导航:首页 > 研究方法 > 分析方法和数学分析

分析方法和数学分析

发布时间:2022-11-06 09:17:44

什么是数学分析

‍‍

《数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。作为数学系最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这坚实的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。

从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。微积分理论的产生离不开物理学,天文学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。复旦大学有非常好的生源,吸引了众多优秀的学生,使得实现这一培养目标与要求成为可能。另一方面,许多优秀的学生受教学计划限制,学习的是《高等数学》这一课程。但他们对于学习《数学分析》以提高自己的数学修养有着强烈的愿望(其中一部分通过转专业成为数学类专业的学生)。我们推出的《数学分析原理》课程应运而生,为这一部分学生提供了一个恰当的学习提高机会。

‍‍

㈡ 实分析和数学分析区别

实分析和数学分析的区别:
数学分析主要是讨论实数、连续函数、极限、级数、微分导数、黎曼积分等等经典微积分的内容,它其实就是严格化的经典微积分(单元+多元);实分析主要是讨论测度和积分,特别地主要讨论勒贝格测度和积分;复变函数主要讨论全纯函数和半纯函数的性质;复分析一般是选修课程,我在复旦旁听的时候主要是讨论了单复变的一些进阶课题,比如单叶函数相关的Koebe 1/4定理,还有那个an<=n的好像叫Bieberbach猜想/Loewner定理,然后还有Picard大/小定理等等。

从教学实践上来说,一般是学完数分以后再同时学实分析(国内等价于实变)和复变(两者独立教学),学完复变之后再学复分析。但从逻辑关系上来说,不学数分直接学实变也是可以的,因为勒贝格测度和积分的定义实际上是独立于黎曼积分的,只是它整套机器更为庞大而已。当然数分和实变的侧重点是不一样的,数分侧重于计算技巧的训练(更具体),而实变侧重于理论体系的构建(更抽象);所以对于能力足够的学生来说,可以把数分和实变放在一起学,两边相互参考,理解更深,事半功倍。

㈢ 关于数学分析的学习方法

这样没有问题,一开始觉得可能比较慢,但基础扎实。还有,要注意学习的节奏,不能在某些问题上干耗。实在搞不明白,可以放着,以后学习深了,再来研究,说不定就会有意外收获。有问题时可以找志同道合的一起研究,也是一大乐事。

