼检验,由于骨骼具有坚固、耐高温、抗腐败等性能,而且骨骼组织中也含有大量血型抗原物质,可用血清学方法检测血型;提取骨组织中DNA可进行DNA分型,所以骨骼常是无名尸体个人识别的重要检材。
对无名尸骨的检验主要运用人类学方法进行,即通过观察尸骨形态、结构特征,测量尸骨的长度来分析无名尸体年龄、性别、身高等特征,配合血型检测、PCR检测、DNA分型并与嫌疑人相应个人特征比较分析,从而为无名尸体身源确定提供重要法医学证据。近年来颅像重合技术、面貌复原技术的运用[14-15]可使高度腐败甚至白骨化的尸体个人识别达到个人认定水平。
亲子鉴定方法
亲子鉴定是应用医学、遗传学和生物学的理论和技术,检测和分析父母和子女的遗传标记,以判断他们之间是否存在亲子关系。亲子鉴定一般在活体中进行,检材为孩子、可疑父母的外周静脉血,通过血型检测、DNA分型检测各自遗传标记,然后分析亲代、子代血型、DNA型是否符合孟德尔遗传规律来判断是否存在亲子关系。
高度腐败尸体、碎尸等无法直接辨认的尸体通过上述法医物证学方法虽可解决尸体性别、年龄、身高、血型、DNA型等个人特征问题,但若无嫌疑人检材比较或档案记录,就不能肯定尸体身源,此时可运用法医学亲子鉴定方法检测嫌疑人父和(或)母血型、DNA型来分析尸体与嫌疑人亲属是否存在生物学血缘关系,从而间接确认尸体身源[16]。
其他方法
1.指纹分析
指纹同人体血型一样是由遗传基因控制的个体特征,具有人各不同、终身不变的特点,所以指纹常用于司法实践中个人识别。提取无名尸体指纹后输入指纹库经计算机分析,可达到同一认定结果[17]。用遗传学原理分析尸体指纹及嫌疑人父母指纹也可为无名尸体的身源确定提供一定证据。
2.警犬辨认
通过警犬嗅闻尸体及嫌疑人常穿用且未洗的衣物嗅味也可协助辨认尸体身份。
上述四种无名尸体识别方法各有其优缺点,如直接辨认和警犬辨认法虽简便易行,但误差不可避免;指纹分析、DNA分型、亲子鉴定方法虽可直接认定,但检材条件、操作、技术、成本等因素常限制其运用;常规血型检测及牙科学、人类学方法只能检测尸体部分个人遗传特征,不能直接认定。因此在司法实践中对无名尸体进行个人识别时上述方法应配合运用,结合案情调查情况综合分析,确认尸体真正身源。
⑵ 干细胞的研究进展
干细胞是人体内最原始的细胞,它具有较强的再生能力,在干细胞因子和多种白细胞介素的联合作用下可扩增出各类的细胞。在99年末的年度世界十大科技成果评选中,"干细胞研究的新发现"荣登榜首。干细胞研究有不可估量的医学价值。分离、保存并在体外人工大量培养使之成长为各种组织和器官成为干细胞研究的首要课题。当前,对干细胞的分离和培养技术获得了重大进展,利用单克隆免疫吸附能识别细胞类型或细胞谱系的表面抗原,其分离纯度和细胞活力都很高。99年以色列魏茨曼科学院将白介素-6与干细胞内的受体分子合并研制出一种新分子,可使干细胞在维持原本特性的基础上进行自我增殖且细胞寿命也有所延长。在临床运用中,造血干细胞应用较早,在五十年代,临床上就开始应用骨髓移植来治疗血液系统疾病。到八十年代,外周血干细胞移植技术逐渐推广。美国StmlellsCsliifornia公司用血液干细胞在小鼠体内培育出成熟的肝细胞。胚胎干细胞目前许多研究工作都是以小鼠胚胎干细胞为研究对象,神经干细胞的研究仍处于初级阶段。
我国现已掌握了脐血干细胞分离、纯化、冷冻保存以及复苏的一整套技术,并开始在上海筹建我国第一个脐血库。在北京,北京医科大学人民医院细胞治疗中心也正在筹建全世界最大的异基因脐带血干细胞库,计划到2002年完成冷冻5万份异基因脐带血干细胞,为全世界华人患者提供脐带血干细胞做移植用。2000年初,我国东北地区首例脐血干细胞移植成功。
我国在"治疗性克隆"研究领域获得重大突破,"治疗性克隆"课题被列为国家级重点基础研究项目。此课题分为上、中、下游三块,上海市转基因研究中心成国祥博士负责上游研究,上海第二医科大学盛惠珍教授和曹谊林教授分别主持中、下游的研究工作。其整体目标是,用病人的体细胞移植到去核的卵母细胞内,经过一定的处理使其发育到囊胚,再利用囊胚建立胚胎干细胞,在体外进行诱导分化成特定的组织或器官,如皮肤、软骨、心脏、肝脏、肾脏、膀胱等,再将这些组织或器官移植到病人身上。利用这种方法,将从根本上解决同种异体器官移植过程中最难的免疫排斥反应,同时还使得组织或器官有了良好的、充分的来源。目前,由上海市转基因研究中心负责的上游研究工作,即把病人的体细胞移到去核的卵母细胞并经一系列的处理发育至囊胚取得成功。这个中心创建的三种技术路线方法,即"体细胞克隆哺乳动物的制备方法"、"获得治疗性克隆植入前的制备方法"以及"用于治疗性克隆的人体细胞组织器官保存方法"均已收到国家知识产权局同意专利申请的受理通知。
为了一个人的形成,单个受精卵将产生数以亿计的细胞和250多种不同的细胞类型。幸而,直到最后一个细胞和器官发育形成之时,所有的一切仍未结束。贯穿于整个生命的,是大多数组织继续产生新的细胞以替换损耗的老细胞或满足新的生命活动的需要。比如,当运动员在高海拔地区进行训练的时候,循环系统中血细胞的数量相应增加以满足运输更多氧气的需要。很显然,在诸如皮肤,毛发,骨骼,骨髓,肠这样的组织中,细胞再生能力已得到证实;但这种现象很可能在所有器官中都不同程度地存在着,包括大脑在内,而惯常的观点是,神经元是不可再生的。
组织更新和修补自身的能力来源于称为干细胞的小细胞团。干细胞存在于生命的全过程,在体内微环境中被专门的“看护”细胞紧密包围。“看护”细胞提供生长因子和信号分子保持干细胞的特性――分化能力,以及在特定生命周期中分化为特化细胞的同时又能自我复制的能力。矛盾的是,干细胞的自身分裂十分有限,而它们的子细胞在最终形成特化细胞的过程中,有非凡的繁殖力。
干细胞以及他们能维持一定数量的能力一直深深吸引着生物学家们[1],如今更为狂热。由于人们意外的发现成熟组织中的干细胞可以重新程序化,即使效率极低,但仍然可以分化为其他来源的细胞。[2]比如,在正常情况下,成年鼠的少数造血干细胞可生成肌肉组织,神经系干细胞可生成血液。这些报告使得将来受损组织用同一个体内其他组织的残余干细胞来修复成为可能。
悬而未决的问题
另外两项研究也引起了科学界和公众的广泛关注。去年,有两个研究小组宣布他们从人类胚胎和胎儿的生殖细胞中分离出了多能干细胞(pluripotential)――可以分化为多种细胞类型的干细胞。紧跟着,就是众所周知的来自成熟体细胞的克隆羊多莉(dolly)及克隆鼠的诞生。
这些有着巨大新闻价值的研究层出不穷,引起了世界性的关于道德和伦理规范的讨论风暴,而且到现在还在争论。比如在美国,公众的反对迫使NIH停止对人胚胎干细胞的研究提供资助。这些争论使许多研究人员开始意识到,他们必须就一些基本问题与迫切的公众和立法者进行有效的交流,其中包括“人的生命何时开始?”“成为人意味着什么?”“什么是胚胎,它在什么时候变成人?”。
科学家们是否能回答这些复杂的问题还有争执,这里我不打算继续深入讨论。我只想确定这个事实:在回答另一个更重要的基本问题“我们怎样才可能把干细胞用于医药领域?”之前,我们的确还需要更多的信息。
采取哪种方法?
