㈠ 怎么写循环节文字表示
循环,从小数点后某一位开始不断地重复出现前一个或一节数码的十进制无限小数。如2.1666…,35.232323…等,被重复的一个或一节数码称为循环节。循环小数的缩写法是将第一个循环节以后的数码全部略去,而在保留的循环节首末两位上方各添一个小点
㈡ 循环节的表示方法
小数化分数分成两类。 一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。例:0.3(3循环)=3/9(循环节的位数有一个,所以写一个9) 0.347(347循环)=347/999(3位循环节写3个9) 另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。例0.2134(34循环)=(2134-21)/9900 问题中1.203(03循环)=1+0.203=1+(203-2)/990
㈢ 循环小数循环节的写法是什么
如:10.7363636…是一个循环小数,它的循环节是36, 用简便写法来表示这个小数应为:10.7。
一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数(circulating decimal)。循环小数会有循环节(循环点),并且可以化为分数。表示方法是上划线,上点,大括号。
化分数表示:
1、纯循环小数
将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同。
例如:0.111...=1/9、0.12341234...=1234/9999。
2、混循环
将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。
例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
㈣ “循环节”是什么意思
无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节.
如3.43535……是无限循环小数,可以简写为3.435(35循环),它的循环节是35。
㈤ 小学数学循环节是什么
很多同学都学过循环小数,那么什么是小数的循环节?大家一起来看看吧。
无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。
13÷99=0.1313…,这个商就是一个循环小数,它的循环节是13,方法二,可以用看余数的方法,来确定循环小数的循环节,例如,11÷9=1.……2,我们通过竖式计算可看出,数2重复出现,商就重复出现,那么循环节就是从,第一次出现余数2,所得的商2,所以我们可以用,看余数的方法,来确定循环节。
判断一个小数是否循环小数,其关键是首先判断这个小数是否无限小数,其次看这个小数 的小数部分是否有重复出现的数字,但是如何正确判断小数部分重复出现的数字,可根据以下几点进行判断
方法一:按照循环小数的意义来确定。即根据“一个无限小数,如果它的小数部分从某一位起,都是由一个或者几个数字依次不断地重复出现,这样的小数叫做循环小数。”这一意义来确定循环小数的循环节。
方法二:可以用看余数的方法来确定循环小数的循环节。例如:11÷9=1.……2。我们通过竖式计算可看出:余数“2”重复出现,商就重复出现,那么循环节就是从第一次出现余数“2”所得的商“2 ”。
以上就是一些循环节的相关信息,希望对大家有所帮助。
㈥ 用简便方法表示循环节怎么做
简便计算中最常用的方法是乘法分配律。
乘法分配律:ax(b+c)=axb+axc,其中a,b,c是任意实数。
相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算。
简便运算方法:
1、分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2、提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3、注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
㈦ 循环节是什么
循环节是指如果无限小数的小数点后,从某一位起向右进行到某一位置的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
长度:
对一个大整数求倒数,用牛顿法可以快速达到很高的精度,但需要的空间很大,如果求一个10^300数量级的质数p的倒数,其循环节长度有可能达到p-1,没有一台计算机的内存能够储存整个循环节的数据,如果用普通的除法,只需储存余数,占用的内存不大,可却可能要计算p-1次,不可能算完,请问有什么好的方法解决这个问题吗?只要有循环节的长度就可以,不用输出循环节的内容。
㈧ 什么叫:循环节
如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节.
㈨ 循环节的表示方法
小数化分数分成两类。
一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。例:0.3(3循环)=3/9(循环节的位数有一个,所以写一个9)
0.347(347循环)=347/999(3位循环节写3个9)
另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。例0.2134(34循环)=(2134-21)/9900
问题中1.203(03循环)=1+0.203=1+(203-2)/990