㈣ 常用的数学分析方法哪些

1.避免“一步到位”
是指解题过程中,省略关键步骤,而直接得到答案,这样扣分是严重的.由于解答题是严格按照步骤给分的,如果解题过程中失去关键步骤,跳过拟考查的知识点、能力点,就意味着失去得分点,自然被扣分.
例1(2000年全国高考题) 已知函数y= cos2x+ sinxcosx+1,x∈R.
(I) 当函数y取得最大值时,求自变量x的集合;
(II) 该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(I)由题设可得,y= sin(2x+ )+ ,故有
当 x= +k ,k∈Z,函数y取得最大值.
(II) 略.
评注:在(Ⅰ)的解答中犯了“大题小作”中的“一步到位”错误,缺少了化简过程的3个要点与何时取到最大值的1个要点,因而被扣分.
2. 避免“使用升华结论”
在解选择和填空题中,使用升华结论(教材中未给出的正确结论)是允许的,而且还是一种简捷快速的答题技巧.而直接运用(不加说明或证明)在解答题中是不合适的,且是“大题小作”,要适当扣分的.
解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,而学生使用“升华结论”则达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外别的东西,以免被扣分.
例2⑴(1991年全国高考题) 根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.
⑵(2001年全国高考题) 设抛物线y2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
评分标准中指出:
对于⑴:“利用y=x3在[0,+∞)上是增函数的性质,未证明y=x3在(-∞,+∞)上也是增函数而直接写出f(x1)-f(x2)= - <0,未能证明为什么 - <0过程,由评分标准知最多得3分.
对于⑵:有些考生证明时,直接运用课本中的引申结论“y1 y2=p2”而跳过拟考查的知识点、能力点而被扣2分.
对于课本习题、例题的结论,是要通过证明才能直接使用(黑体字结论例外),否则将被“定性”为解题不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全国高考理科第17(Ⅱ)利用面积射影定理,由于不加证明而直接使用,因而被扣分.
3 避免“答非所问”
是指没有根据题意要求或没有看清题意要求,用其它方法或结论作答,这明显也要被扣分的.
例3(1993年全国高考题)已知数列
Sn为其前n项和.计算得 观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.
解:依据题意,推测出Sn的公式为:
Sn= .
∵ ak= = - ,
分别取k=1,2,3,…,n,并将n个式子相加得:
Sn=1- = .
评注 以上解法可谓“简单、明了”,但证明时不用数学归纳法,为“答非所问”,不合题意,扣分是必然的. 又如1999年高考第22题(应用题),第(Ⅰ)问中求“冷轧机至少需要安装多少对轧辊”,要求是用整数作答,不少考生未能用整数作答,违背题意而被扣分.
(四)了解“评分标准”,把握得分点
掌握解答题的“得分点”就要了解高考的评分标准,解答题评分标准是分步给分,但并非写得越多得分越高,而是踏上得分点就给分,即按所用的数学知识,数学思想方法要点式给分,允许“等价答案”,允许“跳步得分”. 因此解答时,应步骤清,要点明,格式齐. 对于不同题型的给分规律有:
1.立几题得分点
通常分作证,计算两部分给分,各段中间又按要点给分.证明主要写清两点:①空间位置关系的判断推理的依据(课本中的定理、公理);②什么是空间角和距离及理由(紧扣定义). 特别要注意没有写清角、距离要被扣分. 计算过程的书写:计算一般是解三角形,要写清三角形的条件及解出的结果. 用等积法解题,要找出等积关系并计算. 都是分段得分的,如1998年23题,1999年22题,都有3个小题,每小题4分,其中作证2分,计算2分.
2.分类讨论题得分点
按所分类分别给分,加上归纳的格式(即写为“综上:当××时,结论是××”)分. 如1996年第20题,按a>1和0<a<1两类分别给5分,归纳给1分. 2000年理19(Ⅱ),求 a 的取值范围,使函数在区间[0,+∞)上是单调函数,按 a≥1和0<a<1讨论各得2分.
3.应用题得分点
按设列、解答两部分给分. 特别要注意不答和答错都要扣1分,应注意设、列、解、答的完整性,争取步骤阶段分.
4.推理证明题得分点
按推理格式,推理变形步骤给分. 对于用定义证明函数的单调性、奇偶性,用数学归纳法证题,都有严格的格式分,应完整,避免失分. 即使推理证明不出,宁可跳步作答,也要套用格式. 从条件、结论两头往中间靠,这样写完格式,这样可以少扣分.
5.综合题得分点
按解答的过程,分步给分,每个步骤又按要点给分. 尽可能把过程分步写出,尽量不跳步,根据题意
列出关系,译出题设中每一个条件,能演算几步算几步,尚未成功不等于失败,特别是那些解题层次分明的题目,那些已经程序化的方法,每进行一步得分点的演算都可以得到这一步的满分,最后结论虽然没有算出来,但分数已过半,所以说,“大题拿小分”也是一个好主意. 因此尽量增加分步得分机会,千万别轻易留空白题.
(五)常用的解答题解题技巧
1.较简单的解答题的求解
对于比较容易解答的解答题(一般是前面3道),宜采用一慢一快的方法,就是审题要慢,解题要快,速战速决,为后面3道解答题留下时间.
找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,罗唆重复,用阅卷老师的话,就是写出“得分点”,一般来讲,一个原理写一步就可以了。至于不是题目直接考查的过渡知识,可以直接写出结论,高考允许合理省略非关键步骤,应详略得当。
例2004北京理科第15题
在 中, , , ,求 的值和 的面积.
分析:本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力
解:
又 ,

.

2.较难的解答题的求解
对于较难的解答题(后面3道)来说,要想在有限的时间内做全对是不大现实的.当然也不能全部放弃,应该尽可能的争取多拿分.对于绝大多数考生来说,在这里重要的是:如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略,下面谈四个观点。
(1)、缺步解答
如果我们遇到一个很困难的问题,确实啃不动,一个明智的策略是:将它分解成为一个系列的步骤,或者是一个个子问题,能演算几步就演算几步,尚未成功不等于彻底失败,每进行一步得分点的演算就可以得到这一步的满分,最后结论虽然没有得出来,但分数却已过半。因为近几年高考解答题的特点是:入口易完善难,不可轻易放弃任何一题。
例: (2004浙江理科第21题)已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1.
(Ⅰ)若直线AP的斜率为k,且 ,求实数m的取值范围;
(Ⅱ)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程.
解: (Ⅰ)由条件得直线AP的方程

因为点M到直线AP的距离为1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范围是
(Ⅱ)可设双曲线方程为 由
得 .
又因为M是ΔAPQ的内心,M到AP的距离为1,所以∠MAP=45º,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1.因此, (不妨设P在第一象限)
直线PQ方程为 .
直线AP的方程y=x-1,
∴解得P的坐标是(2+ ,1+ ),将P点坐标代入 得,