最基本的,我们必须进一步研究人体所有组织的干细胞。第一步,我们需要确定分子标记,它们能将寥寥无几的干细胞从他们庞大的子细胞中区分开来。此外,还需了解干细胞与所处的微环境之间的相互作用,以及微环境如何对机体的需求作出反应。我们仅对骨髓中的造血干细胞的相关信息有一定了解,这将有助于在临床治疗中增加受损组织中残留的干细胞的数量。现在,我们已经能够培养少量造血干细胞以重建人的血液系统。
设定一个最坏的状况,一个慢性病患者失去了某种组织的大部分干细胞,必须要用替代疗法才能生存。如今,最可行的方案是采用另一个体相应组织的干细胞来补充。但是,这种方案也相当危险,由于捐献者与患者没有遗传上的相容性,移植很快因免疫排斥而失败。
一种改进方案是用所谓“自体同源干细胞(autologous stem cells)”的干细胞来进行治疗,这种干细胞与患者的基因型完全相同。虽然目前还不可行,但是我们已经有了一定的设想。一种方案是分离、培养患者的另一组织的干细胞,比如骨髓或皮肤的,再把这些成熟干细胞在体外重新程序化。为了了解怎样才能重新程序化干细胞,我们需要一系列的实验,来研究沉默基因的重新激活,以及激活基因被关闭的机制。例如“早期胚胎细胞分化为不同细胞系的机制研究”就会给我们相当的启示。如果我们理解了遗传基因控制正常发育的实现过程,我们将更容易地在实验室里进行有目的地控制基因表达和细胞分化的方向。
另一种方法是用来源于囊胚期的胚胎的多能干细胞。囊胚期是指卵子刚刚受精但尚未种植到子宫的阶段,此时胚胎称为胚泡。胚泡大约由100个细胞组成,其中包含一些特化性较少的干细胞,可在培养中不确定地诱导分化为多种细胞形式(如图)。最早的人类多能干细胞是从体外受精的临床病例中得来的多余胚泡。这个里程碑式的事件是James Thomson领导的University of Wisconsin, Madison的实验室在1998年的成果。另一个在澳大利亚的Monash University的实验室最近宣布了相似的实验结果。现在这两个小组正在进一步研究这些多能干细胞和子细胞的特征。
这些工作为人类胚胎早期发育中基因功能研究提供无价的数据资料。不幸的是直到现在,我们对这一领域知之甚少,部分由于联邦经费对胚胎研究的限制。尽管胚胎发育在进化中高度保守,但是脊椎动物胚胎发育中一些细节上的差异,足以证明鼠和人之间并不是所有的基因都具有相同功能。因此,在模式动物研究中得来的信息不能充分体现出我们在人类干细胞中研究中的问题。
公众眼中的干细胞
用人类多能干细胞进行研究引起争议是由于他们来自人类的受精卵,在某些人认为人的生命始于受精。那么在理论上,用体细胞核转移的方法生成自体同源干细胞引起的争议会少一些。这种方法是把成熟细胞的细胞核转入一个去核的未受精卵细胞中,在实验室里,这个卵细胞发育成胚泡,研究人员可从中分离培养多能干细胞系。最近,Monash University的研究人员用这项技术在小鼠上取得了成功。他们在1000多个转移基因标记的细胞核的去核卵细胞中,获得一个胚胎干细胞系。如果这种“治疗性克隆”能够在效率上更提高一些,那么这对人类干细胞的研究同样有意义。
既然实验用的卵细胞是去核和未受精的,无不同个体的遗传物质融合,从而未发生受精过程,所以用这种方法制造的干细胞在道德和伦理上将更容易被人们所接受。此外,由于胚胎干细胞不能独立发育成胎儿,所以他们不是胚胎。然而,从理论上讲,体细胞核转移产生的胚泡不仅只用于干细胞的产生,把这样的胚泡移植到妇女子宫中也有可能克隆人。尝试此类研究与现行道德准相驳,也是违法行为。另外,这样的行为会使许多不负责任的人们有所企图,无法控制伦理道德标准,而且有可能使人为的和有目的地制造畸形婴儿成为可能。
这些争议对一些更极端的反对者来说还不是关键,他们认为只有对于一个已经去世的人,体细胞核转移技术才可以接受。往往在联邦经费资助人类干细胞的科学研究之前,一个基于相互尊重的信仰的公众讨论就已经开始,无论这种研究是以治疗人类疾病为目的还是以基础研究为目的。
可以认为这种争论本身,是一个好的事情,因为它激发了公众对生物学和复制的兴趣及关注,这些内容以往在学校里不能有效的传授给学生。(克隆青蛙往往不能象克隆人类自己那样使高中的学生们产生兴趣,而且人类肢体再生的案例就可以引导学生展开有关人类肢体的形成和哪些基因产生手臂而不产生腿之类的讨论,象这样的说法未免太牵强了一点。)
无论怎样,干细胞研究的前提是将会得到新的实质意义上的治疗方法。因此,科学家们必须十分谨慎,避免媒体对基因治疗过分夸大的报道,否则会失去公众的信任和信心。在应用人多能干细胞时,也必须十分留心。就像我们看到的那样,对公众中的某些人来说,这些细胞的来源相当于破坏人的生命。事实是在我们确切知道干细胞治疗的实际用途之前,还有许多障碍要跨越。当我们向前继续探索的每时每刻,我们必须诚实.
http://www.39.net/nursing/03gxb/hgyzw/21352.html
⑶ 免疫识别细胞
γδT细胞的抗原识别机制
中国免疫学杂志 1999年第10期第15卷 述评
作者:何维
单位:中国医学科学院基础医学研究所中国协和医科大学基础医学院免疫室,北京 100005
T细胞表面表达两类抗原受体(TCR):TCRαβ和TCRγδ。TCRαβ可特异地识别由抗原呈递细胞(APC)表面Ⅰ类或Ⅱ类MHC分子呈递的抗原肽,而TCRγδ则主要以MHC非限制方式识别各类抗原。最近对TCRγδ所识别的抗原类型及方式进行了较为深入的研究,本文就其进展作一述评。
1 TCRγδ的多样性和分布特点提示其抗原识别的特殊性
同TCRαβ和免疫球蛋白(Ig)类似,TCRγδ基因由重组的V、D、J和C区组成。虽然γ、δ位点的V区多样性不及α和β,但其连接区多样性则使TCRγδ存在甚至超过TCRαβ多样性的潜能〔1〕。然而,许多γδT细胞亚群仅取用了其受体库中很有限的一部分,一些特定的Vγ、Vδ和连接区序列的组合导致TCRγδ结构单调化〔1〕。小鼠γδT细胞有3种发育途径:第一组在胎儿胸腺中发育,分批产生的γδT细胞分别进入特定的上皮组织。这些细胞重组单一的γ/δ基因,并具有单一的连接区序列,表现出单一的特异性。Vδ5细胞进入皮肤,Vδ6细胞进入生殖道上皮和舌;第二组在成年胸腺中发育,大多表达Vγ1或Vγ4或少量Vγ2或Vγ7,并具有广泛的连接区多态性,其库容较大,主要分布在外周血中,偶尔也进入粘膜组织;第三组的发育是非胸腺依赖性的,主要为Vγ7和Vγ1,有较大的连接区多态性,主要分布在小肠上皮。因此,γδT细胞的抗原特异性覆盖了从单一特异性到极端可变的范围〔2〕。γδT细胞在不同分布部位的预先设定提示它们可能是识别特定抗原的特殊T细胞群体,而并非象TCRαβ细胞分布一样具有随机性。在人类中,Vδ仅取用δ链中的一种。成人外周血中大于70%的Vδ表达Vδ2,其余为Vδ1。Vδ2与VR9共表达,而Vδ1与Vγ中某一种共表达〔3〕。
2 γδT细胞的抗原识别类型与机制
2.1 MHC分子 一些文献报道小鼠和人γδT细胞可识别MHC Ⅰ和Ⅱ类分子。人类外周血γδT细胞(Vδ9)可识别同种异体树突状细胞(DC)/单核细胞表面的MHCⅡ类分子〔4〕。
1987年Matis 等利用同种异体APC在体外刺激无胸腺小鼠的脾细胞建立了一些MHC限制性的γδT细胞系〔5〕。它们识别同种异体细胞上非己的MHC分子并呈现特异性反应,但其特异性不同于传统的αβT细胞。例如,γδT细胞系LBK5可识别MHCⅡ类分子I-E的多个等位基因产物〔6〕。IEK是小鼠Ⅱ类MHC分子,可结合各种肽段和超抗原,刺激αβT细胞活化。Schild 等发现LBK5对IEK识别时,结合于IEK的肽段并不传递特异性,同时经典的抗原处理也未启动〔7〕。各种细胞对LBK5刺激能力的不同都可归结为其表面MHC分子表达的情况,而与细胞来源、类型和影响MHC-肽段装载的因素无关。结合在平皿上的IEK蛋白对LBK5的刺激与表达IEK的细胞引起的刺激强度相仿,这些结果表明LBK5是直接识别IEK分子的。