所以所求双曲线方程为

(2)、跳步解答
解题卡在某一过渡环节上是常见的,这时,我们可以先承认中间结论,往后推,看能否得到结论。如果得不出,证明这个途径不对,立即改变方向;如果能得出预期结论,我们再回过头来,集中力量攻克这个“中途点”。由于高考时间的限制,“中途点”的攻克来不及了,那么可以把前面的写下来,再写上“证明某步之后,继而有……”一定做到底。也许,后来中间步骤又想出来了,这时不要乱七八糟地补上去,可补在后面,可书写为“事实上,某步可证如下”。
有的题目可能设有多问,第一问求不出来,可以把第一问当成已知,先做第二问,这也算做是跳步解答。
例: (2004天津文科第18题) 从4名男生和2名女生中任选3人参加演讲比赛.
(I) 求所选3人都是男生的概率;
(II)求所选3人中恰有1名女生的概率;
(III)求所选3人中至少有1名女生的概率.
解: (I) 所选3人都是男生的概率为
(II)所选3人中恰有1名女生的概率为
(III)所选3人中至少有1名女生的概率为
这3道小题可以说是互相独立的,彼此不相干.所以如果第1小题做不来,可以跳过去,直接做第2小题.

(3)、退步解答
“以退求进”是一个重要的解题策略,如果你不能解决题中所提出的问题,那么,你可以从一般退到特殊,从复杂退到简单,从整体退到局部。总之,退到一个你能够解决的问题,比如,{an}是公比为q的等比数列,Sn为{an}的前n项和,若Sn成等差数列,求公比q=____.
对等比数列问题,我们需考虑到q=1,q≠1两种情况,你可以先对特殊的q=1进行讨论,满足题意,找到解题思路和情绪上的稳定后,再讨论q≠1时是否也满足题意,发现无解,如果对q≠ 1的情况你确实不会解,你还可以开门见山的写上:本题分两种情况:q=1或q≠1.
也许你只能完成一种情况,但你没有用一种情况来代替主体。在概念上、逻辑上是清楚的。另外“难的不会做简单的”还为寻找正确的、一般的解题方法提供了有意义的启发。
4、辅助解答
一道题目的完整解答,即要有主要的实质性的步骤,也要有次要的辅助性的步骤,如:准确的作图,把题目中的条件翻译成数学表达式,设应用题中的未知量,函数中变量的取值范围,轨迹题中的动点坐标,数学归纳法证明时,第一步n的取值等,如果处理得当,也会增分,不要小视它们。
另外,书写也是辅助解答,卷面随意涂改及正确答案的位置不合理,都会造成不必要的失分。
所以,有人说,书写工整,卷面整齐也得分,不无道理。

㈤ 数学速算方法及分析方法

小学数学速算 方法 有哪些?小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。下面我给大家整理了关于数学速算方法及分析方法,希望对你有帮助!

数学速算方法

1数学速算的方法

小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。对于新的知识接受,一定要让孩子在学校认真听讲,跟着老师的思路走,做好笔记,即使有不懂的地方也要及时的请教老师或者同学。

数学成绩决定孩子的理科综合能力,影响到理化生等多学科的成绩,小学阶段适时进行奥数训练,更有助于孩子初中理科成绩的提升。不要让我们的孩子进入初中后因为数学影响总排名,进而影响到中考成绩!掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。

2方法一:指算法

个位数比十位数大1乘以9的运算方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几。弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位。例:34×9=306;

个位数比十位数大任意数乘以9的运算方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线。前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,原十位数为百位。左边减去百位数,剩余手指为十位。弯指作为分界线,弯指右边是个位。

3方法二:两位数加两位数的进位加法

口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9。(注:口决中的加几都是说个位上的数)例:26+38=64 解 :加8要减2,谁减2?26上的6减2。38里十位上的3要进4。(注:后一个两位数上的十位怎么进位,是1我进2,是2我进3,是3我进4,依次类推。那朝什么地方进位呢,进在第二个两位数上十位上。如本次是3我进4,就是这两个两位数里的2+4=6。)这里的26+38=64就是6-2=4写在个位上,是3进4加2就等于6写在十位上。再如42+29=71。就用加9要减1这句

口决,2-1=1,把1写在个位上,是2我进3,4+3=7,把7写在十位上即得71。两位数加两位数不进位的加法,就直接写得数就行,如25+34=59,个位加个位写在等号后的个位上5+4=9,十位加十位写在十位上即可2+3=5,即59。不必列竖式计算。本办法学会了百试百灵,比计算器还快。

4方法三:乘法速算方法

个位前的数字加1乘自己的积的末尾添上个位上的数字的积。如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。再如:61×69 (6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。故61×69=4209。练习:98×92 75×75 29×21;

十位相同,个位数字和不为10的两位数乘两位数的速算方法。用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862练习:85×84 67×68 31×38

数学分析方法

1数学分析方法

对于考数学与应用数学专业研究生的学生来说,数学分析是必考科目,由于这门专业课内容多、难点也多,怎么在有限的时间内复习好这门课程、做好充分的准备取得好成绩呢?

2数学分析方法

首先要想一想自己到底对数学有没有兴趣,无论你是不是数学专业的,兴趣是最好的老师。此外要对自己要有信心,数学的本质就很抽象,但那也是人类的智慧。数学是崇高的。

首先学习数学分析。推荐看数学分析卓里奇写的书,可以去买一本看看。想轻松点的可以先看微积分学教程,菲赫金哥尔茨的书。书里题目多,证明严谨。不可急着看后面的,后面与前面可是有很多的联系。

在学数学分析同时可以附带看代数。先看张禾端的高等代数,基本没有难度。抽象代数看高等近世代数Rotman。还有本书代数学引论,俄罗斯柯斯特利金的,可以当作参考,这本书后面可能有点难度,里面涉及内容也比较多。

最重要的是坚持与思考,不可以一会看书的前面,一会儿看书的后面,该休息时还是要休息的,书里的题目都很好,大师写得能不好吗?一定要好好思考,也做点题目。建议一年半学习,然后有了这些基础,可以向数学的王国更高层出发了。

3数学分析方法

知识掌握过程中的三种不良习惯:忽略理解,死记硬背:认为只要记住公式、定理就万事大吉,而忽略了知识导出过程的理解,既造成提取应用知识的困难,更一次又一次地失去了对知识推导过程中孕含的思想方法的吸取。如三角公式“常记常忘,屡记不会”的根本原因就在于此,进而也谈不上用三角变换解题的自觉性了。

注重结论,轻视过程:数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。如学习中看不出何时需讨论、如何讨论。原因之一在于数学知识的前提条件模糊(如指对数函数的单调性,不等式的性质,等比数列求和公式,最值定理等知识)

忽略及时复习和强化理解:“温故而知新”这一浅显的道理谁都懂,但在学习过程中持之以恒地应用者不多。由于在老师的精心诱导教诲下,每节课的内容好像都“懂”,因此也就舍不得花八至十分钟的“宝贵”时间回顾当天的旧知。殊不知课上的“懂”是师生共同参与努力的结果,要想自己“会”,必须有一个“内化”的过程,而这个过程必须从课内延伸到课外。切记从“懂”到“会”必须有一个自身“领悟”的过程,这是谁也无法取缔的过程。

忽视解题过程的规范化,只追求答案:数学解题的过程是一个化归与转化的过程,当然离不开规范严谨的推理与判断。解题中跳跃太大、乱写字母、徒手作图,如此态度对待稍难的问题,是难以产生正确答案的。我们说解题过程的规范不只是规范书写,更主要是规范“思考方法”,同学们应该学会不断调控自己的思维过程,力争使解题尽善尽美。

解决问题过程中的四种不良心态

缺乏对已学习过的典型题目及典型方法的积累:部分同学做了大量的习题,但收效甚微,效果不佳。究其原因,是迫于压力为完成任务而被动做题,缺乏必要的 总结 和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累—消化—吸收”才能“升华”。

4数学分析方法

整理每章知识点:把书上每章、每节的内容先过一遍,然后根据自己的实际情况,标记下不懂的地方、老师上课强调过的重点和自己觉得重要的内容(包括一些重要的不等式、缩放技巧等等),整理成笔记。

整理课本习题:整理完知识点过后,就得回归到题上,每节的课后题以及每章最后的总复习题,花时间逐个做一遍(这个也看所考学校的难度和对自己的要求),同样,把不会的和容易出错的标记、并整理成笔记。

整理 考研 真题:整理知识点和课本题目都是为了考上报考院校的研究生,所以第三部分就是整理你想要考学校的这一章节的历年真题,这个至关重要,因为一切都是为了最后的考卷做准备。

当系统的复习各个章节后,把所有笔记整合到一起,接下来就是查漏补缺,不懂的可以向老师或同学请教,两本教材时刻得拿出来翻阅。



数学速算方法及分析方法相关 文章 :