也有大量报道γδT细胞可识别非经典的MHC类分子。从裸鼠Balb/c脾脏中分离出G8系可识别T10和T22抗原〔6,7〕。Porcelli 等从免疫缺陷病人身上分离出CD1c限制性的γδT细胞。 Schild 等对G8系作了深入研究,发现T10和T22有94%的同源性〔7〕。与LBK5相似,G8克隆对T10/T22的识别不经传统的抗原处理途径。同样,不同细胞对激活γδT细胞的能力也都归于其表面MHC表达的情况,Ⅰ/Ⅱ类抗原处理过程对其并无影响。如小鼠细胞系RMA-S和人细胞系T2在将肽类负载于MHC I类分子上都有缺陷,而转染了T22的RMA-S和T2都可激活G8细胞。非常有意思的是,G8可识别果蝇(Drosophila melanogaster)细胞上表达的T10/T22,而果蝇并不具有与哺乳类相似的免疫系统,也缺乏任何抗原处理-呈递所必需的因子。上述结果表明,这些所谓的MHC限制性的γδT细胞克隆对经典MHC的识别似乎并不通过抗原的处理和呈递。MHC分子作为抗原本身被识别,而这些细胞上负载的肽段也都并不起配基的作用。另有报道,γδ细胞克隆TgI4.4可识别一种单纯疱疹T型跨膜糖蛋白gI〔8〕。在抗原处理缺陷的RMA-S细胞上表达的完整的野生型 gI可被TgI4.4细胞所识别,同样,包被与平皿上的可溶性重组gI-Ig也可被识别,这表明gI是不通过抗原处理和其它分子的呈递而被直接完整识别的。γδT细胞对蛋白抗原的识别似更倾向于直接识别而不经过处理和呈递。特定的MHC分子恰好是作为抗原而非抗原呈递分子被识别的。
2.2 非MHC分子 显而易见,相对于TCRγδ庞大的序列多态性,其经典抗原识别的种类还是太少。大量文献显示TCRγδ具有与TCRαβ截然不同的抗原识别途径。目前有两类分子被证明是TCRγδ配体:含磷酸基的非肽类小分子和热休克蛋白。
2.2.1 磷酸化基团 人类主要的γδT细胞亚群Vγ9/δ2可在分枝杆菌感染部位中大量存在,并在体外对细菌和寄生虫起反应。研究发现分枝杆菌中的有效成分是非肽的低分子量(1~3 kD)的化合物,包含碳水化合物骨架和磷酸成分。Constant 等从结核杆菌H37RV株中分离到4种不同的水溶物:TUBag1-4。TUBag4是5'-三磷酸胸苷,其γ-磷酸为一未被确定成分的低分子量基团所取代〔9〕。TUBag3与4结构相似,但为尿苷而非胸苷。1和2为3和4的非核苷酸片段,活性极小。TUBag4可刺激外周血Vγ9/δ2 T细胞的扩增和其它一些特异性的γδT细胞。这些化合物同时存在于微生物和哺乳动物中。由于从分枝杆菌培养滤液或提取物中分离天然抗原比较困难, Tanaka Y 等首先合成了一系列单个碱基的磷酸化合物,并发现其中一些,尤其是单烯基磷酸化合物(Monoethyl),可模拟Vγ9/δ2 T细胞对分枝杆菌的反应〔10〕。其后,他们又报道了此γδT细胞的天然配基:异戊烯焦磷酸盐(Isopentenyl pyrophosphate IPP)和相关的萜类(Prenyl)的焦磷酸化盐衍生物。而用磷酸基团代替焦磷酸基团则可大大削弱它们的抗原性。IPP和相关的萜焦磷酸盐是诸如维生素、脂类和类固醇等亲脂性化合物的活性前体。这些萜焦磷酸盐中间物同时存在于细菌和哺乳类细胞中,人Vγ9/δ2 T细胞亚群对它们的识别也许可以部分解释其对一系列肿瘤细胞系的反应性。上述研究都使用了活化的γδT细胞系,无APC和额外的细胞因子的存在。后继的多数研究结果进一步显示磷酸基团活化γδT细胞需要T-T细胞相互作用,而识别本身则不需要MHC Ⅰ/Ⅱ类分子、CD1、TAP1/TAP2或DMA/DMB的表达。尽管个别研究体系中有APC的存在,但认为是非MHC限制性的,其作用可能与提供γδT细胞生长所需的细胞因子有关。 而Carena 等的研究进一步显示APC表面MHC分子在γδT细胞识别磷酸基团配体中的特殊含义〔11〕。CD94(NKG2-A/B异质二聚体)是大多数γδT细胞表面表达的与MHC I类分子可发生特异性结合的受体。他们发现,CD94与MHC I类分子结合时可下调磷酸化配基对γδT细胞的激活。当该配基处于低浓度时,CD94的抑制作用更明显,从而提高了γδT细胞激活的阈值。在生理情况下,该机制对防止自身免疫应答具有重要意义。
另外一个重要的问题也初步得到了澄清,即TCRCDR3的多样性对Vγ9/δ2 T细胞磷酸化配基的特异性是否产生影响。通过取用一群随机的细胞克隆和不同配基的检验发现,所有的克隆都显示了相同形式的交叉反应性。要想选出对单一配基有特异性的克隆是不可能的。而且,无论用强的或弱的刺激物来扩增,T细胞系或克隆都显示了相同形式的交叉反应性〔12〕。虽然存在此种交叉反应性,但就配基结构而言,这些细胞是高度特异的。磷酸基团的数目和位置以及碳链骨架的类型对T细胞的活化都至关重要。因此,Vγ9/δ2 T寡克隆T细胞亚群具有广泛的交叉反应性而又是配基特异的。
2.2.2 热休克蛋白(hsp) 在1990年前后,有大量的报道显示γδT细胞识别热休克蛋白家族成员。识别hsp的外周血或脐血γδT细胞亚群的表型主要为Vγ9/δ2 ,具有丰富的连接区多态性,最初的发现来自于细菌感染。人类和小鼠γδT细胞识别的主要hsp家族成员为hsp60和hsp65〔13〕。随后又发现一些肿瘤细胞表面高表达热休克蛋白可活化Vγ9/δ2 T细胞,如Daudi淋巴瘤表面hsp60和肺癌细胞表面的hsp72等〔14,15〕。热休克蛋白的单克隆抗体则至少可部分抑制该反应。该反应与靶细胞表面热休克蛋白表达含量呈正相关。在一些自身免疫性疾病中,γδT细胞对靶细胞表面hsp的识别也被证实,如γδT细胞可识别多发性硬化病人少突胶质细胞表面hsp并引起细胞杀伤〔16〕。
hsp作为一类高度保守的分子伴侣蛋白,广泛存在于原核和真核生物细胞中。除了构成性表达之外,在如高温、低氧、放射、感染、中毒等各种应激条件下均可诱导其高表达。热休克蛋白在蛋白折叠、转送和亚基装配中起不可或缺的作用,而且它们在许多免疫应答过程中也发挥作用。它们与一系列蛋白和肽段结合并参与抗原呈递,使得APC能处理其结合的肽段而形成稳定的MHC I类分子-肽段复合物。另一方面,通过在细胞表面表达,hsp也可能作为抗原呈递分子起作用〔17〕,因为它的三维结构N-端肽段结合位点与MHC I类的肽段结合位点的结构相似。 在各种应激条件下,由于hsp诱导高表达而造成了γδT细胞的激活。通过其产生细胞因子和细胞毒活性的作用,γδT细胞可能发挥快速清除应激因素和受损细胞并且启动后继免疫反应的作用。
3 γδT细胞抗原识别的结构基础
综上所述,γδT细胞对抗原的识别与αβT细胞并不相似,而更类似于Ig对抗原的直接识别,并且无MHC限制性。TCRγδ与TCRαβ分子结构比较研究分析结果在一定程度上为此种作用差异性提供了解释。 TCRαβ和TCRγδ的二级结构与Ig类似。它们三者都通过重组V、D、J形成单一的Ig或TCR,从而形成对抗原的特异性。X线衍射研究结果显示Ig和TCRαβ的CDR3环均是识别肽段的关键结构,因此推测γ/δ链的相似区域也起类似作用。Rock 等分析了从小鼠到人Ig和TCR受体链的CDR3长度〔18〕。Ig轻链上CDR3短且长度相对固定,而重链CDR3长且长度范围变化大,这可能提示Ig识别从小分子到大的病原体较大范围内许多不同大小的抗原。TCRαβ的CDR3长度分布范围窄,且α、β链的CDR3长度相近,这可能反映出αβ链的功能需要,即同时接触MHC和结合肽段。TCRγδ的γ链CDR3短,长度范围小,而其δ链CDR3长且变化范围大,因此就CDR3长度而言,TCRγδ更类似于Ig而非TCRαβ。
在混合淋巴细胞反应中,与αβT细胞同种异体反应性克隆相比,识别同种异体MHC分子的γδT细胞克隆频率是很低的;而且大多数细胞克隆有很高的交叉反应性,这在αβT细胞同种异体反应性克隆中是极罕见的,这提示TCRγδ对MHC的反应类似于Ig对MHC的识别。