★ 数学速算技巧数学解题技巧

★ 数学二年级教学方法与措施与学重点简便运算归类方法

★ 小学数学快速提高计算能力学习技巧

★ 公考资料分析十大速算技巧

★ 小学六年级学生提高数学成绩的八个方法

★ 小学二年级数学学习方法指导

★ 做小学数学作业实用的简便运算方法

★ 小升初数学8种简便计算方法归类与复习方法

★ 高中数学简化运算技巧

㈥ 数学分析方法的优缺点

数学分析方法并不是十全十美的,它也有适用上的局限性,主要表现为:
1.数学模型本身不一定能很好地反映现实中的有关问题,因为许多数学模型都是建立在不一定正确的假设基础之上的,而且,在现实生活中,并不是所有的问题都能用数字来表达。因此,数学分析方法并不适用于所有决策问题或某一决策问题的所有方面。
2.若过分依赖数学模型来进行决策活动,就要专门培养一批从事数学模型设计和应用的人才,而这些专门人才却难以在其他方面发挥作用。

㈦ 数据分析与数学分析的不同点

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

数学分析,又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

㈧ 数学分析方法的简介

数学分析方法产生于第二次世界大战期间,自20世纪70年代以来广泛应用于企业决策领域。它是一种运用数学方法对可以定量化的决策问题进行研究,解决决策中的数量关系的决策分析方法。随着现代公共管理的科学化与技术化的发展,在公共决策领域采用数学分析方法已是一种普遍趋势。

㈨ 对数学分析的认识和想法

1数学分析解题思想与方法
解数学题不是要把自己当成解题的机器、解题的奴隶,而应该努力成为解题的主人,是要从解题中吸取解题的方法、思想,锻炼自己的思维,这就是所谓的“数学题要考查考生的能力”。下面小编给大家带来了数学分析解题思想与方法,希望对您们有帮助。

一、数形结合思想

“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合,应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决,运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

二、转化和化归思想

在研究和解决数学问题时,综合利用已掌握的知识和技能,通过某种手段,将问题转化为已有知识范围内可以解决的一种数学方法。

一般总是将复杂的问题转化为简单的问题,将较难的问题转化为容易求解的问题,将未解决的问题变换并转化为已解决的问题。可以说转化与化归思想在数学问题解决过程应用最为普遍,各类数学问题的解决无不是在不断转化中得以解决。实质上数学中常用的数形结合思想、函数与方程思想、分类讨论思想也可以理解为转化与化归思想的表现形式。

三、向量思想

通过观察问题的几何特征,挖掘代数结构的向量模型,巧妙地构造向量,把原有问题转化为向量的运算功能或向量的几何意义来解决,向量不仅可进行加、减、数乘等丰富的代数运算,同时向量提供了重要的几何意义。向量构建了代数与几何之间的桥梁,使一些难以解决的代数或几何问题运用向量的运算使问题迎刃而解,通过向量运算,可有效揭示空间(或平面)图形的位置和数量关系,由定性研究变为定量研究,是数形结合思想的深化和提高。

㈩ 数学分析方法的常用数学分析方法

1.线性规划;
2.盈亏平衡分析;
3.计划评审法;
4.收益矩阵决策;
5.排队模型;
6.其他几种方法。
(1)等可能法;
(2)大中取大法(乐观法);
(3)小中取大法(悲观法);
(4)乐观系数法;
(5)沙凡奇(Savage)法(后悔值大中取小法)。

阅读全文

与分析方法和数学分析相关的资料

热点内容
中式棉袄制作方法图片 浏览:65
五菱p1171故障码解决方法 浏览:860
男士修护膏使用方法 浏览:548
电脑图标修改方法 浏览:609
湿气怎么用科学的方法解释 浏览:539
910除以26的简便计算方法 浏览:807
吹东契奇最简单的方法 浏览:706
对肾脏有好处的食用方法 浏览:100
电脑四线程内存设置方法 浏览:514
数字电路通常用哪三种方法分析 浏览:17
实训课程的教学方法是什么 浏览:527
苯甲醇乙醚鉴别方法 浏览:84
苹果手机微信视频声音小解决方法 浏览:702
控制箱的连接方法 浏览:77
用什么简单的方法可以去痘 浏览:791
快速去除甲醛的小方法你知道几个 浏览:805
自行车架尺寸测量方法 浏览:126
石磨子的制作方法视频 浏览:154
行善修心的正确方法 浏览:405
薯仔炖鸡汤的正确方法和步骤 浏览:278