4 结论与问题
γδT细胞抗原识别的多样性和机制复杂性使人们目前尚难以概括γδT细胞全部的生物学意义。然而现有的研究结果似乎已经揭示了γδT细胞基本功能特点。γδT细胞对抗原的非MHC限制性和无需抗原处理和呈递识别方式提示,在机体内出现机体异常变化(如应激)时,γδT细胞可作出比αβT细胞更迅速的反应。此外,γδT细胞可对αβT细胞不能识别的抗原产生应答,在功能上与后者实现互补。另外,γδT细胞免疫监视功能具有广泛性,因为其识别配体如hsp 及磷酸类小分子物质在自然界中是普遍存在的。在历经长期进化后,通过APC对抗原肽的复杂处理与加工及精确呈递,αβT细胞实现了其高度抗原特异性、严格MHC限制性和周密职责分工(Th和CTL)的免疫应答特点,使免疫系统高效、协作有序而针对性极强地清除外源生物分子或病原体。而γδT细胞则以更广泛、快速和直接的方式对体内应激事件作出反应,同时其反应手段较为笼统,即γδT细胞可同时发挥细胞毒和分泌细胞因子双重功能;但是在某些特定部位如上皮,表达特定和单一TCR受体的γδT细胞似乎为局部高频突发事件而存在。总之,在免疫应答过程中,γδT细胞可能发挥着启动、协调与互补αβT细胞功能的作用。
γδT细胞抗原识别的研究目前在许多方面仍有待深入。γδT细胞识别蛋白抗原时所需要的基本结构要求是什么?在γδT细胞激活中,hsp到底通过何种途径起作用仍然很不明确。γδT细胞对细胞表面hsp分子的识别是直接识别,还是识别其呈递的肽段?事实上,hsp所携带的肽段的作用尚未被明确而完整地研究过。TCR的CDR3多样性究竟有何意义?既然hsp、磷酸类代谢物同时是自己和非己成分,为什么自身反应性的γδT细胞克隆在其发育中未被从细胞库中选择掉? 在这些物质引起的免疫反应中,γδT细胞的特异性是否同时指向外来物和自体成分?只有这些问题的全部澄清,人们才可对γδT细胞的生物功能作出全面和深刻的评价,并且可将其理论成果用于肿瘤和自身免疫病等的治疗。
自94年始,我们对γδT细胞的特性、分布、亚群、受体分子的选择性取用、功能特点及其在肿瘤和自身免疫病的参与作用进行了系统的研究,以期为揭示其功能之谜提供资料和促进其理论成果在疾病的预防、诊断和治疗中的应用。
作者简介:何维,男,43岁。留德医学博士,教授,博士生导师,中国协和医科大学基础医学院副院长,中国医学科学院基础医学研究所副所长。中国免疫学会基础免疫分会委员,北京免疫学会理事,《国外医学免疫学分册》、《中华微生物学和免疫学杂志》、《中国免疫学杂志》编委。94年回国工作后共主持国家重点基础研究发展项目(973)课题、95攻关课题、国家自然科学基金、863生物高科技计划、卫生部基金、国家博士点基金、教委基金和中美、中日和中德合作研究项目及医科院各种课题15项。科研集中在γδ型T细胞在抗感染免疫、肿瘤免疫和自身免疫中的作用,IL-15基因克隆与表达研究及其IL-15转基因瘤苗抗肿瘤作用,超氧化与免疫在衰老中的关系,胸腺退化的基因调控和老年性痴呆免疫学诊断等方面。目前共发表论文35篇(国外8篇),出版专着两部,获省部级科研二等奖一项。
⑷ 人体细胞学的深入调查与研究。这句话什么意思
这句话的意思就是对人体细胞学的更加进一步的研究与调查。对他的深入学习。
⑸ 简述各种免疫细胞识别靶细胞的分子机制
免 疫
二、非特异性免疫(固有免疫)
机体针对致病微生物的三道防线:
1、物理屏障—皮肤、粘膜、皮肤及粘膜的分泌物、胃酸
2、非特异性免疫—炎症反应,吞噬细胞、NK细胞、抗菌蛋白
3、特异性免疫—淋巴细胞、抗体
三、特异性免疫
immunity
(一)、免疫的概念
拉丁文immunis 是免除服役、免除课税
定义:
简单地说:是抵抗疾病(感染性疾病)的机制
具体地说:免疫是机体的一种生理反应,当抗原性物质进入机体后,机体能识别 “自己 ”和 “非己 ”,并发生特异性的免疫应答,排除抗原性的非己物质,或被诱导而处于对这种抗原物质呈不活化状态(免疫耐受)
免疫作为一种防护机制的特点
识别自我/非我:病原体、移植器官、肿瘤细胞
记忆性:疫苗的理论基础
特异性:能识别抗原间细微的差别
两面性:并非对机体都有利,有时甚至有很大的损伤
多样性:可以识别成千上万种不同结构的抗原
功能
(二)免疫学的研究历史
1、天花与牛痘
宋朝之初人痘防止小儿感染天花
18世纪末,英国Jenner发明了种牛痘防治天花
1979年10月26日,WHO宣布,人类消灭了天花
2 、菌苗的发明
19 世纪70 年代,德国的Koch 和法国的Pasteur 发现有些细菌经过多次传代培养后,失去了致病能力
Pasteur ,1880 年,发明了鸡霍乱杆菌菌苗
1881年,炭疽杆菌减毒株
1885年,狂犬病毒疫苗
3、吞噬现象的发现
俄国Metchnikoff,1883年发现吞噬细胞的吞噬作用,提出细胞免疫学说
4、毒素和抗毒素的发现
Emile和Yersin,1888年发现白喉菌产生外毒素,第一次人工被动免疫
Paul Ehrlich提出体液学说
1903年,Wright, Douglas将二者统一
5、补体的发现
1894年,Pfeiffer发现免疫溶菌现象,
1895年,Bordet证明了补体的存在
6、抗体生成理论
1897年Ehrlich提出侧链学说
1930s Haurowitz, Pauling 先后提出直接、间接模板学说
1959年 Burnet克隆选择学说
7、免疫病理和免疫耐受
1902年, Portier Richet 提出过敏反应
1903年,发现Arthus现象
1906年, Pirguet 提出变态反应
8、在20世纪得到了快速发展
免疫细胞
抗体与细胞因子
免疫遗传学——MHC
单克隆抗体
临床免疫学
(三)抗原(antigens)
定义:
任何进入人或动物体内后,能和抗体结合或和淋巴细胞的表面受体结合,引起人或动物免疫反应的物质。
细菌、细菌分泌毒素、疫苗、移植器官、组织、肿瘤抗原
特性:
免疫原性与免疫反应性
TD 抗原、TI 抗原
理化性质
是蛋白质或多糖类大分子,相对分子量在10,000以上,6,000以下的一般都没有抗原性
一般地蛋白质的抗原性强于多糖
半抗原或不全抗原:
没有免疫原性,但有免疫反应性,与载体蛋白结合后有抗原性。
吗啡
抗原决定子:抗原分子中能与抗体或与淋巴细胞表面受体结合的特定部分,即在分子构象上与抗体互补的部分,或者说是能与抗体分子嵌合的化学基团。一般由5~8个aa残基、短寡糖残基或核苷酸残基组成
多的达200种,少的只有2~3种。
抗原具有特异性
基因工程疫苗:乙肝疫苗
(四)免疫系统
淋巴器官:骨髓、胸腺、淋巴结、脾脏、扁桃体、阑尾等。
淋巴细胞的免疫功能直到20世纪50年代才发现。
证明免疫功能来自淋巴细胞。
根据免疫功能不同,分为B细胞和T细胞
B细胞与T细胞
(1)B细胞是体液免疫的细胞,T细胞是细胞免疫的细胞,两者在功能上是互相支援的(Th、Ts)
(2)2种细胞在未被抗原活化时,形态相似,只是B细胞略大,表面绒毛样突起略多,但两者的细胞表面蛋白却很不相同。(分离)
(3)寿命不同,B细胞的寿命很短,不过几天或1、2周;T细胞可以生活几年,甚至10年以上
(4)分布上,B细胞大多集中在淋巴结等淋巴器官中,血液中的淋巴细胞80%是T细胞。
数量很多,约21012 个,十分活跃,时刻在监视外物的入侵。
表面带有许多受体分子,受体分子的构象与相应的抗原分子上的抗原决定子是互补的。
不同的淋巴细胞表面带有不同的受体分子,能分别和不同的抗原分子结合,发生免疫反应。
抗体
抗体:
免疫球蛋白,是游离在血液、淋巴液等体液中的一类特殊的球蛋白。由桨细胞分泌,能与特异的抗原结合,占血浆蛋白的20%
抗体典型结构
4个肽链,两个相同的短链(轻链)两个相同的长链(重链),四链互以S-S键相结合,形成Y形的四链分子。
每一链又分为两段:
恒定部分,确定类型的一个标准;
变异部分,氨基酸各不相同,并且多种多样,决定抗体的特异性,高变区
抗原结合部位(antigen binding site)
轻链和重链的可变部分的20~30个氨基酸组成的囊装或裂隙状分子构象。
抗体的特异性决定于结合部位的构象。
两臂为抗原结合片断,Y的柄部为结晶片断
免疫球蛋白的类别
根据重链氨基酸序列不同分为5类:IgM、 IgG、 IgD、IgA、IgE,每一类还可以分为多种IgG1、IgG2、IgG3、IgG4
重链各不相同,分别以 、 、 、 、 表示
轻链只有两种: 、 。每个抗体的2 个轻链是相同的,都是 或都是 。
抗体的作用
(1)沉淀和凝集
可溶性抗原、细胞表面抗原(血液凝集)
(2)补体反应
(3)K细胞的激活
Ag-Ab结合后,K细胞表面受体能和抗原表面的受体结合,将抗原杀死。
细胞因子
免疫细胞能合成和分泌小分子的多肽类因子
包括淋巴因子和单核因子、集落刺激因子等,已知白细胞介素(IL),干扰素(IFN)、集落刺激因子(CSF)、肿瘤坏死因子(TNF)、转化生长因子(TGF-β),它们在免疫系统中起着非常重要的调控作用,在异常情况下也会导致病理反应。
(四) MHC—HLA
在机体内存在与免疫排斥反应相关的抗原系统多达20种以上,其中能引起强而迅速排斥反应者称为主要组织相容性抗原,其编码基因是一组紧密连锁的基因群,称为主要组织相容性复合体(major histocompatibility complex,MHC)。现已证明,控制机体免疫应答能力与调节功能的基因(immune response gene, Ir gene )也存在于MHC内。因此,MHC不仅与移植排斥反应有关,也广泛参与免疫应答的诱导与调节。在人类,MHC即为编码HLA(human leukocyte antigen)的基因群,称为HAL复合体。
HLA编码产物
1、HLA-A、HLA-B和HLA-C 等31个基因座,广泛分布于体内各种有核细胞表面 ,外周血白细胞和淋巴结、脾细胞所含Ⅰ类抗原量最多,其次为肝、皮肤、主动脉和肌肉。但神经细胞和成熟的滋养层细胞不表达Ⅰ类抗原
2、DR、DP和DQ近30个基因座,Ⅱ类抗原主要表达在某些免疫细胞表面,如B细胞、单核/巨噬细胞
在分子构象有一个特点,即它们的表面有一个沟。第一类MHC的沟较小,可接受12~20氨基酸的肽链,第2类MHC的沟可接受较长肽链。
3、36个基因座 ,补体、TNFA、B ,
Ⅲ类抗原均分布于血清中
HLA抗原多态性
HLA抗原具有多态性,不同的个体具有不同的HLA型,除了同卵双生外,个体间HLA表型全相同的可能性极小。其多态性的形成原因主要有:
(1)基因位点多,目前已发现有229个基因,其中有128个功能位点;
(2)共显性表达,同一个体内,每个基因位点都有1对等位基因,它们能同时表达,从而大大增加了人群中HLA表型的多样性,达到107数量级;
(3)等位基因多,27个位点有复等位基因,共1340个等位基因(2001年1月),这是HLA高度多态性的最主要原因。由于各个座位基因是随机组合的,故人群中的基因型可达108之多
(五)免疫应答
抗原性物质进入机体后激发免疫细胞活化,分化和效应过程称之为免疫应答。
1.抗原识别阶段 此阶段可包括抗原的摄取、处理和加工,抗原的呈递和对抗原的识别,分别由Mφ、T和B细胞完成。
2.免疫细胞的活化和分化阶段 此阶段可包括抗原识别细胞膜受体的交联、膜信号产生与传递、细胞增殖与分化以及生物活性介质的合成与释放,主要由T和B细胞完成。
3.免疫应答的效应阶段 此阶段主要包括效应分子(体液免疫)和效应细胞(细胞免疫)对非已细胞或分子的清除作用,即所谓排异效应,及其对免疫应答的调节作用。此阶段除抗体和效应T细胞参予外,即非特异免疫细胞和分子参加才能完成排异和免疫调节作用。
免疫应答机制
1、体液免疫(humoral response)
2、细胞免疫(cell response)
3、补体反应
1、体液免疫
抗原多为相对分子量在10000以上的蛋白质和多糖大分子,病毒颗粒、细菌表面
B细胞
B细胞表面的受体种类非常多,每一种B细胞的表面只有一种受体分子,只认识一种抗原
(1)B细胞产生浆细胞和记忆细胞
B细胞表面的受体分子与抗原分子结合后,活化、长大,并迅速分裂产生一个有同样免疫能力的细胞群——克隆(clone)、无性繁殖。一部分成为浆细胞,一部分发展为记忆细胞(memory cell)
需要巨噬细胞和Th细胞的参与。
M带有MHCⅡ分子,抗原分子经M处理后表达在细胞膜上,夹在MHCⅡ分子的沟中,Th细胞表面带有不同的受体,能识别M表面MHC+特异的抗原分子结合物,B细胞表面带有MHC分子,可和特异的抗原分子结合,。。。
(2) 浆细胞产生抗体
每一个浆细胞每秒钟能产生2000个抗体,寿命很短,经几天大量产生抗体之后就死去,抗体进入血液循环发挥生理作用。
每小时释放1000万个抗体分子
不必改变抗体与之相结合的抗原,就能从一种同种型转换到另一种同种型,一种抗体的每种同种型都从C微基因的一种不同形式衍生物
在一天左右时间转变IgM--IgG
(3) 记忆细胞与二次免疫反应
寿命长、对抗原十分敏感,能“记住”人侵的抗原。
当同样抗原第二次入侵时,能更快的做出反应,很快分裂产生新的浆细胞和新的记忆细胞,浆细胞再次产生抗体消灭抗原。
体液免疫的两个关键:
(1)产生高效而短命的浆细胞,由浆细胞分泌抗体清除抗原
(2)产生寿命长的记忆细胞,发生二次反应立即消灭再次入侵的同样抗原
2、细胞免疫
器官移植、寄生原生动物、真菌等
T细胞
(1)细胞免疫的机制和过程
T细胞识别不同于自身的MHC I、识别细胞表面的MHCI+抗原复合物,识别后进行攻击。
三类T细胞,表面均有受体,有抗原特异性
胞毒T细胞(Cytotoxic T cells,Tc)、助T细胞(helper T cells, Th)、抑T细胞(suppressor T Cells, Ts)
Tc
作用是消灭抗原
病毒感染细胞后,细胞表面呈现病毒表达的抗原,并结合到细胞表面的MHC I类分子的沟中,形成MHC-抗原结合物。被Tc细胞接触、识别后,Tc分泌穿孔素(perforin),使靶细胞溶解而死,病毒进入体液,被抗体消灭。
癌变细胞也是Tc攻击目标,免疫功能低下的人群容易患癌症。
Th细胞
又称诱导T细胞,对各种免疫细胞,Tc、Ts、B都有帮助作用,对于免疫具有重要作用。
Th的受体能识别和第Ⅱ类MHC结合的外来抗原。
MHC Ⅱ类分子存在于巨噬细胞和B细胞表面。巨噬细胞吞噬入侵的细菌等微生物,在细胞内消化、降解,抗原分子与MHC Ⅱ类结合呈现在细胞表面,将抗原传递给具有相同MHC Ⅱ类分子的Th,同时,M分泌白介素I,刺激Th,促使其分泌白介素Ⅱ,它促进Th,形成正反馈,刺激淋巴细胞分化出Tc,刺激B细胞
CD4受体
Ts
抑制淋巴细胞,包括B细胞和其他T细胞的活动,只有在Th的刺激下才发生作用。在外来的抗原消灭殆尽时,发挥作用而结束 “战斗 ”
CD8受体
细胞免疫的全过程
抗原或带有不同I类MHC分子的外源细胞,在进入机体后,体内带有特异性受体的T细胞分裂产生大量新的T细胞,其中Tc有杀伤力,使外源细胞破裂而死亡。Th细胞分泌白介素等细胞因子使Tc、 M以及各种有吞噬能力的白细胞集中于外来细胞周围,将外来细胞彻底消灭。
在这一反应即将结束时,Ts开始发挥作用,抑制其他淋巴细胞的作用,终止免疫反应,
每次特异免疫反应产生记忆细胞。
细胞免疫和器官移植
器官移植在同卵双胞胎之间进行较易成功,这是因为两者的基因组是一样的,细胞表面的MHC分子也是一样的,2个个体都不排斥对方的器官。
免疫抑制:激素、放射线照射、药物(6-巯基嘌呤)等
环孢素(cyclosporin)
3、补体反应
补体(complement):存在于血清、体液中的蛋白质,分子量在24000~400000,包括C1~C9、B因子、D因子,还有许多调节蛋白分子。
抗原抗体复合物激发的级链反应,最终产物是攻膜复合体,使细菌等抗原外膜穿孔而死。
(1)经典途径:经C1、C4、C2而激活C3的活化方式。抗原-抗体复合物
(2)替代途径:绕过C1、C4、C2而直接激活C3的活化方式。酵母多糖。
补体反应过程
分为识别阶段、活化阶段、和攻膜阶段。
1、识别阶段:Ab-Ag结合后,Ig构型改变暴露其Fc上的补体结合部位,与C1q结合导致C1构型改变,生成C1脂酶。C1q可以识别IgM、IgG
2、活化阶段:C1—C4—C2—C3—C5
(C3b—BD—C3—C5)
3、攻膜阶段:
C5—C6—C7—C8—C9
C56789—攻膜复合物,附着在靶细胞膜上,一方面使靶细胞膜裂解,另一方面,C9分子还形成一些横穿膜的水溶性小管道,水进入细胞,使细胞涨落死亡
生物学功能
(1)溶解靶细胞,C1~C9
抗感染、变态反应性疾病、自身免疫性疾患
(2)促进吞噬过程
C3b、C4b
(3)中和病毒和溶解病毒作用
C1、C2、C3、C4
(六)、克隆选择学说
克隆选择学说:淋巴细胞在与抗原接触前就已经存在多种多样的与抗原专一性结合的抗体,一种细胞带一种抗体,进入机体的抗原选择性的结合其中的个别淋巴细胞,使之火化,增殖产生大量带有同样抗体的细胞细胞群,分泌同样的抗体。
单克隆抗体(McAb)
通过注射抗体来预防或治疗——被动免疫
破伤风抗毒素治疗破伤风
通常抗体的获得来自动物血液,一方面成本昂贵,另一方面纯度不能保证,含有其他蛋白质分子,对人体来说是一种抗原,在体内产生抗体,用多后就会发生超敏反应。
McAb是来自同一种B细胞的同一类抗体群。
20世纪70年代建立了生产技术
用人工方法将产生抗体的B细胞与骨髓瘤细胞融合,成为B细胞杂交瘤,这种细胞具有大量无限繁殖的特性,又有B细胞合成与分泌特异性抗体的能力,对这种细胞进行体外培养,即可获得大量McAb
McAb纯度高、特异性强、效价高,用途大。用于研究、临床诊断和治疗。
四、免疫系统疾病
1、自身免疫病
风湿性心脏病、风湿热、类风湿性关节炎、溶血性贫血
2、过敏
过敏性哮喘、青霉素过敏
3、免疫缺乏病(severe combined immune deficiency, SCID)
4、艾滋病(acquired immune deficiency syndrome, AIDS)
5、免疫系统和癌症
免疫监视
思考题
1、什么是免疫应答?有哪些典型特征?
2、巨噬细胞在免疫应答中的作用是什么?
3、抗体的结构、分类与生物学功能?
4、接种疫苗的生物学原理是什么?
5、体液免疫与细胞免疫的主要区别是什么?
6、什么是单克隆抗体,如何制备?
⑹ 维萨里揭示了人体在器官水平的结构及研究的方法是什么
细胞大部分都非常小 构成人体的细胞大概也只有10微米左右 而人眼的分辨力只有0.1毫米 大部分的细胞都没有办法用肉眼观察到 起初对人体的研究都是依靠肉眼观察 比如维萨里通过尸体解剖发表了《人体构造》说明了人体在器官水平的结构 比下夏通过对器官的解剖观察 又进一步揭示了器官如何由组织结构 到了17世纪 显微镜把人眼的分辨力提高了几百倍 终于可以观察到微观的世界 英国皇家学会成员罗伯特虎克是第一个利用显微镜进行科研的科学家 他在研究弹性定侓的时候 对 就是咱们物理课里学的那个胡克定律 物体的弹 力与形变成正比的那个定侓 罗伯特 虎克发现软木塞ju有弹性 他就想看看软木塞的结构 于是就y用显微镜观察了软木塞 他在《微物图志》中画出 了软木塞中许多的格状结构 把它称为 cell 不过其实cell这个词本来就有小空间的意思 比如监狱的一个个房间就叫做cell 但人们后来就把这个词就沿用下来 衍生出 了 细胞 的含义 虽然我们有时候说虎 克发明了细胞 这个词 但它本人其实并没有细胞的概念 也没有看到真正的细胞 软木塞中的这些结构其实是细胞死后残留下来的细胞壁 第一个真正看到活细胞的是列文虎克 列文虎克原本是荷兰的商人 也是一位磨镜师 由于他磨镜技术高超 他制造的显微镜放大倍数可以到300倍 而虎克所用显微镜观察了许多材料 比如雨 水 污水 尿液 粪 便 精液等等 他是第一个观察到细菌的人 也是第一个观察到精子的人 精子是人类最小的细胞 但列文虎克其实也没办法清楚地看到精子的结构 他还自称看到了精子里面有一个小人在动 虽然我们现在觉得很可笑 但当时他毕 竟是唯一一个看到精子的人 所以别人也没办法反驳
⑺ 人体细胞的种类和作用
人体细胞分为四大种类:上皮组织、结缔组织、肌肉组织、神经组织。
1、上皮组织也叫做上皮,它是衬贴或覆盖在其它组织上的一种重要结构。由密集的上皮细胞和少量细胞间质构成。结构特点是细胞结合紧密,细胞间质少。通常具有保护、吸收、分泌、排泄的功能。上皮组织可分成被覆上皮和腺上皮两大类。上皮组织是人体最大的组织。
2、结缔组织(connective tissue)由细胞和大量细胞间质构成,结缔组织的细胞间质包括基质、细丝状的纤维和不断循环更新的组织液,具有重要功能意义。细胞散居于细胞间质内,分布无极性。广义的结缔组织,包括液状的血液、淋巴,松软的固有结缔组织和较坚固的软骨与骨。
3、肌肉组织由特殊分化的肌细胞构成的动物的基本组织。肌细胞间有少量结缔组织,并有毛细血管和神经纤维等。肌细胞外形细长因此又称肌纤维。肌细胞的细胞膜叫做肌膜,其细胞质叫肌浆。
4、神经组织由特殊分化的肌细胞构成的动物的基本组织。肌细胞间有少量结缔组织,并有毛细血管和神经纤维等。肌细胞外形细长因此又称肌纤维。肌细胞的细胞膜叫做肌膜,其细胞质叫肌浆。
(7)人体细胞识别方法研究与实现扩展阅读:
人体细胞的个数:
1、大多数物种的最基本单位是细胞,人体也是由细胞组成的。据科学家粗略地估计,大约是40-60 万亿个。
2、在人们知道的人体细胞数目中,目前已能够正确测出成年男人1升血液中大约含有4.0×10的12次方/L个左右红血球。一般来说,血液约占人体重量的1/13。
3、血液里面白血球的数量只有红血球的八百分之一。
4、人体的“司令部”——大脑细胞的数量,据研究有几百亿个。
5、总之,人体细胞数量真是多得吓人。这么多的细胞,其实都是由同一个细胞发育而来的,这个最初的细胞叫做受精卵。受精卵慢慢长大;1个变为2个,2个变为4个,4个变为8个,就这样成倍成倍地增加,最后变成50兆个的集合,这就是身体的由来
参考资料来源:网络—人体细胞
参考资料来源:网络—人体四大组织
⑻ 生物识别主要包括哪些内容
1.指纹识别
指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。 指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。
2.静脉识别
静脉识别系统就是首先通过静脉识别仪取得个人静脉分布图,从静脉分布图依据专用比对算法提取特征值,通过红外线CMOS摄像头获取手指静脉、手掌静脉、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,将特征值存储。静脉比对时,实时采取静脉图,提取特征值,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,同存储在主机中静脉特征值比对,采用复杂的匹配算法对静脉特征进行匹配,从而对个人进行身份鉴定,确认身份。全过程采用非接触式。
3.虹膜识别
虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状区域,在红外光下呈 虹膜特征图
现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。 虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。从普通家庭门禁、单位考勤到银行保险柜、金融交易确认,应用后都可有效简化通行验证手续、确保安全。如果手机加载“虹膜识别”,即使丢失也不用担心信息泄露。机场通关安检中采用虹膜识别技术,将缩短通关时间,提高安全等级。
4.视网膜识别
视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。 生物识别
视网膜识别的优点就在于它是一种极其固定的生物特征,因为它是“隐藏”的,故而不可能受到磨损,老化等影响;使用者也无需和设备进行直接的接触;同时它是一个最难欺骗的系统,因为视网膜是不可见的,故而不会被伪造。另一方面,视网膜识别也有一些不完善的,如:视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;设备投入较为昂贵,识别过程的要求也高,因此角膜扫描识别在普遍推广应用上具有一定的难度。
5.面部识别
面部识别是根据人的面部特征来进行身份识别的技术,包括标准视频识别和热成像技术两种。 标准视频识别是透过普通摄像头记录下被拍摄者眼睛、鼻子、嘴的形状及相对位置等面部特征,然后将其转换成数字信号,再利用计算机进行身份识别。视频面部识别是一种常见的身份识别方式,现已被广泛用于公共安全领域。 指纹识别
热成像技术主要透过分析面部血液产生的热辐射来产生面部图像。与视频识别不同的是,热成像技术不需要良好的光源,即使在黑暗情况下也能正常使用。
6.手掌几何学识别
手掌几何学识别就是通过测量使用者的手掌和手指的物理特征来进行识别,高级的产品还可以识别三维图象。作为一种已经确立的方法,手掌几何学识别不仅性能好,而且使用比较方便。它适用的场合是用户人数比较多,或者用户虽然不经常使用,但使用时很容易接受。如果需要,这种技术的准确性可以非常高,同时可以灵活地调整性能以适应相当广泛的使用要求。手形读取器使用的范围很广,且很容易集成到其他系统中,因此成为许多生物特征识别项目中的首选技术。
7. DNA识别
人体内的DNA在整个人类范围内具有唯一性(除了同卵双胞胎可能具有同样结构的DNA外)和永久性。因此,除了对同卵双胞胎个体的鉴别可能失去它应有的功能外,这种方法具有绝对的权威性和准确性。DNA鉴别方法主要根据人体细胞中DNA分子的结构因人而异的特点进行身份鉴别。这种方法的准确性优于其它任何身份鉴别方法,同时有较好的防伪性。然而,DNA的获取和鉴别方法(DNA鉴别必须在一定的化学环境下进行)限制了DNA鉴别技术的实时性;另外,某些特殊疾病可能改变人体DNA的结构组成,系统无法正确的对这类人群进行鉴别。
8.声音和签字识别
声音和签字识别属于行为识别的范畴。声音识别主要是利用人的声音特点进行身份识别。声音识别的优点在于它是一种非接触识别技术,容易为公众所接受。但声音会随音量、音速和音质的变化而影响。比如,一个人感冒时说话和平时说话就会有明显差异。再者,一个人也可有意识地对自己的声音进行伪装和控制,从而给鉴别带来一定困难。签字是一种传统身份认证手段。现代签字识别技术,主要是透过测量签字者的字形及不同笔划间的速度、顺序和压力特征,对签字者的身份进行鉴别。签字与声音识别一样,也是一种行为测定,因此,同样会受人为因素的影响。
9.亲子鉴定(基因识别)
由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。
⑼ 个人识别的历史发展
简介
在法庭科学中有一门重要的学科,它与其他法庭科学技术一起参与司法鉴定活动,为司法机关侦破审理提供科学的证据,这就是法医物证学。法医物证学属于法医学范畴,是具有法学特性的一门应用科学。
什么是法医物证?法医物证又可以称为法医生物物证,是指罪犯或民事行为当事人在实施行为时所涉及和遗留的人体构成成分检材(如血液、毛发、牙齿、骨骼、各种组织、各种分泌物及排泄物等)、动物相应的各类检材和部分植物检材(植物纤维、种子、花粉等)。法医物证是一门综合学科,与现代医学、分子生物学、遗传学、微生物学、免疫学等众多的学科有着紧密的联系,运用这些学科的基础理论和技术,在研究解决司法实践的问题中形成本学科的理论和技术。法医物证学有以下的特点。
1.法医物证学的研究目的,是尽可能准确地确定未知的生物检材的来源和种类,尽可能地从对检材的分析中获取个体识别和比对的信息,确定它们来自哪个个体,以达到最终目的―“同一认定”。
2.法医物证学研究和检验的对象范围非常广,所以其采用的技术手段也非常复杂和多样。它汲取了相关学科的各种先进技术手段,应用于本学科领域,使法医物证学成为现代法庭科学中发展最快的学科之一。
3.各类刑事的、民事的案件均在未知和复杂的情况下发生和进行,提供给法医物证鉴定的生物检材,常常是微量甚至是痕量的干枯的斑迹,混有其他污染物,或已经受了高温、腐败而使蛋白质变性、降解,并有可能是几十年甚至是几百年、上千年的陈旧检材。所以法医物证鉴定的方法不同于其他学科,必须具有更高的灵敏度、更好的特异性和更稳定的重复性。
4.法医物证鉴定的结果将作为证据或线索,提供给刑事侦查、司法审判和其他法律活动。
法医物证学的历史
法医学有着悠久的历史,早在距今2 400年前的春秋时期“治狱”过程中就已萌发了法医学。唐代已有兼做验尸的“医学博士”,宋代也有从事验尸的“仵作”。13 世纪中叶(1247年),中国的法医学家宋慈(1186一1249年)所撰写的《洗冤集录》,被公认为是世界上最早的法医学经典专着,比欧洲的法医专着早350多年,该书很快传入各国,对世界法医学的发展作出了重大贡献。
在中国,法医学发展早期就萌发了法医物证学,秦汉以来就有用血液判断亲权的传说,《洗冤集录》对此有记载:“检滴骨亲法”谓如“父母骸骨在他处,子女欲相认,令以身上刺出血,滴骨上,亲生者,则人骨,非则否”,对亲兄弟则以“滴血法”验亲。这些方法虽不科学,但说明在 2 000 多年前就已注意到了父母血型对子女血型的影响,因而现代法医学家认为,“滴血法”是现代血清学亲权鉴定的先声。
中国现代法医物证学的发展进程
(一)本世纪初至新中国成立之前
在本世纪初发现的ABO血型系统和沉淀素血清为法医物证学检验奠定了基础。但在旧中国,法医物证学发展缓慢, 1912 年时只有北京和浙江两处医学类学校设立了法医课。1927年中国现代法医学奠基人林几教授就应用血球凝集现象进行父权鉴定,并在20年代末和孙速芳等人筹办了“司法行政部法医研究所”设有法医物证检验项目,开展 ABO 血型检验和抗人沉淀素血清沉淀环试验确定人血痕。
(二)新中国成立至 70 年代中期
新中国成立以后,随着祖国社会主义建设事业的发展,中国的法医学专业也取得了长足的发展。公安、司法、卫生等部门对法医工作十分重视,基于发展的需要,建立了专门的研究机构,并在许多医学院校中法医教研室,培养了一大批专门人才,为中国法医事业的发展打下了坚实的基础。与此同时,法医物证有了相应的发展,吸附解离试验(又称热解离试验)和混合凝集试验的建立和广泛应用,大大提高了进行血型鉴定的灵敏度,用0.2一0.4厘米的血痕或体液斑痕纱线,在1一2小时内就能进行ABO或MN血型的分型鉴定。对各类检材的确证检验、种属检验和血型分型检验有了较完整的检验方法和程序,但由于“文化大革命”的影响使学科的进展仍然处于低水平。
(三)70年代后期至80年代中期1978年后中国的科学界迎来了第二个春天,法医物证学科也开始了飞速的发展。各种新的鉴定技术的研究建立使得法医物证学的检验领域和检验深度都产生了质的变化。
1. 建立并广泛应用了对ABO和MN血型分型更快速、更准确的热解离实验法,高效价、高特异性抗血清的研制和应用使解离试验的灵敏度有了更进一步的提高。
2. 80 年代初,开始研究和建立对血清蛋白遗传多态性分型的方法并获得突破,从而打破了物证鉴定几十年来仅能对一两种红细胞表面抗原进行分型的局面,开拓了血型检验的新领域。这其中包括应用各种电泳技术(淀粉凝胶、琼脂糖凝胶、连续或不连续的聚丙烯酞胺凝胶电泳法)对血清结合珠蛋白(Hp)、血清型特异成份(Gc)、转铁蛋白(Tf)、抗胰蛋白酶(Pi)、补体组分(C3、C4、C6、 C7等)、 a2一HS糖蛋白(AHSG)、备解素因子(Bf)多态性的分型鉴定;使用凝集法(凝集抑制等方法)对血清免疫球蛋白同种异型(Gm)、(Km)等血型进行分型鉴定。
3. 80 年代中期开始又相继研究建立并推广应用了对红细胞同工酶多态性分型鉴定的一系列方法,使法医物证个人识别领域得到进一步的拓宽。用淀粉凝胶及纤维素膜为支持介质对一种红细胞酶型进行电泳分型;用同步法对一份检材同时进行2一4种红细胞酶型进行电泳分型;所鉴定的红细胞同工酶包括磷酸葡萄糖变位酶(PGM)、酯酶D(EsD)、乙二醛1 (GLO1)、腺昔酸激酶(AK)、腺昔脱氨酶(ADA)、红细胞酸性磷酸酶(EAP)、6一磷酸葡萄糖酸脱氢酶(6一PGD)、谷丙转氨酶(GPT)等十数种,并在几年内使红细胞分型鉴定成为法医物证常规检验法之一。
以上各种分型技术在血痕、精斑、唾液斑和组织检验中的应用,使物证鉴定的个人识别几率有了大幅度的提高,以往进行一种血型检验识别力较低,一般很难超过0.50,而如对一份检材进行多种血型鉴定其累积识别能力可高达0.90以上。
在对血清型和红细胞酶型分型方法进行研究的同时,研究人员还对中国几十个民族各种血型的表型分布和基因频率做了调查研究,获取了大量的数据以作为个人识别鉴定的计算依据,并填补了国内、外数据库的空白,为遗传学、人类学的研究提供了重要资料。
4. 白细胞配型在医学界被广泛应用于器官移植和骨髓移植,同时由于白细胞抗原(HLA)是人类最复杂的一个遗传多态性系统,他具有的高度多态性是其他血型系统无法相比的,因而使白细胞分型成为亲权鉴定中最有效的手段。中国从80年代开始将白细胞分型用于亲权鉴定并配合使用其他血型系统鉴定,使父权肯定几率高达99%以上,可以做出肯定父权的鉴定。
5. 各类物证检材的确证试验和分型鉴定方法的建立,需要使用相应的抗血清和专门试剂。中国的法医工作者从1976年以后在抗血清的研制方面投人了大量的人力、物力,相继成功地研制出一批高特异性的专用血清,其中包括抗M、抗N、抗a一1酸性糖蛋白、抗Gc、抗Hp、抗A、抗B、抗H沉淀素、抗Lewis血清,有力地支持了鉴定方法的研究工作并满足了实际应用的需要。
6. 性别鉴定是物证鉴定中的重要项目,国内从70年代末开始并成功地完成了利用X、Y染色质鉴定血痕、毛发、牙齿、口腔粘膜细胞等组织的性别鉴定,其中,对陈旧血痕性别鉴定的时间可长达 20 年。
(四) 80 年代中期至今
80年代中期以来,法医物证学的发展更加迅速,有大批研究项目完成并投人应用。
1.单克隆技术在法医物证抗体研制中的成功应用,使我们可以从复杂的大分子蛋白质中获取那些带有特定抗原性的部分,并以杂交瘤技术制备出相应的具有极好特异性的抗体。这意味着我们有了得力的工具,可以从纷杂的混合检材中准确地鉴定出是否有人体的某种蛋白存在。在此基础上,又以酶、胶体金或其他标记物标记抗体,并建立了具有高灵敏度及高特异性的酶联免疫(ELISA)方法,这些方法可以从稀释几十万甚至100万倍的检材中确定人体不同蛋白成分的存在。
酶联免疫法的应用也彻底改变了以往使用凝集试验对各种红细胞表面抗原型和血清型进行鉴定的方法,这些方法不但快速、灵敏,而且具有极高特异性。
2.在血型分型技术中,各项高、新技术不断地建立、完善和发展。等电聚焦电泳技术结合使用固相pH梯度凝胶及激光扫描,使电泳分型技术的分辨力大大提高,具有电泳多态性蛋白质的分型也相应从普通型分型到亚型分型,使单一和累积识别能力不断提高。同时单克隆抗体及标记抗体技术在电泳谱带显现中的应用又进一步提高了方法的灵敏度,检材量可以减少至 1 厘米长的一根斑痕纱线。
3. DNA 技术是80年代中期以来带给法医物证学科革命性变化的最重要的技术,70年代后期,DNA多态性的分析研究开始起步,并得到迅速发展。1985年英国科学家Jeffrey,首次应用了DNA指纹分型技术成功地鉴定了一起移民亲权案,因此带给法医物证学科强烈的震动,各国的研究者以极大的热诚投入到这项研究工作中去。在中国DNA研究项目被列为国家“八五”、“九五”、“十五”和“十一”攻关的重点项目,国家投入了大量的财力建立了专门的实验室,使这项研究工作迅速展开。目前这项研究工作已经取得了多项高水平的研究成果。DNA指纹技术(DNA fingerprining)包括多位点和单位点指纹;聚合酶链反应(polymerase chain reacion,PCR),序列多态性和长度多态性;复合扩增STR位点的DNA分型技术(short tandem repeats,STR);人类线粒体DNA序列多态性和长度多态性;复合扩增STR位点的DNA分型技术(minisatellite variant repeat,MVR);利用基因重组技术制备DNA探针;单核苷酸多态性分析技术等。这些技术目前已应用到对血痕、精斑、唾液斑、骨骼、毛发等检材的种属鉴定、性别鉴定和分型鉴定。较圆满地解决了犯罪现场常见的微量、陈旧、腐败生物检材及不含细胞核生物检材的DNA鉴定难题,使物证鉴定完成了从排除到高概率认定的质的飞跃。
从70年代后期以来,中国的法医物证研究工作取得了显着的成绩,特别是“八五”以来,每年有多项重大研究项目研究成功并推广应用。其中 DNA 分型技术、红细胞酶型分型技术、血清型分型及抗体制备技术特别法医DNA数据库建设工作等10多项获得国家科技进步奖,并有更多的项目获得省、部级科技进步奖。在这些研究领域内,中国的科研水平达国际先进水平,在许多方面还达到国际领先。中国的法医物证学科的整体水平迅速提高,在国际学科界受到广泛的重视。
法医物证学的展望
1. DNA技术革命性的进展曾使物证学科的发展掀开了崭新的一页,而且依然是下一个世纪学科发展的主导方向。我们需要更灵敏的方法,并要进一步解决腐败程度较高及更微量检材的检验难题,复合扩增STR位点DNA分型技术将受到进一步重视。STR长度短,适用于已降解的DNA,在人类基因组中的STR位点多达几十万个,这就意味着其具有非常好的识别能力,同时STR的分型技术简单、省时、费用低,并能实现自动化,也就更有利于标准化和实行质量控制,这也是STR研究受到重视的主要原因。随着DNA检验技术的不断发展和完善,有望在将来可利用单个细胞进行DNA指纹分析,这意味着只需在犯罪现场找到微小的样品,如一小片头皮屑或一枚模糊的指纹,就可能确认罪犯。中国法庭科学数据库建设将更快地与国际接轨。
2.常规物证学检验目前采用的血清学、生物化学和免疫学技术手段经不断地完善已日趋成熟。但从发展的角度看,这些技术中的部分方法将随学科技术的发展进一步得到发展,而部分则应随之淘汰。如血清学技术手段中传统、复杂的凝集技术,逐渐要被借助于先进的抗体制备技术而发展的标记抗体技术取代,并使更多的血型系统的分型方法更灵敏、更快速、更准确和更微量化。激光扫描技术和计算机的应用也会使生物化学的多项技术得到重大的突破。
3.拓宽检验领域从更多的生物检材中获取信息的研究也将是法医物证发展的一个重要方面。除了人体生物检材外,对植物检材的鉴定在目前仍只能在小范围的个别项目上进行,检验结果也仅可以提供对比的线索。植物的各个部位的细微结构特征都具有特异性,因此植物检材的检验是可以利用进行对比识别的样品。
4. 基因工程将被用于抗体制备技术中,有望完全取代以传统免疫学方法的抗体制备技术,使抗体的制备技术产生重大的变化。
现代法医学的发展从细胞水平研究大分子蛋白质的不同现象始,一直进入到研究生命基本的物质一核酸,走过了漫长的道路,并且将随着科学技术的不断发展而前进。中国的法医物证工作者一定会在新的世纪中开拓进取,努力奋斗,使法庭学科的整体水平进入到一个更新、更高的阶段。世界上的生物体形式千变万化,而我们则执着地朝着在千变万化中,依据个体的特征识别个体的方向不断地前进。